oxygen evolution reaction
Dotaz
Zobrazit nápovědu
BACKGROUND: With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE: In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS: We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
- MeSH
- biomasa MeSH
- chlorofyl a * MeSH
- chlorofyl MeSH
- fotosyntéza * MeSH
- fotosystém II (proteinový komplex) MeSH
- kyslík MeSH
- lidé MeSH
- světlo MeSH
- transport elektronů MeSH
- voda MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The Arabidopsis mutant rcd1 is tolerant to methyl viologen (MV). MV enhances the Mehler reaction, i.e. electron transfer from Photosystem I (PSI) to O2, generating reactive oxygen species (ROS) in the chloroplast. To study the MV tolerance of rcd1, we first addressed chloroplast thiol redox enzymes potentially implicated in ROS scavenging. NADPH-thioredoxin oxidoreductase type C (NTRC) was more reduced in rcd1. NTRC contributed to the photosynthetic and metabolic phenotypes of rcd1, but did not determine its MV tolerance. We next tested rcd1 for alterations in the Mehler reaction. In rcd1, but not in the wild type, the PSI-to-MV electron transfer was abolished by hypoxic atmosphere. A characteristic feature of rcd1 is constitutive expression of mitochondrial dysfunction stimulon (MDS) genes that affect mitochondrial respiration. Similarly to rcd1, in other MDS-overexpressing plants hypoxia also inhibited the PSI-to-MV electron transfer. One possible explanation is that the MDS gene products may affect the Mehler reaction by altering the availability of O2. In green tissues, this putative effect is masked by photosynthetic O2 evolution. However, O2 evolution was rapidly suppressed in MV-treated plants. Transcriptomic meta-analysis indicated that MDS gene expression is linked to hypoxic response not only under MV, but also in standard growth conditions. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
The light-driven splitting of water to oxygen (O2) is catalyzed by a protein-bound tetra-manganese penta-oxygen calcium (Mn4O5Ca) cluster in Photosystem II. In the current study, we used a large-scale integration (LSI)-based amperometric sensor array system, designated Bio-LSI, to perform two-dimensional imaging of light-induced O2 evolution from spinach leaves. The employed Bio-LSI chip consists of 400 sensor electrodes with a pitch of 250 μm for fast electrochemical imaging. Spinach leaves were illuminated to varying intensities of white light (400-700 nm) which induced oxygen evolution and subsequent electrochemical images were collected using the Bio-LSI chip. Bio-LSI images clearly showed the dose-dependent effects of the light-induced oxygen release from spinach leaves which was then significantly suppressed in the presence of urea-type herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Our results clearly suggest that light-induced oxygen evolution can be monitored using the chip and suggesting that the Bio-LSI is a promising tool for real-time imaging. To the best of our knowledge, this report is the first to describe electrochemical imaging of light-induced O2 evolution using LSI-based amperometric sensors in plants.
We have worked out a rapid 1-day test based on photosynthesis measurements to estimate suitable growth temperature of microalgae cultures. To verify the proposed procedure, several microalgae-Chlorella, Nostoc, Synechocystis, Scenedesmus, and Cylindrospermum-were cultured under controlled laboratory conditions (irradiance, temperature, mixing, CO2, and nutrient supply) to find the optima of photosynthetic activity using the range between 15 and 35 °C. These activities were recorded at each temperature step after 2 h of acclimation which should be sufficient as oxygen production and the PQ cycle are regulated by fast processes. Photosynthetic activity was measured using three techniques-oxygen production/respiration, saturating pulse analysis of fluorescence quenching, and fast fluorescence induction kinetics-to estimate the temperature optima which should correspond to high growth rate. We measured all variables that might have been directly related to growth-photosynthetic oxygen evolution, maximum photochemical yield of PSII, Fv/Fm, relative electron transport rate rETRmax, and the transients Vj and Vi determined by fast fluorescence induction curves. When the temperature optima for photosynthetic activity were verified in growth tests, we found good correlation. For most of tested microalgae strains, temperature around 30 °C was found to be the most suitable at this setting. We concluded that the developed test can be used as a rapid 1-day pre-screening to estimate a suitable growth temperature of microalgae strains before they are cultured in a pilot scale.
- MeSH
- Chlorella růst a vývoj metabolismus účinky záření MeSH
- fotosyntéza MeSH
- kinetika MeSH
- kultivační techniky metody MeSH
- kyslík metabolismus MeSH
- mikrořasy růst a vývoj metabolismus účinky záření MeSH
- Scenedesmus růst a vývoj metabolismus účinky záření MeSH
- sinice růst a vývoj metabolismus účinky záření MeSH
- světlo MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
Thylakoids are the place of the light-photosynthetic reactions. To gain maximal efficiency, these reactions are conditional to proper pigment-pigment and protein-protein interactions. In higher plants thylakoids, the interactions lead to a lateral asymmetry in localization of protein complexes (i.e. granal/stromal thylakoids) that have been defined as a domain-like structures characteristic by different biochemical composition and function (Albertsson P-Å. 2001,Trends Plant Science 6: 349-354). We explored this complex organization of thylakoid pigment-proteins at single cell level in the cyanobacterium Synechocystis sp. PCC 6803. Our 3D confocal images captured heterogeneous distribution of all main photosynthetic pigment-protein complexes (PPCs), Photosystem I (fluorescently tagged by YFP), Photosystem II and Phycobilisomes. The acquired images depicted cyanobacterial thylakoid membrane as a stable, mosaic-like structure formed by microdomains (MDs). These microcompartments are of sub-micrometer in sizes (~0.5-1.5 μm), typical by particular PPCs ratios and importantly without full segregation of observed complexes. The most prevailing MD is represented by MD with high Photosystem I content which allows also partial separation of Photosystems like in higher plants thylakoids. We assume that MDs stability (in minutes) provides optimal conditions for efficient excitation/electron transfer. The cyanobacterial MDs thus define thylakoid membrane organization as a system controlled by co-localization of three main PPCs leading to formation of thylakoid membrane mosaic. This organization might represent evolutional and functional precursor for the granal/stromal spatial heterogeneity in photosystems that is typical for higher plant thylakoids.
- MeSH
- bakteriální proteiny metabolismus MeSH
- fotosyntéza fyziologie MeSH
- fotosystém I (proteinový komplex) metabolismus MeSH
- fotosystém II (proteinový komplex) metabolismus MeSH
- fykobilizomy metabolismus MeSH
- konfokální mikroskopie MeSH
- membránové mikrodomény metabolismus MeSH
- Synechocystis MeSH
- tylakoidy metabolismus MeSH
- zobrazování trojrozměrné MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The PsbO protein is an essential extrinsic subunit of photosystem II, the pigment-protein complex responsible for light-driven water splitting. Water oxidation in photosystem II supplies electrons to the photosynthetic electron transfer chain and is accompanied by proton release and oxygen evolution. While the electron transfer steps in this process are well defined and characterized, the driving forces acting on the liberated protons, their dynamics and their destiny are all largely unknown. It was suggested that PsbO undergoes proton-induced conformational changes and forms hydrogen bond networks that ensure prompt proton removal from the catalytic site of water oxidation, i.e. the Mn4 CaO5 cluster. This work reports the purification and characterization of heterologously expressed PsbO from green algae Chlamydomonas reinhardtii and two isoforms from the higher plant Solanum tuberosum (PsbO1 and PsbO2). A comparison to the spinach PsbO reveals striking similarities in intrinsic protein fluorescence and CD spectra, reflecting the near-identical secondary structure of the proteins from algae and higher plants. Titration experiments using the hydrophobic fluorescence probe ANS revealed that eukaryotic PsbO proteins exhibit acid-base hysteresis. This hysteresis is a dynamic effect accompanied by changes in the accessibility of the protein's hydrophobic core and is not due to reversible oligomerization or unfolding of the PsbO protein. These results confirm the hypothesis that pH-dependent dynamic behavior at physiological pH ranges is a common feature of PsbO proteins and causes reversible opening and closing of their β-barrel domain in response to the fluctuating acidity of the thylakoid lumen.
It is often suggested that Life may lay outside the normal laws of Physics and particularly of Thermodynamics, though this point of view is refuted by many. As the Living State may be thought of as an open system, often far from equilibrium, most attempts at placing Life under the umbrella of the laws of Physics have been based, particularly in recent years, on non-equilibrium Thermodynamics and particularly the Maximum Entropy Production Principle. In this view it is the dissipation of entropy (heat) which permits the ever increasing complexity of Living Systems in biological evolution and the maintenance of this complexity. However, these studies usually consider such biological entities as whole cells, organs, whole organisms and even Life itself at the entire terrestrial level. This requires making assumptions concerning the Living State, which are often not soundly based on observation and lack a defined model structure. The present study is based on an entirely different approach, in which a classical thermodynamic analysis of a well-defined biological nanoparticle, plant Photosystem I, is performed. This photosynthetic structure, which absorbs light and performs primary and secondary charge separation, operates with a quantum efficiency close to one. It is demonstrated that when monochromatic light is absorbed by the lowest lying electronic transition, the chlorophyll Qy transition, entropy production in the system bath plus entropy changes internal to the system are numerically less than the entropy decrease of the light field. A Second Law violation is therefore suggested for these experimental conditions. This conclusion, while at first sight is supportive of the famous and much discussed statement of Schroedinger, that "Life feeds on negentropy", is analysed and the conditions in which this statement may be considered valid for a Plant Photosystem are defined and delimited. The remarkably high quantum efficiency, leading to minimal entropy production (energy wastage), seems to suggest that evolution of Photosystem I has gone down the road of maximal energy efficiency as distinct from maximal entropy production. Photosystem I cannot be considered a maximum entropy dissipation structure.
The extrinsic PsbU and PsbV proteins are known to play a critical role in stabilizing the Mn4CaO5 cluster of the PSII oxygen-evolving complex (OEC). However, most isolates of the marine cyanobacterium Prochlorococcus naturally miss these proteins, even though they have kept the main OEC protein, PsbO. A structural homology model of the PSII of such a natural deletion mutant strain (P. marinus MED4) did not reveal any obvious compensation mechanism for this lack. To assess the physiological consequences of this unusual OEC, we compared oxygen evolution between Prochlorococcus strains missing psbU and psbV (PCC 9511 and SS120) and two marine strains possessing these genes (Prochlorococcus sp. MIT9313 and Synechococcus sp. WH7803). While the low light-adapted strain SS120 exhibited the lowest maximal O2 evolution rates (Pmax per divinyl-chlorophyll a, per cell or per photosystem II) of all four strains, the high light-adapted strain PCC 9511 displayed even higher PChlmax and PPSIImax at high irradiance than Synechococcus sp. WH7803. Furthermore, thermoluminescence glow curves did not show any alteration in the B-band shape or peak position that could be related to the lack of these extrinsic proteins. This suggests an efficient functional adaptation of the OEC in these natural deletion mutants, in which PsbO alone is seemingly sufficient to ensure proper oxygen evolution. Our study also showed that Prochlorococcus strains exhibit negative net O2 evolution rates at the low irradiances encountered in minimum oxygen zones, possibly explaining the very low O2 concentrations measured in these environments, where Prochlorococcus is the dominant oxyphototroph.
- MeSH
- bakteriální proteiny chemie genetika fyziologie MeSH
- chlorofyl metabolismus MeSH
- fotosyntéza fyziologie MeSH
- fotosystém II (proteinový komplex) chemie genetika fyziologie MeSH
- genom bakteriální MeSH
- kyslík metabolismus MeSH
- molekulární modely MeSH
- průtoková cytometrie MeSH
- sinice genetika metabolismus MeSH
- světlo MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Photosystem II (PSII) catalyses the photoinduced oxygen evolution and, by producing reducing equivalents drives, in concert with PSI, the conversion of carbon dioxide to sugars. Our knowledge about the architecture of the reaction centre (RC) complex and the mechanisms of charge separation and stabilisation is well advanced. However, our understanding of the processes associated with the functioning of RC is incomplete: the photochemical activity of PSII is routinely monitored by chlorophyll-a fluorescence induction but the presently available data are not free of controversy. In this work, we examined the nature of gradual fluorescence rise of PSII elicited by trains of single-turnover saturating flashes (STSFs) in the presence of a PSII inhibitor, permitting only one stable charge separation. We show that a substantial part of the fluorescence rise originates from light-induced processes that occur after the stabilisation of charge separation, induced by the first STSF; the temperature-dependent relaxation characteristics suggest the involvement of conformational changes in the additional rise. In experiments using double flashes with variable waiting times (∆τ) between them, we found that no rise could be induced with zero or short ∆τ, the value of which depended on the temperature - revealing a previously unknown rate-limiting step in PSII.
- MeSH
- chlorofyl a metabolismus MeSH
- fluorescence * MeSH
- fotosyntéza MeSH
- fotosystém II (proteinový komplex) antagonisté a inhibitory metabolismus MeSH
- Spinacia oleracea metabolismus MeSH
- Synechococcus metabolismus MeSH
- Synechocystis metabolismus MeSH
- teplota MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In oxygenic photosynthesis the initial photochemical processes are carried out by photosystem I (PSI) and II (PSII). Although subunit composition varies between cyanobacterial and plastid photosystems, the core structures of PSI and PSII are conserved throughout photosynthetic eukaryotes. So far, the photosynthetic complexes have been characterised in only a small number of organisms. We performed in silico and biochemical studies to explore the organization and evolution of the photosynthetic apparatus in the chromerids Chromera velia and Vitrella brassicaformis, autotrophic relatives of apicomplexans. We catalogued the presence and location of genes coding for conserved subunits of the photosystems as well as cytochrome b6f and ATP synthase in chromerids and other phototrophs and performed a phylogenetic analysis. We then characterised the photosynthetic complexes of Chromera and Vitrella using 2D gels combined with mass-spectrometry and further analysed the purified Chromera PSI. Our data suggest that the photosynthetic apparatus of chromerids underwent unique structural changes. Both photosystems (as well as cytochrome b6f and ATP synthase) lost several canonical subunits, while PSI gained one superoxide dismutase (Vitrella) or two superoxide dismutases and several unknown proteins (Chromera) as new regular subunits. We discuss these results in light of the extraordinarily efficient photosynthetic processes described in Chromera.
- MeSH
- Alveolata genetika fyziologie MeSH
- delece genu MeSH
- fotosyntéza genetika fyziologie MeSH
- fotosystém I (proteinový komplex) genetika izolace a purifikace fyziologie MeSH
- fylogeneze MeSH
- hmotnostní spektrometrie MeSH
- molekulární evoluce MeSH
- superoxiddismutasa metabolismus MeSH
- tylakoidy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH