circGPA: circRNA functional annotation based on probability-generating functions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-19162S
Grantová Agentura České Republiky
20-19162S
Grantová Agentura České Republiky
20-19162S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000765
European Commission
CZ.02.1.01/0.0/0.0/16_019/0000765
European Commission
PubMed
36167495
PubMed Central
PMC9513885
DOI
10.1186/s12859-022-04957-8
PII: 10.1186/s12859-022-04957-8
Knihovny.cz E-zdroje
- Klíčová slova
- Annotation term, Circular RNA, Interaction network,
- MeSH
- biologické markery MeSH
- genové regulační sítě MeSH
- kruhová RNA * MeSH
- messenger RNA genetika metabolismus MeSH
- mikro RNA * genetika metabolismus MeSH
- pravděpodobnost MeSH
- stanovení celkové genové exprese metody MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- kruhová RNA * MeSH
- messenger RNA MeSH
- mikro RNA * MeSH
Recent research has already shown that circular RNAs (circRNAs) are functional in gene expression regulation and potentially related to diseases. Due to their stability, circRNAs can also be used as biomarkers for diagnosis. However, the function of most circRNAs remains unknown, and it is expensive and time-consuming to discover it through biological experiments. In this paper, we predict circRNA annotations from the knowledge of their interaction with miRNAs and subsequent miRNA-mRNA interactions. First, we construct an interaction network for a target circRNA and secondly spread the information from the network nodes with the known function to the root circRNA node. This idea itself is not new; our main contribution lies in proposing an efficient and exact deterministic procedure based on the principle of probability-generating functions to calculate the p-value of association test between a circRNA and an annotation term. We show that our publicly available algorithm is both more effective and efficient than the commonly used Monte-Carlo sampling approach that may suffer from difficult quantification of sampling convergence and subsequent sampling inefficiency. We experimentally demonstrate that the new approach is two orders of magnitude faster than the Monte-Carlo sampling, which makes summary annotation of large circRNA files feasible; this includes their reannotation after periodical interaction network updates, for example. We provide a summary annotation of a current circRNA database as one of our outputs. The proposed algorithm could be generalized towards other types of RNA in way that is straightforward.
Zobrazit více v PubMed
Dong R, Ma X-K, Li G-W, Yang L. CIRCpedia v2: an updated database for comprehensive circular RNA annotation and expression comparison. Genom Proteom Bioinform. 2018;16(4):226–233. doi: 10.1016/j.gpb.2018.08.001. PubMed DOI PMC
Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5):468. doi: 10.1038/s41419-021-03743-3. PubMed DOI PMC
Han B, Chao J, Yao H. Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther. 2018;187:31–44. doi: 10.1016/j.pharmthera.2018.01.010. PubMed DOI
Wang C-C, Han C-D, Zhao Q, Chen X. Circular RNAs and complex diseases: from experimental results to computational models. Briefings in Bioinformatics (2021). 10.1093/bib/bbab286. bbab286. https://academic.oup.com/bib/advance-article-pdf/doi/10.1093/bib/bbab286/39715891/bbab286.pdf PubMed PMC
Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16(1):94. doi: 10.1186/s12943-017-0663-2. PubMed DOI PMC
Zhang Z, Yang T, Xiao J. Circular RNAs: promising biomarkers for human diseases. EBioMedicine. 2018;34:267–274. doi: 10.1016/j.ebiom.2018.07.036. PubMed DOI PMC
Pearson WR. An introduction to sequence similarity ("homology") searching. Curr Protoc Bioinformatics. 2013; Chapter 3: Unit3.1. 10.1002/0471250953.bi0301s42. PubMed PMC
Panda AC. Circular RNAs act as miRNA sponges. In: Xiao J, editor. Circular RNAs: biogenesis and functions. Singapore: Springer; 2018. pp. 67–79. PubMed
Vromman M, Vandesompele J, Volders P-J. Closing the circle: current state and perspectives of circular RNA databases. Brief Bioinform. 2020;22(1):288–297. doi: 10.1093/bib/bbz175. PubMed DOI PMC
Cardenas J, Balaji U, Gu J. Cerina: systematic circRNA functional annotation based on integrative analysis of ceRNA interactions. Sci Rep. 2020;10(1):22165. doi: 10.1038/s41598-020-78469-x. PubMed DOI PMC
Li S, Chen L, Xu C, Qu X, Qin Z, Gao J, Li J, Liu J. Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population. Sci Rep. 2020;10(1):10138. doi: 10.1038/s41598-020-66990-y. PubMed DOI PMC
Ding Y, Chen B, Lei X, Liao B, Wu F-X. Predicting novel CircRNA-disease associations based on random walk and logistic regression model. Comput Biol Chem. 2020;87:107287. doi: 10.1016/j.compbiolchem.2020.107287. PubMed DOI
Fang Z, Lei X. Prediction of miRNA-circRNA associations based on DOI
Glaab E, Baudot A, Krasnogor N, Schneider R, Valencia A. EnrichNet: network-based gene set enrichment analysis. Bioinformatics. 2012;28(18):451–457. doi: 10.1093/bioinformatics/bts389. PubMed DOI PMC
Lei X, Bian C. Integrating random walk with restart and PubMed DOI PMC
Oliver S. Guilt-by-association goes global. Nature. 2000;403(6770):601–602. doi: 10.1038/35001165. PubMed DOI
Segal BD, Braun T, Elliott MR, Jiang H. Fast approximation of small PubMed DOI
Silva I, Assunção R, Costa M. Power of the sequential monte Carlo test. Seq Anal. 2009;28(2):163–174. doi: 10.1080/07474940902816601. DOI
Silva IR, Assunção RM. Optimal generalized truncated sequential monte Carlo test. J Multivar Anal. 2013;121:33–49. doi: 10.1016/j.jmva.2013.06.003. DOI
Feller W. Introduction to Probability Theory and Its Applications, (1966)
Li Y, Xu J, Shao T, Zhang Y, Chen H, Li X. RNA function prediction. In: Kaufmann M, Klinger C, Savelsbergh A, editors. Functional genomics: methods and protocols. New York, NY: Springer; 2017. pp. 17–28. PubMed
Manly B, Navarro Alberto J. Randomization, Bootstrap and Monte Carlo methods in biology. 4th ed. London: Chapman and Hall/CRC; 2020.
Phipson B, Smyth GK. Permutation PubMed DOI
Keller A, Backes C, Lenhof H-P. Computation of significance scores of unweighted gene set enrichment analyses. BMC Bioinform. 2007;8(1):290. doi: 10.1186/1471-2105-8-290. PubMed DOI PMC
Eddelbuettel D, Balamuta JJ. Extending R with C++: a brief introduction to Rcpp. Am Stat. 2018;72(1):28–36. doi: 10.1080/00031305.2017.1375990. DOI
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13(1):34–42. doi: 10.1080/15476286.2015.1128065. PubMed DOI PMC
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microrna targets. Cell. 2005;120(1):15–20. doi: 10.1016/j.cell.2004.12.035. PubMed DOI
Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G, Vergoulis T, Dalamagas T, Hatzigeorgiou AG. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res. 2017;46(D1):239–245. doi: 10.1093/nar/gkx1141. PubMed DOI PMC
Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res. 2008;37(suppl–1):105–110. doi: 10.1093/nar/gkn851. PubMed DOI PMC
Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M, Chien C-H, Wu M-C, Huang C-Y, Tsou A-P, Huang H-D. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2010;39(suppl–1):163–169. doi: 10.1093/nar/gkq1107. PubMed DOI PMC
Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, Mahaffey S, Rossi S, Calin GA, Bemis L, Theodorescu D. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42(17):133. doi: 10.1093/nar/gku631. PubMed DOI PMC
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(suppl–1):140–144. doi: 10.1093/nar/gkj112. PubMed DOI PMC
Binns D, Dimmer E, Huntley R, Barrell D, O’Donovan C, Apweiler R. QuickGO: a web-based tool for gene ontology searching. Bioinformatics. 2009;25(22):3045–3046. doi: 10.1093/bioinformatics/btp536. PubMed DOI PMC
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27(12):1739–1740. doi: 10.1093/bioinformatics/btr260. PubMed DOI PMC
Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, Meyer M, Wong J, Xu C, Merico D, Bader GD. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14(2):482–517. doi: 10.1038/s41596-018-0103-9. PubMed DOI PMC
Dunn OJ. Multiple comparisons among means. J Am Stat Assoc. 1961;56(293):52–64. doi: 10.1080/01621459.1961.10482090. DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995;57(1):289–300.
Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One. 2010;5(11):1–12. doi: 10.1371/journal.pone.0013984. PubMed DOI PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. doi: 10.1101/gr.1239303. PubMed DOI PMC
Glažar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014;20(11):1666–1670. doi: 10.1261/rna.043687.113. PubMed DOI PMC
Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjöstedt E, Lundberg E, Szigyarto CA-K, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson Å, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom. 2014;13(2):397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC
Liu S, Li B, Li Y, Song H. Circular rna circ\_0000228 promotes the malignancy of cervical cancer via microrna-195-5p/ lysyl oxidase-like protein 2 axis. Bioengineered. 2021;12(1):4397–4406. doi: 10.1080/21655979.2021.1954846. PubMed DOI PMC
Pareto V. Cours Deconomie Politique. Geneva: Librairie Droz; 1964. pp. 299–345.
Zhao B-W, Hu L, Hu P-W, You Z-H, Su X-R, Li D-X, Chen Z-H, Zhang P. MRLDTI: a meta-path-based representation learning model for drug-target interaction prediction. In: Huang D-S, Jo K-H, Jing J, Premaratne P, Bevilacqua V, Hussain A, editors. Intelligent computing theories and application. Cham: Springer; 2022. pp. 451–459.
Zhang M-L, Zhao B-W, Hu L, You Z-H, Chen Z-H. Predicting drug-disease associations via meta-path representation learning based on heterogeneous information net works. In: Huang D-S, Jo K-H, Jing J, Premaratne P, Bevilacqua V, Hussain A, editors. Intelligent computing theories and application. Cham: Springer; 2022. pp. 220–232.
Vural H, Kaya M, Alhajj R. A model based on random walk with restart to predict circRNA-disease associations on heterogeneous network. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining. ASONAM ’19, pp. 929–932. Association for Computing Machinery, New York, NY, USA (2019). 10.1145/3341161.3343514. https://doi.org/10.1145/3341161.3343514
Brin S, Page L. The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems. 1998;30(1):107–17. 10.1016/S0169-7552(98)00110-X (Proceedings of the Seventh International World Wide Web Conference).
Jiang Q, Wang Y, Hao Y, Juan L, Teng M, Zhang X, Li M, Wang G, Liu Y. miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 2008;37(suppl–1):98–104. doi: 10.1093/nar/gkn714. PubMed DOI PMC
Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q. HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2018;47(D1):1013–1017. doi: 10.1093/nar/gky1010. PubMed DOI PMC
Piñero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M, Sanz F, Furlong LI. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database, 2015; 2015. 10.1093/database/bav028. bav028. https://academic.oup.com/database/article-pdf/doi/10.1093/database/bav028/16975988/bav028.pdf PubMed PMC
Lan W, Zhu M, Chen Q, Chen B, Liu J, Li M, Chen Y-PP. CircR2Cancer: a manually curated database of associations between circRNAs and cancers. Database, 2020; 2020. 10.1093/database/baaa085. baaa085. https://academic.oup.com/database/article-pdf/doi/10.1093/database/baaa085/34283838/baaa085.pdf PubMed PMC
Yao D, Zhang L, Zheng M, Sun X, Lu Y, Liu P. Circ2Disease: a manually curated database of experimentally validated circRNAs in human disease. Sci Rep. 2018;8(1):11018. doi: 10.1038/s41598-018-29360-3. PubMed DOI PMC
Fan C, Lei X, Fang Z, Jiang Q, Wu F-X. CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases. Database. 2018. 10.1093/database/bay044. PubMed PMC
Ghosal S, Das S, Sen R, Basak P, Chakrabarti J. Circ2Traits: a comprehensive database for circular RNA potentially associated with disease and traits. Front Genet. 2013 doi: 10.3389/fgene.2013.00283. PubMed DOI PMC
Lei X, Fang Z, Chen L, Wu F-X. PWCDA: path weighted method for predicting circRNA-disease associations. Int J Mol Sci. 2018;19(11):3410. doi: 10.3390/ijms19113410. PubMed DOI PMC
Zhao Q, Yang Y, Ren G, Ge E, Fan C. Integrating bipartite network projection and KATZ measure to identify novel circRNA-disease associations. IEEE Trans Nanobiosci. 2019;18(4):578–584. doi: 10.1109/TNB.2019.2922214. PubMed DOI
Lei X-J, Fang Z, Guo L. Predicting circRNA-disease associations based on improved collaboration filtering recommendation system with multiple data. Front Genet. 2019 doi: 10.3389/fgene.2019.00897. PubMed DOI PMC
Lu C, Zeng M, Wu F-X, Li M, Wang J. Improving circRNA-disease association prediction by sequence and ontology representations with convolutional and recurrent neural networks. Bioinformatics. 2020;36(24):5656–5664. doi: 10.1093/bioinformatics/btaa1077. PubMed DOI
Zhang H-Y, Wang L, You Z-H, Hu L, Zhao B-W, Li Z-W, Li Y-M. iGRLCDA: identifying circRNA-disease association based on graph representation learning. Brief Bioinform. 2022 doi: 10.1093/bib/bbac083. PubMed DOI
Zhao B-W, Hu L, You Z-H, Wang L, Su X-R. HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks. Brief Bioinform. 2021 doi: 10.1093/bib/bbab515. PubMed DOI
Li G, Luo J, Wang D, Liang C, Xiao Q, Ding P, Chen H. Potential circRNA-disease association prediction using DeepWalk and network consistency projection. J Biomed Inform. 2020;112:103624. doi: 10.1016/j.jbi.2020.103624. PubMed DOI
Li G, Yue Y, Liang C, Xiao Q, Ding P, Luo J. NCPCDA: network consistency projection for circRNA-disease association prediction. RSC Adv. 2019;9(57):33222–33228. doi: 10.1039/C9RA06133A. PubMed DOI PMC
Zhang Y, Lei X, Fang Z, Pan Y. Circrna-disease associations prediction based on metapath2vec++ and matrix factorization. Big Data Min Anal. 2020;3(4):280–291. doi: 10.26599/BDMA.2020.9020025. DOI
Deepthi K, Jereesh AS. An ensemble approach for circrna-disease association prediction based on autoencoder and deep neural network. Gene. 2020;762:145040. doi: 10.1016/j.gene.2020.145040. PubMed DOI
Wang L, You Z-H, Huang D-S, Li J-Q. MGRCDA: Metagraph recommendation method for predicting circRNA-disease association. IEEE Trans Cybern. 2021 doi: 10.1109/TCYB.2021.3090756. PubMed DOI
Zheng K, You Z-H, Li J-Q, Wang L, Guo Z-H, Huang Y-A. iCDA-CGR: Identification of circRNA-disease associations based on chaos game representation. PLoS Comput Biol. 2020;16(5):1–22. doi: 10.1371/journal.pcbi.1007872. PubMed DOI PMC