Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders with large heterogeneity at the clinical and molecular levels. As diagnostic procedures shift from bone marrow biopsies towards less invasive techniques, circulating small noncoding RNAs (sncRNAs) have become of particular interest as potential novel noninvasive biomarkers of the disease. We aimed to characterize the expression profiles of circulating sncRNAs of MDS patients and to search for specific RNAs applicable as potential biomarkers. We performed small RNA-seq in paired samples of total plasma and plasma-derived extracellular vesicles (EVs) obtained from 42 patients and 17 healthy controls and analyzed the data with respect to the stage of the disease, patient survival, response to azacitidine, mutational status, and RNA editing. Significantly higher amounts of RNA material and a striking imbalance in RNA content between plasma and EVs (more than 400 significantly deregulated sncRNAs) were found in MDS patients compared to healthy controls. Moreover, the RNA content of EV cargo was more homogeneous than that of total plasma, and different RNAs were deregulated in these two types of material. Differential expression analyses identified that many hematopoiesis-related miRNAs (e.g., miR-34a, miR-125a, and miR-150) were significantly increased in MDS and that miRNAs clustered on 14q32 were specifically increased in early MDS. Only low numbers of circulating sncRNAs were significantly associated with somatic mutations in the SF3B1 or DNMT3A genes. Survival analysis defined a signature of four sncRNAs (miR-1237-3p, U33, hsa_piR_019420, and miR-548av-5p measured in EVs) as the most significantly associated with overall survival (HR = 5.866, p < 0.001). In total plasma, we identified five circulating miRNAs (miR-423-5p, miR-126-3p, miR-151a-3p, miR-125a-5p, and miR-199a-3p) whose combined expression levels could predict the response to azacitidine treatment. In conclusion, our data demonstrate that circulating sncRNAs show specific patterns in MDS and that their expression changes during disease progression, providing a rationale for the potential clinical usefulness of circulating sncRNAs in MDS prognosis. However, monitoring sncRNA levels in total plasma or in the EV fraction does not reflect one another, instead, they seem to represent distinctive snapshots of the disease and the data should be interpreted circumspectly with respect to the type of material analyzed.
- MeSH
- azacytidin farmakologie MeSH
- biologické markery krev MeSH
- biologické modely MeSH
- editace RNA genetika MeSH
- extracelulární vezikuly metabolismus MeSH
- Kaplanův-Meierův odhad MeSH
- lidé MeSH
- malá nekódující RNA krev genetika MeSH
- mikro RNA genetika metabolismus MeSH
- multivariační analýza MeSH
- mutace genetika MeSH
- myelodysplastické syndromy krev genetika patologie MeSH
- prognóza MeSH
- proporcionální rizikové modely MeSH
- regulace genové exprese MeSH
- reprodukovatelnost výsledků MeSH
- signální transdukce genetika MeSH
- výsledek terapie MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hereditary hemochromatosis type I is an autosomal-recessive iron overload disease associated with a mutation in HFE gene. The most common mutation, C282Y, disrupts the disulfide bond necessary for the association of HFE with beta-2-microglobulin and abrogates cell surface HFE expression. HFE-deficient mice develop iron overload indicating a central role of the protein in the pathogenesis of hereditary hemochromatosis type I. However, despite significant effort, the role of the HFE protein in iron metabolism is still unknown. To shed a light on the molecular mechanism of HFE-related hemochromatosis we studied protein expression changes elicited by HFE-deficiency in the liver which is the organ critical for the regulation of iron metabolism. We undertook a proteomic study comparing protein expression in the liver of HFE deficient mice with control animals. We compared HFE-deficient animals with control animals with identical iron levels obtained by dietary treatment to identify changes specific to HFE deficiency rather than iron loading. We found 11 proteins that were differentially expressed in the HFE-deficient liver using two-dimensional electrophoresis and mass spectrometry identification. Of particular interest were urinary proteins 1, 2 and 6, glutathione-S-transferase P1, selenium binding protein 2, sarcosine dehydrogenase and thioredoxin-like protein 2. Our data suggest possible involvement of lipocalins, TNF-alpha signaling and PPAR alpha regulatory pathway in the pathogenesis of hereditary hemochromatosis and suggest future targeted research addressing the roles of the identified candidate genes in the molecular mechanism of hereditary hemochromatosis.
- MeSH
- 2D gelová elektroforéza MeSH
- exprese genu MeSH
- financování organizované MeSH
- hemochromatóza genetika metabolismus patologie MeSH
- játra metabolismus MeSH
- membránové proteiny fyziologie genetika nedostatek MeSH
- messenger RNA genetika metabolismus MeSH
- MHC antigeny I. třídy fyziologie genetika MeSH
- molekulární sekvence - údaje MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- polymerázová řetězová reakce MeSH
- přetížení železem genetika metabolismus patologie MeSH
- proteom genetika metabolismus MeSH
- proteomika metody MeSH
- sekvence aminokyselin MeSH
- spektrofotometrie atomová MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
Liver iron overload can be found in hereditary hemochromatosis, chronic liver diseases such as alcoholic liver disease, and chronic viral hepatitis or secondary to repeated blood transfusions. The excess iron promotes liver damage, including fibrosis, cirrhosis, and hepatocellular carcinoma. Despite significant research effort, we remain largely ignorant of the cellular consequences of liver iron overload and the cellular processes that result in the observed pathological changes. In addition, the variability in outcome and the compensatory response that likely modulates the effect of increased iron levels are not understood. To provide insight into these critical questions, we undertook a study to determine the consequences of iron overload on protein levels in liver using a proteomic approach. Using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) combined with matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS), we studied hepatic iron overload induced by carbonyl iron-rich diet in mice and identified 30 liver proteins whose quantity changes in condition of excess liver iron. Among the identified proteins were enzymes involved in several important metabolic pathways, namely the urea cycle, fatty acid oxidation, and the methylation cycle. This pattern of changes likely reflects compensatory and pathological changes associated with liver iron overload and provides a window into these processes.
- MeSH
- 2D gelová elektroforéza MeSH
- enzymy metabolismus MeSH
- financování organizované MeSH
- játra enzymologie fyziologie metabolismus MeSH
- mastné kyseliny metabolismus MeSH
- metylace MeSH
- močovina metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nemoci jater enzymologie etiologie metabolismus MeSH
- oxidace-redukce MeSH
- přetížení železem chemicky indukované komplikace metabolismus MeSH
- proteomika metody MeSH
- sloučeniny železa MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- stupeň závažnosti nemoci MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH