Two Populations of Mites (Tyrophagus putrescentiae) Differ in Response to Feeding on Feces-Containing Diets
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30425700
PubMed Central
PMC6218854
DOI
10.3389/fmicb.2018.02590
Knihovny.cz E-zdroje
- Klíčová slova
- Bartonella, bacteria, diets, feces, feeding, fungi, soil, transmission,
- Publikační typ
- časopisecké články MeSH
Background: Tyrophagus putrescentiae is a ubiquitous mite species in soil, stored products and house dust and infests food and causes allergies in people. T. putrescentiae populations harbor different bacterial communities, including intracellular symbionts and gut bacteria. The spread of microorganisms via the fecal pellets of T. putrescentiae is a possibility that has not been studied in detail but may be an important means by which gut bacteria colonize subsequent generations of mites. Feces in soil may be a vector for the spread of microorganisms. Methods: Extracts from used mite culture medium (i.e., residual food, mite feces, and dead mite bodies) were used as a source of feces-inhabiting microorganisms as food for the mites. Two T. putrescentiae populations (L and P) were used for experiments, and they hosted the intracellular bacteria Cardinium and Wolbachia, respectively. The effects of the fecal fraction on respiration in a mite microcosm, mite nutrient contents, population growth and microbiome composition were evaluated. Results: Feces from the P population comprised more than 90% Bartonella-like sequences. Feces from the L population feces hosted Staphylococcus, Virgibacillus, Brevibacterium, Enterobacteriaceae, and Bacillus. The mites from the P population, but not the L population, exhibited increased bacterial respiration in the microcosms in comparison to no-mite controls. Both L- and P-feces extracts had an inhibitory effect on the respiration of the microcosms, indicating antagonistic interactions within feces-associated bacteria. The mite microbiomes were resistant to the acquisition of new bacterial species from the feces, but their bacterial profiles were affected. Feeding of P mites on P-feces-enriched diets resulted in an increase in Bartonella abundance from 6 to 20% of the total bacterial sequences and a decrease in Bacillus abundance. The population growth was fivefold accelerated on P-feces extracts in comparison to the control. Conclusion: The mite microbiome, to a certain extent, resists the acquisition of new bacteria when mites are fed on feces of the same species. However, a Bartonella-like bacteria-feces-enriched diet seems to be beneficial for mite populations with symbiotic Bartonella-like bacteria. Coprophagy on the feces of its own population may be a mechanism of bacterial acquisition in T. putrescentiae.
Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI United States
Department of Zoology Faculty of Science Charles University Prague Czechia
Divison of Crop Protection and Plant Health Crop Research Institute Prague Czechia
Zobrazit více v PubMed
Abou El-Atta D. A., Osman M. A. (2016). Development and reproductive potential of Tyrophagus putrescentiae (Acari: Acaridae) on plant-parasitic nematodes and artificial diets. Exp. Appl. Acarol. 68 477–483. 10.1007/s10493-015-0002-5 PubMed DOI
Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Anderson K. E., Russell J. A., Moreau C. S., Kautz S., Sullam K. E., Hu Y., et al. (2012). Highly similar microbial communities are shared among related and trophically similar ant species. Mol. Ecol. 21 2282–2296. 10.1111/j.1365-294x.2011.05464.x PubMed DOI
Anderson M. J., Ellingsen K. E., McArdle B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9 683–693. 10.1111/j.1461-0248.2006.00926.x PubMed DOI
Arlian L. G., Geis D. P., Vyszenski-Moher D. L., Bernstein I. L., Gallagher J. S. (1984). Antigenic and allergenic properties of the storage mite Tyrophagus putrescentiae. J. Allergy Clin. Immunol. 74 166–171. 10.1016/0091-6749(84)90281-1 PubMed DOI
Baker A. S., Swan M. C. (2013). A puzzling domestic infestation of the storage mite Tyrophagus longior. J. Stored Prod. Res. 54 64–66. 10.1016/j.jspr.2013.05.004 DOI
Bansal R., Mian M. A. R., Michel A. P. (2014). Microbiome diversity of Aphis glycines with extensive superinfection in native and invasive populations. Environ. Microbiol. Rep. 6 57–69. 10.1111/1758-2229.12108 PubMed DOI
Bengtsson G., Rundgren S. (1983). Respiration and growth of a fungus, Mortierella isabellina, in response to grazing by Onychiurus armatus (Collembola). Soil Biol. Biochem. 15 469–473. 10.1016/0038-0717(83)90013-5 DOI
Billeter S. A., Miller M. K., Breitschwerdt E. B., Levy M. G. (2008). Detection of two Bartonella tamiae-like sequences in Amblyomma americanum (Acari: Ixodidae) using 16S-23S intergenic spacer region-specific primers. J. Med. Entomol. 45 176–179. 10.1093/jmedent/45.1.176 PubMed DOI
Bonasio R., Zhang G., Ye C., Mutti N. S., Fang X., Qin N., et al. (2010). Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329 1068–1071. 10.1126/science.1192428 PubMed DOI PMC
Bordenstein S. R., Theis K. R. (2015). Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 13:e1002226. 10.1371/journal.pbio.1002226 PubMed DOI PMC
Brasier C. M. (1978). Mites and reproduction in Ceratocystis ulmi and other fungi. Trans. Br. Mycol. Soc. 70 81–89. 10.1016/S0007-1536(78)80175-2 DOI
Brazis P., Serra M., Selles A., Dethioux F., Biourge V., Puigdemont A. (2008). Evaluation of storage mite contamination of commercial dry dog food. Vet. Dermatol. 19 209–214. 10.1111/j.1365-3164.2008.00676.x PubMed DOI
Burns A. R., Stephens W. Z., Stagaman K., Wong S., Rawls J. F., Guillemin K., et al. (2016). Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J. 10 655–664. 10.1038/ismej.2015.142 PubMed DOI PMC
Chandler J. A., Lang J. M., Bhatnagar S., Eisen J. A., Kopp A. (2011). Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 7:e1002272. 10.1371/journal.pgen.1002272 PubMed DOI PMC
Chaturvedi S., Rego A., Lucas L. K., Gompert Z. (2017). Sources of variation in the gut microbial community of Lycaeides melissa caterpillars. Sci. Rep. 7:11335. 10.1038/s41598-017-11781-1 PubMed DOI PMC
Chiodini R. J., Dowd S. E., Chamberlin W. M., Galandiuk S., Davis B., Glassing A. (2015). Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PLoS One 10:e0134382. 10.1371/journal.pone.0134382 PubMed DOI PMC
Cole J. R., Wang Q., Fish J. A., Chai B., McGarrell D. M., Sun Y., et al. (2014). Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42 D633–D642. 10.1093/nar/gkt1244 PubMed DOI PMC
de Saint Georges-Gridelet D. (1987). Vitamin requirements of the European house dust mite, Dermatophagoides pteronyssinus (Acari: Pyroglyphidae), in relation to its fungal association. J. Med. Entomol. 24 408–411. 10.1093/jmedent/24.4.408 PubMed DOI
Douglas A. E., Werren J. H. (2016). Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7:e02099. 10.1128/mBio.02099-15 PubMed DOI PMC
Dray S., Bauman D., Blanchet G., Borcard D., Clappe S., Guenard G., et al. (2017). Adespatial: Multivariate Multiscale Spatial Analysis. Available at: https://cran.r-project.org/web/packages/adespatial/ [accessed March 15 2018].
Duek L., Kaufman G., Palevsky E., Berdicevsky I. (2001). Mites in fungal cultures. Mycoses 44 390–394. 10.1046/j.1439-0507.2001.00684.x PubMed DOI
Edgar R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10 996–998. 10.1038/nmeth.2604 PubMed DOI
Edgar R. C., Haas B. J., Clemente J. C., Quince C., Knight R. (2011). UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27 2194–2200. 10.1093/bioinformatics/btr381 PubMed DOI PMC
Engel P., Moran N. A. (2013). The gut microbiota of insects – diversity in structure and function. FEMS Microbiol. Rev. 37 699–735. 10.1111/1574-6976.12025 PubMed DOI
Erban T., Hubert J. (2008). Digestive function of lysozyme in synanthropic acaridid mites enables utilization of bacteria as a food source. Exp. Appl. Acarol. 44 199–212. 10.1007/s10493-008-9138-x PubMed DOI
Erban T., Klimov P. B., Smrz J., Phillips T. W., Nesvorna M., Kopecky J., et al. (2016a). Populations of stored product mite Tyrophagus putrescentiae differ in their bacterial communities. Front. Microbiol. 7:1046 10.3389/fmicb.2016.01046 PubMed DOI PMC
Erban T., Rybanska D., Harant K., Hortova B., Hubert J. (2016b). Feces derived allergens of Tyrophagus putrescentiae reared on dried dog food and evidence of the strong nutritional interaction between the mite and Bacillus cereus producing protease bacillolysins and exo-chitinases. Front. Physiol. 7:53. 10.3389/fphys.2016.00053 PubMed DOI PMC
Erban T., Ledvinka O., Nesvorna M., Hubert J. (2017). Experimental manipulation shows a greater influence of population than dietary perturbation on the microbiome of Tyrophagus putrescentiae. Appl. Environ. Microbiol. 83:e00128-17. 10.1128/AEM.00128-17 PubMed DOI PMC
Exbrayat J.-M. (2013). Histochemical and Cytochemical Methods of Visualization 1st Edn. Boca Raton, FL: CRC Press; 10.1201/b14967 DOI
Fain A., Fauvel G. (1993). Tyrophagus curvipenis n. sp. from an orchid cultivation in a greenhouse in Portugal (Acari: Acaridae). Int. J. Acarol. 19 95–100. 10.1080/01647959308683544 DOI
Ferrari J., Vavre F. (2011). Bacterial symbionts in insects or the story of communities affecting communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366 1389–1400. 10.1098/rstb.2010.0226 PubMed DOI PMC
Griffiths D. A., Hodson A. C., Christensen C. M. (1959). Grain storage fungi associated with mites. J. Econ. Entomol. 52 514–518. 10.1093/jee/52.3.514 DOI
Hammer O., Harper D. A. T., Ryan P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4 1–9. Available at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm [accessed March 15 2018].
Hanlon R. D. G., Anderson J. M. (1979). The effects of collembola grazing on microbial activity in decomposing leaf litter. Oecologia 38 93–99. 10.1007/BF00347827 PubMed DOI
Hubert J., Doleckova-Maresova L., Hyblova J., Kudlikova I., Stejskal V., Mares M. (2005). In vitro and in vivo inhibition of alpha-amylases of stored-product mite Acarus siro. Exp. Appl. Acarol. 35 281–291. 10.1007/s10493-004-7834-8 PubMed DOI
Hubert J., Erban T., Kopecky J., Sopko B., Nesvorna M., Lichovnikova M., et al. (2017). Comparison of microbiomes between red poultry mite populations (Dermanyssus gallinae): predominance of Bartonella-like bacteria. Microb. Ecol. 74 947–960. 10.1007/s00248-017-0993-z PubMed DOI
Hubert J., Kopecky J., Nesvorna M., Perotti M. A., Erban T. (2016a). Detection and localization of Solitalea-like and Cardinium bacteria in three Acarus siro populations (Astigmata: Acaridae). Exp. Appl. Acarol. 70 309–327. 10.1007/s10493-016-0080-z PubMed DOI
Hubert J., Kopecky J., Sagova-Mareckova M., Nesvorna M., Zurek L., Erban T. (2016b). Assessment of bacterial communities in thirteen species of laboratory-cultured domestic mites (Acari: Acaridida). J. Econ. Entomol. 109 1887–1896. 10.1093/jee/tow089 PubMed DOI
Hubert J., Kopecky J., Perotti M. A., Nesvorna M., Braig H. R., Sagova-Mareckova M., et al. (2012). Detection and identification of species-specific bacteria associated with synanthropic mites. Microb. Ecol. 63 919–928. 10.1007/s00248-011-9969-6 PubMed DOI
Hubert J., Pekar S., Nesvorna M., Sustr V. (2010). Temperature preference and respiration of acaridid mites. J. Econ. Entomol. 103 2249–2257. 10.1603/ec10237 PubMed DOI
Hughes A. M. (1976). The Mites of Stored Food and Houses: Technical Bulletin 9 of the Ministry of Agriculture, Fisheries and Food 2nd Edn. London: Her Majesty’s Stationery Office.
Jung J.-A., Cho M.-R., Kim H.-H., Kang T.-J., Lee J.-H., Do K.-R. (2010). Damages by Tyrophagus similis (Acari: Acaridae) in greenhouse spinach in Korea. Korea J. Appl. Entomol. 49 429–432. 10.5656/ksae.2010.49.4.429 DOI
Kaufmann C. (2014). “Determination of lipid, glycogen and sugars in mosquitoes,” in MR4 Methods in Anopheles Research 4th Edn ed. Benedict M. (Manassas, VA: BEI Resources; ). Available at: https://www.beiresources.org/Publications/MethodsinAnophelesResearch.aspx [accessed March 15 2018].
Kesnerova L., Moritz R., Engel P. (2016). Bartonella apis sp. nov., a honey bee gut symbiont of the class Alphaproteobacteria. Int. J. Syst. Evol. Microbiol. 66 414–421. 10.1099/ijsem.0.000736 PubMed DOI
Kong H. H., Oh J., Deming C., Conlan S., Grice E. A., Beatson M. A., et al. (2012). Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22 850–859. 10.1101/gr.131029.111 PubMed DOI PMC
Kozich J. J., Westcott S. L., Baxter N. T., Highlander S. K., Schloss P. D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79 5112–5120. 10.1128/AEM.01043-13 PubMed DOI PMC
Kuwahara Y. (2004). “Chemical ecology of astigmatid mites,” in Advances in Insect Chemical Ecology eds Carde R. T., Millar J. G. (Cambridge: Cambridge University Press; ) 76–109. 10.1017/CBO9780511542664.004 DOI
Levinson H. Z., Levinson A. R., Muller K. (1991a). The adaptive function of ammonia and guanine in the biocoenotic association between ascomycetes and flour mites (Acarus siro L.). Naturwissenschaften 78 174–176. 10.1007/bf01136207 DOI
Levinson H. Z., Levinson A. R., Muller K. (1991b). Functional adaptation of two nitrogenous waste products in evoking attraction and aggregation of flour mites (Acarus siro L.). Anz. Schadlingskde. Pflanzenschutz Umweltschutz 64 55–60. 10.1007/bf01909743 DOI
Matsumoto K. (1965). Studies on environmental factors for breeding of grain mites VII. Relationship between reproduction of mites and kind of carbohydrates in the diet. Med. Entomol. Zool. 16 118–122. 10.7601/mez.16.118 (in Japanese with English Summary). DOI
Matsuura Y., Kikuchi Y., Meng X. Y., Koga R., Fukatsu T. (2012). Novel clade of alphaproteobacterial endosymbionts associated with stinkbugs and other arthropods. Appl. Environ. Microbiol. 78 4149–4156. 10.1128/AEM.00673-12 PubMed DOI PMC
Montagna M., Mereghetti V., Gargari G., Guglielmetti S., Faoro F., Lozzia G., et al. (2016). Evidence of a bacterial core in the stored products pest Plodia interpunctella: the influence of different diets. Environ. Microbiol. 18 4961–4973. 10.1111/1462-2920.13450 PubMed DOI
Nalepa C. A., Bignell D. E., Bandi C. (2001). Detritivory, coprophagy, and the evolution of digestive mutualisms in Dictyoptera. Insect. Soc. 48 194–201. 10.1007/pl00001767 DOI
Neuvonen M.-M., Tamarit D., Naslund K., Liebig J., Feldhaar H., Moran N. A., et al. (2016). The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci. Rep. 6:39197. 10.1038/srep39197 PubMed DOI PMC
Oksanen J., Blanchet F. G., Kindt R., Legendre P., Minchin P. R., O’Hara R. B., et al. (2016). Vegan: Community Ecology Package. R package Version 2.3–5. Available at: http://CRAN.R-project.org/package=vegan [accessed March 15 2018].
Ondov B. D., Bergman N. H., Phillippy A. M. (2011). Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12:385. 10.1186/1471-2105-12-385 PubMed DOI PMC
Pankiewicz-Nowicka D., Boczek J., Davis R. (1986). Attraction by selected organic compounds to Tyrophagus putrescentiae (Acari: Acaridae). Ann. Entomol. Soc. Am. 79 293–299. 10.1093/aesa/79.2.293 DOI
Pekar S., Hubert J. (2008). Assessing biological control of Acarus siro by Cheyletus malaccensis under laboratory conditions: effect of temperatures and prey density. J. Stored Prod. Res. 44 335–340. 10.1016/j.jspr.2008.02.011 DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41 D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC
Robertson P. L. (1946). Tyroglyphid mites in stored products in New Zealand. Trans. R. Soc. N. Z. 76 185–207.
Rybanska D., Hubert J., Markovic M., Erban T. (2016). Dry dog food integrity and mite strain influence the density-dependent growth of the stored-product mite Tyrophagus putrescentiae (Acari: Acaridida). J. Econ. Entomol. 109 454–460. 10.1093/jee/tov298 PubMed DOI
Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75 7537–7541. 10.1128/AEM.01541-09 PubMed DOI PMC
Segers F. H. I. D., Kesnerova L., Kosoy M., Engel P. (2017). Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. ISME J. 11 1232–1244. 10.1038/ismej.2016.201 PubMed DOI PMC
Siepel H., Maaskamp F. (1994). Mites of different feeding guilds affect decomposition of organic matter. Soil Biol. Biochem. 26 1389–1394. 10.1016/0038-0717(94)90222-4 DOI
Simhadri R. K., Fast E. M., Guo R., Schultz M. J., Vaisman N., Ortiz L., et al. (2017). The gut commensal microbiome of Drosophila melanogaster is modified by the endosymbiont Wolbachia. mSphere 2:00287-17. 10.1128/mSphere.00287-17 PubMed DOI PMC
Smrz J. (1989). Internal anatomy of Hypochthonius rufulus (Acari: Oribatida). J. Morphol. 200 215–230. 10.1002/jmor.1052000210 PubMed DOI
Smrz J. (2003). Microanatomical and biological aspects of bacterial associations in Tyrophagus putrescentiae (Acari: Acaridida). Exp. Appl. Acarol. 31 105–113. 10.1023/B:APPA.0000005111.05959.d6 PubMed DOI
Smrz J., Catska V. (1989). The effect of the consumption of some soil fungi on the internal microanatomy of the mite Tyrophagus putrescentiae (Schrank) (Acari. Acaridida). Acta Univ. Carol. Biol. 33 81–93.
Smrz J., Catska V. (2010). Mycophagous mites and their internal associated bacteria cooperate to digest chitin in soil. Symbiosis 52 33–40. 10.1007/s13199-010-0099-6 DOI
Smrz J., Soukalova H., Catska V., Hubert J. (2016). Feeding patterns of Tyrophagus putrescentiae (Sarcoptiformes: Acaridae) indicate that mycophagy is not a single and homogeneous category of nutritional biology. J. Insect Sci. 16:94. 10.1093/jisesa/iew070 PubMed DOI PMC
Smrz J., Svobodova J., Catska V. (1991). Synergetic participation of Tyrophagus putrescentiae (Schrank) (Acari; Acaridida) and its associated bacteria on the destruction of some soil micromycetes. J. Appl. Entomol. 111 206–210. 10.1111/j.1439-0418.1991.tb00312.x DOI
Smrz J., Trelova M. (1995). The association of bacteria and some soil mites (Acari: Oribatida and Acaridida). Acta Zool. Fenn. 196 120–123.
Sobotnik J., Alberti G., Weyda F., Hubert J. (2008). Ultrastructure of the digestive tract in Acarus siro (Acari: Acaridida). J. Morphol. 269 54–71. 10.1002/jmor.10573 PubMed DOI
Stoll S., Gadau J., Gross R., Feldhaar H. (2007). Bacterial microbiota associated with ants of the genus Tetraponera. Biol. J. Linn. Soc. 90 399–412. 10.1111/j.1095-8312.2006.00730.x DOI
Wada-Katsumata A., Zurek L., Nalyanya G., Roelofs W. L., Zhang A., Schal C. (2015). Gut bacteria mediate aggregation in the German cockroach. Proc. Natl. Acad. Sci. U.S.A. 112 15678–15683. 10.1073/pnas.1504031112 PubMed DOI PMC
Walter D. E., Hudgens R. A., Freckman D. W. (1986). Consumption of nematodes by fungivorous mites, Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia 70 357–361. 10.1007/bf00379497 PubMed DOI
Werren J. H. (1997). Biology of Wolbachia. Annu. Rev. Entomol. 42 587–609. 10.1146/annurev.ento.42.1.587 PubMed DOI
White J. R., Nagarajan N., Pop M. (2009). Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 5:e1000352. 10.1371/journal.pcbi.1000352 PubMed DOI PMC
Wolska K. J. (1980). Effect of inbreeding on quantitative features of copra mite Tyrophagus putrescentiae Schr., Acarina: Acaridae. Genet. Pol. 21 291–307.
Zchori-Fein E., Perlman S. J. (2004). Distribution of the bacterial symbiont Cardinium in arthropods. Mol. Ecol. 13 2009–2016. 10.1111/j.1365-294X.2004.02203.x PubMed DOI
Zhao D.-X., Chen D.-S., Ge C., Gotoh T., Hong X.-Y. (2013). Multiple infections with Cardinium and two strains of Wolbachia in the spider mite Tetranychus phaselus Ehara: revealing new forces driving the spread of Wolbachia. PLoS One 8:e54964. 10.1371/journal.pone.0054964 PubMed DOI PMC
Zindel R., Ofek M., Minz D., Palevsky E., Zchori-Fein E., Aebi A. (2013). The role of the bacterial community in the nutritional ecology of the bulb mite Rhizoglyphus robini (Acari: Astigmata: Acaridae). FASEB J. 27 1488–1497. 10.1096/fj.12-216242 PubMed DOI
Microbial Communities of Stored Product Mites: Variation by Species and Population