RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: a study on patients with lower-risk MDS
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35505182
PubMed Central
PMC9252911
DOI
10.1038/s41375-022-01584-3
PII: 10.1038/s41375-022-01584-3
Knihovny.cz E-resources
- MeSH
- Leukemia, Myeloid, Acute * genetics MeSH
- Humans MeSH
- Mutation MeSH
- Myelodysplastic Syndromes * pathology MeSH
- Cell Transformation, Neoplastic genetics metabolism MeSH
- Prognosis MeSH
- Core Binding Factor Alpha 2 Subunit genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Core Binding Factor Alpha 2 Subunit MeSH
- RUNX1 protein, human MeSH Browser
Patients with lower-risk myelodysplastic syndromes (LR-MDS) have a generally favorable prognosis; however, a small proportion of cases progress rapidly. This study aimed to define molecular biomarkers predictive of LR-MDS progression and to uncover cellular pathways contributing to malignant transformation. The mutational landscape was analyzed in 214 LR-MDS patients, and at least one mutation was detected in 137 patients (64%). Mutated RUNX1 was identified as the main molecular predictor of rapid progression by statistics and machine learning. To study the effect of mutated RUNX1 on pathway regulation, the expression profiles of CD34 + cells from LR-MDS patients with RUNX1 mutations were compared to those from patients without RUNX1 mutations. The data suggest that RUNX1-unmutated LR-MDS cells are protected by DNA damage response (DDR) mechanisms and cellular senescence as an antitumor cellular barrier, while RUNX1 mutations may be one of the triggers of malignant transformation. Dysregulated DDR and cellular senescence were also observed at the functional level by detecting γH2AX expression and β-galactosidase activity. Notably, the expression profiles of RUNX1-mutated LR-MDS resembled those of higher-risk MDS at diagnosis. This study demonstrates that incorporating molecular data improves LR-MDS risk stratification and that mutated RUNX1 is associated with a suppressed defense against LR-MDS progression.
1st Faculty of Medicine Charles University Prague Czech Republic
Czech Technical University Prague Czech Republic
Department of Biology Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic
Faculty of Science Charles University Prague Czech Republic
Institute of Hematology and Blood Transfusion Prague Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
See more in PubMed
Platzbecker U, Kubasch AS, Homer-Bouthiette C, Prebet T. Current challenges and unmet medical needs in myelodysplastic syndromes. Leukemia. 2021;35:2182–98. doi: 10.1038/s41375-021-01265-7. PubMed DOI PMC
Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood. 1997;89:2079–88. doi: 10.1182/blood.V89.6.2079. PubMed DOI
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, et al. Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 2012;120:2454–65. doi: 10.1182/blood-2012-03-420489. PubMed DOI PMC
Mufti GJ, McLornan DP, van de Loosdrecht AA, Germing U, Hasserjian RP. Diagnostic algorithm for lower-risk myelodysplastic syndromes. Leukemia. 2018;32:1679–96. doi: 10.1038/s41375-018-0173-2. PubMed DOI
Giagounidis A. Current treatment algorithm for the management of lower-risk MDS. Hematol Am Soc Hematol Educ Progr. 2017;2017:453. doi: 10.1182/asheducation-2017.1.453. PubMed DOI PMC
DeZern AE. Lower risk but high risk. Hematol Am Soc Hematol Educ Progr. 2021;2021:428–34. PubMed PMC
Hou HA, Tsai CH, Lin CC, Chou WC, Kuo YY, Liu CY, et al. Incorporation of mutations in five genes in the revised International Prognostic Scoring System can improve risk stratification in the patients with myelodysplastic syndrome. Blood Cancer J. 2018;8:39. doi: 10.1038/s41408-018-0074-7. PubMed DOI PMC
Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506. doi: 10.1056/NEJMoa1013343. PubMed DOI PMC
Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30:3376–82. doi: 10.1200/JCO.2011.40.7379. PubMed DOI PMC
Nazha A, Narkhede M, Radivoyevitch T, Seastone DJ, Patel BJ, Gerds AT, et al. Incorporation of molecular data into the Revised International Prognostic Scoring System in treated patients with myelodysplastic syndromes. Leukemia. 2016;30:2214–20. doi: 10.1038/leu.2016.138. PubMed DOI
Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28:241–7. doi: 10.1038/leu.2013.336. PubMed DOI PMC
Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122:3616–27. doi: 10.1182/blood-2013-08-518886. PubMed DOI PMC
Nazha A, Komrokji RS, Barnard J, Al-Issa K, Padron E, Madanat YF, et al. A personalized prediction model to risk stratify patients with myelodysplastic syndromes (MDS) Blood. 2017;130:160–160.
Bersanelli M, Travaglino E, Meggendorfer M, Matteuzzi T, Sala C, Mosca E, et al. Classification and personalized prognostic assessment on the basis of clinical and genomic features in myelodysplastic syndromes. J Clin Oncol. 2021;39:1223–33. doi: 10.1200/JCO.20.01659. PubMed DOI PMC
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood Am Soc Hematol. 2016;127:2391–405. PubMed
Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N, Kurokawa M. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 2013;97:726–34. doi: 10.1007/s12185-013-1347-3. PubMed DOI
Branford S, Wang P, Yeung DT, Thomson D, Purins A, Wadham C, et al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood. 2018;132:948–61. doi: 10.1182/blood-2018-02-832253. PubMed DOI
Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129:2070–82. doi: 10.1182/blood-2016-10-687830. PubMed DOI PMC
Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, et al. Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 2006;108:419–25. doi: 10.1182/blood-2005-10-4149. PubMed DOI
Stetka J, Vyhlidalova P, Lanikova L, Koralkova P, Gursky J, Hlusi A, et al. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene. 2019;38:5627–42. doi: 10.1038/s41388-019-0813-7. PubMed DOI PMC
Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17:5–19. PubMed PMC
Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, et al. Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 2020;26:1549–56. doi: 10.1038/s41591-020-1008-z. PubMed DOI PMC
Yokota A, Huo L, Lan F, Wu J, Huang G. The clinical, molecular, and mechanistic basis of RUNX1 mutations identified in hematological malignancies. Mol Cells. 2020;43:145. PubMed PMC
Tsai SC, Shih LY, Liang ST, Huang YJ, Kuo MC, Huang CF, et al. Biological activities of RUNX1 mutants predict secondary acute leukemia transformation from chronic myelomonocytic leukemia and myelodysplastic syndromes. Clin Cancer Res. 2015;21:3541–51. PubMed
Eden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinform. 2009;10:48. PubMed PMC
Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R. DNA damage repair in Huntington’s disease and other neurodegenerative diseases. Neurotherapeutics. 2019;16:948–56. doi: 10.1007/s13311-019-00768-7. PubMed DOI PMC
Merlo D, Mollinari C, Racaniello M, Garaci E, Cardinale A. DNA double strand breaks: a common theme in neurodegenerative diseases. Curr Alzheimer Res. 2016;13:1208–18. doi: 10.2174/1567205013666160401114915. PubMed DOI
Martínez-Cué C, Rueda N. Cellular senescence in neurodegenerative diseases. Front Cell Neurosci. 2020;14:16. doi: 10.3389/fncel.2020.00016. PubMed DOI PMC
Radi E, Formichi P, Battisti C, Federico A. Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimer’s Dis. 2014;42:S125–52. doi: 10.3233/JAD-132738. PubMed DOI
Labadorf A, Choi SH, Myers RH. Evidence for a pan-neurodegenerative disease response in Huntington’s and Parkinson’s disease expression profiles. Front Mol Neurosci. 2018;10:430. doi: 10.3389/fnmol.2017.00430. PubMed DOI PMC
Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118:6239–46. doi: 10.1182/blood-2011-09-377275. PubMed DOI PMC
Belickova M, Vesela J, Jonasova A, Pejsova B, Votavova H, Merkerova MD, et al. TP53 mutation variant allele frequency is a potential predictor for clinical outcome of patients with lower-risk myelodysplastic syndromes. Oncotarget. 2016;7:36266–79. doi: 10.18632/oncotarget.9200. PubMed DOI PMC
He W, Zhao C, Hu H. Prognostic effect of RUNX1 mutations in myelodysplastic syndromes: a meta-analysis. Hematology. 2020;25:494–501. doi: 10.1080/16078454.2020.1858598. PubMed DOI
Nagata Y, Zhao R, Awada H, Kerr CM, Mirzaev I, Kongkiatkamon S, et al. Machine learning demonstrates that somatic mutations imprint invariant morphologic features in myelodysplastic syndromes. Blood. 2020;136:2249–62. doi: 10.1182/blood.2020005488. PubMed DOI PMC
Radakovich N, Meggendorfer M, Malcovati L, Hilton CB, Sekeres MA, Shreve J, et al. A geno-clinical decision model for the diagnosis of myelodysplastic syndromes. Blood Adv. 2021;5:4361–9. doi: 10.1182/bloodadvances.2021004755. PubMed DOI PMC
Harada H, Harada Y. Recent advances in myelodysplastic syndromes: molecular pathogenesis and its implications for targeted therapies. Cancer Sci. 2015;106:329–36. PubMed PMC
Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 2001;11:27–31. doi: 10.1016/S0962-8924(01)02151-1. PubMed DOI
Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633–7. doi: 10.1038/nature05268. PubMed DOI
Bartkova J, Hořejší Z, Koed K, Krämer A, Tort F, Zleger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70. doi: 10.1038/nature03482. PubMed DOI
Bartek J, Hodny Z, Lukas J. Cytokine loops driving senescence. Nat Cell Biol. 2008;10:887–9. doi: 10.1038/ncb0808-887. PubMed DOI
Hubackova S, Krejcikova K, Bartek J, Hodny Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine “bystander senescence. Aging. 2012;4:932–51. doi: 10.18632/aging.100520. PubMed DOI PMC
Rodier F, Coppé JP, Patil CK, Hoeijmakers WAM, Muñoz DP, Raza SR, et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol. 2009;11:973–9. doi: 10.1038/ncb1909. PubMed DOI PMC
Takacova S, Slany R, Bartkova J, Stranecky V, Dolezel P, Luzna P, et al. DNA damage response and inflammatory signaling limit the MLL-ENL-induced leukemogenesis in vivo. Cancer Cell. 2012;21:517–31. doi: 10.1016/j.ccr.2012.01.021. PubMed DOI
Wu D, Ozakis T, Yoshiharas Y, Kubos N, Nakagawara A. Runt-related transcription factor 1 (RUNX1) stimulates tumor suppressor p53 protein in response to DNA damage through complex formation and acetylation. J Biol Chem. 2013;288:1353–64. doi: 10.1074/jbc.M112.402594. PubMed DOI PMC
Motoda L, Osato M, Yamashita N, Jacob B, Chen LQ, Yanagida M, et al. Runx1 protects hematopoietic stem/progenitor cells from oncogenic insult. Stem Cells. 2007;25:2976–86. doi: 10.1634/stemcells.2007-0061. PubMed DOI
Peng ZG, Zhou MY, Huang Y, Qiu JH, Wang LS, Liao SH, et al. Physical and functional interaction of Runt-related protein 1 with hypoxia-inducible factor-1α. Oncogene. 2008;27:839–47. doi: 10.1038/sj.onc.1210676. PubMed DOI
Poon E, Harris AL, Ashcroft M. Targeting the hypoxia-inducible factor (HIF) pathway in cancer. Expert Rev Mol Med. 2009;11(e26). PubMed
Welford SM, Giaccia AJ. Hypoxia and senescence: the impact of oxygenation on tumor suppression. Mol Cancer Res. 2011;9:538–44. doi: 10.1158/1541-7786.MCR-11-0065. PubMed DOI PMC
Eren MK, Tabor V. The role of hypoxia-inducible factor-1 alpha in bypassing oncogene-induced senescence. PLoS One. 2014;9:e101064. doi: 10.1371/journal.pone.0101064. PubMed DOI PMC
van Vliet T, Varela-Eirin M, Wang B, Borghesan M, Brandenburg SM, Franzin R, et al. Physiological hypoxia restrains the senescence-associated secretory phenotype via AMPK-mediated mTOR suppression. Mol Cell. 2021;81:2041–2052.e6. doi: 10.1016/j.molcel.2021.03.018. PubMed DOI
Simon F, Bockhorn M, Praha C, Baba HA, Broelsch CE, Frilling A, et al. Deregulation of HIF1-alpha and hypoxia-regulated pathways in hepatocellular carcinoma and corresponding non-malignant liver tissue-influence of a modulated host stroma on the prognosis of HCC. Langenbeck’s Arch Surg. 2010;395:395–405. doi: 10.1007/s00423-009-0590-9. PubMed DOI
Schito L, Semenza GL. Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer. 2016;2:758–70. doi: 10.1016/j.trecan.2016.10.016. PubMed DOI
Vasikova A, Belickova M, Budinska E, Cermak J. A distinct expression of various gene subsets in CD34+ cells from patients with early and advanced myelodysplastic syndrome. Leuk Res. 2010;34:1566–72. doi: 10.1016/j.leukres.2010.02.021. PubMed DOI
Boehrer S, Adès L, Tajeddine N, Hofmann WK, Kriener S, Bug G, et al. Suppression of the DNA damage response in acute myeloid leukemia versus myelodysplastic syndrome. Oncogene. 2009;28:2205–18. doi: 10.1038/onc.2009.69. PubMed DOI
Valka J, Vesela J, Votavova H, Dostalova-Merkerova M, Horakova Z, Campr V, et al. Differential expression of homologous recombination DNA repair genes in the early and advanced stages of myelodysplastic syndrome. Eur J Haematol. 2017;99:323–31. doi: 10.1111/ejh.12920. PubMed DOI
Pellagatti A, Cazzola M, Giagounidis A, Perry J, Malcovati L, Della Porta MG, et al. Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells. Leukemia. 2010;24:756–64. doi: 10.1038/leu.2010.31. PubMed DOI