Hypoplastic myelodysplastic syndrome and acquired aplastic anemia: Immune‑mediated bone marrow failure syndromes (Review)

. 2022 Jan ; 60 (1) : . [epub] 20211227

Jazyk angličtina Země Řecko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34958107

Hypoplastic myelodysplastic syndrome (hMDS) and aplastic anemia (AA) are rare hematopoietic disorders characterized by pancytopenia with hypoplastic bone marrow (BM). hMDS and idiopathic AA share overlapping clinicopathological features, making a diagnosis very difficult. The differential diagnosis is mainly based on the presence of dysgranulopoiesis, dysmegakaryocytopoiesis, an increased percentage of blasts, and abnormal karyotype, all favouring the diagnosis of hMDS. An accurate diagnosis has important clinical implications, as the prognosis and treatment can be quite different for these diseases. Patients with hMDS have a greater risk of neoplastic progression, a shorter survival time and a lower response to immunosuppressive therapy compared with patients with AA. There is compelling evidence that these distinct clinical entities share a common pathophysiology based on the damage of hematopoietic stem and progenitor cells (HSPCs) by cytotoxic T cells. Expanded T cells overproduce proinflammatory cytokines (interferon‑γ and tumor necrosis factor‑α), resulting in decreased proliferation and increased apoptosis of HSPCs. The antigens that trigger this abnormal immune response are not known, but potential candidates have been suggested, including Wilms tumor protein 1 and human leukocyte antigen class I molecules. Our understanding of the molecular pathogenesis of these BM failure syndromes has been improved by next‑generation sequencing, which has enabled the identification of a large spectrum of mutations. It has also brought new challenges, such as the interpretation of variants of uncertain significance and clonal hematopoiesis of indeterminate potential. The present review discusses the main clinicopathological differences between hMDS and acquired AA, focuses on the molecular background and highlights the importance of molecular testing.

Zobrazit více v PubMed

Germing U, Aul C, Niemeyer CM, Haas R, Bennett JM. Epidemiology, classification and prognosis of adults and children with myelodysplastic syndromes. Ann Hematol. 2008;87:691–699. doi: 10.1007/s00277-008-0499-3. PubMed DOI

Germing U, Strupp C, Kündgen A, Bowen D, Aul C, Haas R, Gattermann N. No increase in age-specific incidence of myelodysplastic syndromes. Haematologica. 2004;89:905–910. PubMed

Durrani J, Maciejewski JP. Idiopathic aplastic anemia vs hypocellular myelodysplastic syndrome. Hematology Am Soc Hematol Educ Program. 2019;2019:97–104. doi: 10.1182/hematology.2019000019. PubMed DOI PMC

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI

Bono E, McLornan D, Travaglino E, Gandhi S, Gallì A, Khan AA, Kulasekararaj AG, Boveri E, Raj K, Elena C, et al. Clinical, histopathological and molecular characterization of hypoplastic myelodysplastic syndrome. Leukemia. 2019;33:2495–2505. doi: 10.1038/s41375-019-0457-1. PubMed DOI

Huang TC, Ko BS, Tang JL, Hsu C, Chen CY, Tsay W, Huang SY, Yao M, Chen YC, Shen MC, et al. Comparison of hypoplastic myelodysplastic syndrome (MDS) with normo-/hypercellular MDS by International prognostic scoring system, cytogenetic and genetic studies. Leukemia. 2008;22:544–550. doi: 10.1038/sj.leu.2405076. PubMed DOI

Marisavljevic D, Cemerikic V, Rolovic Z, Boskovic D, Colovic M. Hypocellular myelodysplastic syndromes: Clinical and biological significance. Med Oncol. 2005;22:169–175. doi: 10.1385/MO:22:2:169. PubMed DOI

Yue G, Hao S, Fadare O, Baker S, Pozdnyakova O, Galili N, Woda BA, Raza A, Wang SA. Hypocellularity in myelodysplastic syndrome is an independent factor which predicts a favorable outcome. Leuk Res. 2008;32:553–558. doi: 10.1016/j.leukres.2007.08.006. PubMed DOI

Stahl M, DeVeaux M, de Witte T, Neukirchen J, Sekeres MA, Brunner AM, Roboz GJ, Steensma DP, Bhatt VR, Platzbecker U, et al. The use of immunosuppressive therapy in MDS: Clinical outcomes and their predictors in a large international patient cohort. Blood Adv. 2018;2:1765–1772. doi: 10.1182/bloodadvances.2018019414. PubMed DOI PMC

Selleri C, Maciejewski JP, Catalano L, Ricci P, Andretta C, Luciano L, Rotoli B. Effects of cyclosporine on hematopoietic and immune functions in patients with hypoplastic myelodysplasia: In vitro and in vivo studies. Cancer. 2002;95:1911–1922. doi: 10.1002/cncr.10915. PubMed DOI

Gil-Perez A, Montalban-Bravo G. Management of myelodysplastic syndromes after failure of response to hypomethylating agents. Ther Adv Hematol. 2019;10:2040620719847059. doi: 10.1177/2040620719847059. PubMed DOI PMC

Nazha A, Narkhede M, Radivoyevitch T, Seastone DJ, Patel BJ, Gerds AT, Mukherjee S, Kalaycio M, Advani A, Przychodzen B, et al. Incorporation of molecular data into the revised international prognostic scoring system in treated patients with myelodysplastic syndromes. Leukemia. 2016;30:2214–2220. doi: 10.1038/leu.2016.138. PubMed DOI

Bond DR, Lee HJ, Enjeti AK. Unravelling the epigenome of myelodysplastic syndrome: Diagnosis, prognosis, and response to therapy. Cancers (Basel) 2020;12 doi: 10.3390/cancers12113128. PubMed DOI PMC

Zhou M, Wu L, Zhang Y, Mo W, Li Y, Chen X, Wang C, Pan S, Xu S, Zhou W, et al. Outcome of allogeneic hematopoietic stem cell transplantation for hypoplastic myelodysplastic syndrome. Int J Hematol. 2020;112:825–834. doi: 10.1007/s12185-020-02969-9. PubMed DOI

Issaragrisil S, Kaufman DW, Anderson T, Chansung K, Leaverton PE, Shapiro S, Young NS. The epidemiology of aplastic anemia in Thailand. Blood. 2006;107:1299–1307. doi: 10.1182/blood-2005-01-0161. PubMed DOI PMC

Shallis RM, Ahmad R, Zeidan AM. Aplastic anemia: Etiology, molecular pathogenesis, and emerging concepts. Eur J Haematol. 2018;101:711–720. doi: 10.1111/ejh.13153. PubMed DOI

Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Hematology Am Soc Hematol Educ Program. 2007;2007:29–39. doi: 10.1182/asheducation-2007.1.29. PubMed DOI

Young NS. Aplastic anemia. N Engl J Med. 2018;379:1643–1656. doi: 10.1056/NEJMra1413485. PubMed DOI PMC

Afable MG, II, Tiu RV, Maciejewski JP. Clonal evolution in aplastic anemia. Hematology Am Soc Hematol Educ Program. 2011;2011:90–95. doi: 10.1182/asheducation-2011.1.90. PubMed DOI

Risitano AM. Immunosuppressive therapies in the management of acquired immune-mediated marrow failures. Curr Opin Hematol. 2012;19:3–13. doi: 10.1097/MOH.0b013e32834da9a4. PubMed DOI

Koh Y, Lee HR, Kim HK, Kim I, Park S, Park MH, Kim BK, Yoon SS, Lee DS. Hypoplastic myelodysplastic syndrome (h-MDS) is a distinctive clinical entity with poorer prognosis and frequent karyotypic and FISH abnormalities compared to aplastic anemia (AA) Leuk Res. 2010;34:1344–1350. doi: 10.1016/j.leukres.2010.03.001. PubMed DOI

Fattizzo B, Dunlop A, Ireland R, Kassam S, Yallop D, Mufti G, Marsh J, Kulasekararaj A. Prevalence of small PNH clones and their prognostic significance in patients tested for unusual indications: A single center experience. Br J Haematol. 2019;185:125.

Kulasekararaj AG, Jiang J, Smith AE, Mohamedali AM, Mian S, Gandhi S, Gaken J, Czepulkowski B, Marsh JC, Mufti GJ. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014;124:2698–2704. doi: 10.1182/blood-2014-05-574889. PubMed DOI PMC

Zhu Y, Gao Q, Hu J, Liu X, Guan D, Zhang F. Allo-HSCT compared with immunosuppressive therapy for acquired aplastic anemia: A system review and meta-analysis. BMC Immunol. 2020;21:10. doi: 10.1186/s12865-020-0340-x. PubMed DOI PMC

Bennett JM, Orazi A. Diagnostic criteria to distinguish hypocellular acute myeloid leukemia from hypocellular myelodysplastic syndromes and aplastic anemia: Recommendations for a standardized approach. Haematologica. 2009;94:264–268. doi: 10.3324/haematol.13755. PubMed DOI PMC

Feng X, Scheinberg P, Wu CO, Samsel L, Nunez O, Prince C, Ganetzky RD, McCoy JP, Jr, Maciejewski JP, Young NS. Cytokine signature profiles in acquired aplastic anemia and myelodysplastic syndromes. Haematologica. 2011;96:602–606. doi: 10.3324/haematol.2010.030536. PubMed DOI PMC

Warlick ED, Smith BD. Myelodysplastic syndromes: Review of pathophysiology and current novel treatment approaches. Curr Cancer Drug Targets. 2007;7:541–558. doi: 10.2174/156800907781662284. PubMed DOI

Ganguly BB, Kadam NN. Mutations of myelodysplastic syndromes (MDS): An update. Mutat Res Rev Mutat Res. 2016;769:47–62. doi: 10.1016/j.mrrev.2016.04.009. PubMed DOI

Nazha A, Seastone D, Radivoyevitch T, Przychodzen B, Carraway HE, Patel BJ, Carew J, Makishima H, Sekeres MA, Maciejewski JP. Genomic patterns associated with hypoplastic compared to hyperplastic myelodysplastic syndromes. Haematologica. 2015;100:e434–e437. doi: 10.3324/haematol.2015.130112. PubMed DOI PMC

Yao CY, Hou HA, Lin TY, Lin CC, Chou WC, Tseng MH, Chiang YC, Liu MC, Liu CW, Kuo YY, et al. Distinct mutation profile and prognostic relevance in patients with hypoplastic myelodysplastic syndromes (h-MDS) Oncotarget. 2016;7:63177–63188. doi: 10.18632/oncotarget.11050. PubMed DOI PMC

Schwartz JR, Ma J, Lamprecht T, Walsh M, Wang S, Bryant V, Song G, Wu G, Easton J, Kesserwan C, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun. 2017;8:1557. doi: 10.1038/s41467-017-01590-5. PubMed DOI PMC

Mufti GJ, Marsh JCW. Somatic mutations in aplastic anemia. Hematol Oncol Clin North Am. 2018;32:595–607. doi: 10.1016/j.hoc.2018.03.002. PubMed DOI

Stanley N, Olson TS, Babushok DV. Recent advances in understanding clonal haematopoiesis in aplastic anaemia. Br J Haematol. 2017;177:509–525. doi: 10.1111/bjh.14510. PubMed DOI PMC

Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D, Sato-Otsubo A, Sato Y, Liu D, Suzuki H, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:35–47. doi: 10.1056/NEJMoa1414799. PubMed DOI PMC

Marsh JC, Kulasekararaj AG. Management of the refractory aplastic anemia patient: What are the options? Blood. 2013;122:3561–3567. doi: 10.1182/blood-2013-05-498279. PubMed DOI

Keel SB, Scott A, Sanchez-Bonilla M, Ho PA, Gulsuner S, Pritchard CC, Abkowitz JL, King MC, Walsh T, Shimamura A. Genetic features of myelodysplastic syndrome and aplastic anemia in pediatric and young adult patients. Haematologica. 2016;101:1343–1350. doi: 10.3324/haematol.2016.149476. PubMed DOI PMC

Huang J, Ge M, Lu S, Shi J, Li X, Zhang J, Wang M, Yu W, Shao Y, Huang Z, et al. Mutations of ASXL1 and TET2 in aplastic anemia. Haematologica. 2015;100:e172–e175. doi: 10.3324/haematol.2014.120931. PubMed DOI PMC

Heuser M, Schlarmann C, Dobbernack V, Panagiota V, Wiehlmann L, Walter C, Beier F, Ziegler P, Yun H, Kade S, et al. Genetic characterization of acquired aplastic anemia by targeted sequencing. Haematologica. 2014;99:e165–e167. doi: 10.3324/haematol.2013.101642. PubMed DOI PMC

Lekka E, Hall J. Noncoding RNAs in disease. FEBS Lett. 2018;592:2884–2900. doi: 10.1002/1873-3468.13182. PubMed DOI PMC

Kuang X, Chi J, Wang L. Deregulated microRNA expression and its pathogenetic implications for myelodysplastic syndromes. Hematology. 2016;21:593–602. doi: 10.1080/10245332.2016.1193962. PubMed DOI

Rhyasen GW, Starczynowski DT. Deregulation of microRNAs in myelodysplastic syndrome. Leukemia. 2012;26:13–22. doi: 10.1038/leu.2011.221. PubMed DOI

Dostalova Merkerova M, Krejcik Z, Votavova H, Belickova M, Vasikova A, Cermak J. Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet. 2011;19:313–319. doi: 10.1038/ejhg.2010.209. PubMed DOI PMC

Sokol L, Caceres G, Volinia S, Alder H, Nuovo GJ, Liu CG, McGraw K, Clark JA, Sigua CA, Chen DT, et al. Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol. 2011;153:24–32. doi: 10.1111/j.1365-2141.2011.08581.x. PubMed DOI PMC

Boultwood J, Fidler C, Strickson AJ, Watkins F, Gama S, Kearney L, Tosi S, Kasprzyk A, Cheng JF, Jaju RJ, Wainscoat JS. Narrowing and genomic annotation of the commonly deleted region of the 5q-syndrome. Blood. 2002;99:4638–4641. doi: 10.1182/blood.V99.12.4638. PubMed DOI

Pidíkova P, Reis R, Herichova I. miRNA clusters with down-regulated expression in human colorectal cancer and their regulation. Int J Mol Sci. 2020;21:4633. doi: 10.3390/ijms21134633. PubMed DOI PMC

Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology. 2009;77:12–21. doi: 10.1159/000218166. PubMed DOI

Starczynowski DT, Kuchenbauer F, Argiropoulos B, Sung S, Morin R, Muranyi A, Hirst M, Hogge D, Marra M, Wells RA, et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med. 2010;16:49–58. doi: 10.1038/nm.2054. PubMed DOI

Votavova H, Grmanova M, Dostalova Merkerova M, Belickova M, Vasikova A, Neuwirtova R, Cermak J. Differential expression of microRNAs in CD34+ cells of 5q-syndrome. J Hematol Oncol. 2011;4:1. doi: 10.1186/1756-8722-4-1. PubMed DOI PMC

Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood. 2018;132:1553–1560. doi: 10.1182/blood-2018-03-784116. PubMed DOI PMC

Gañán-Gómez I, Wei Y, Yang H, Pierce S, Bueso-Ramos C, Calin G, Boyano-Adánez Mdel C, García-Manero G. Overexpression of miR-125a in myelodysplastic syndrome CD34+ cells modulates NF-κB activation and enhances erythroid differentiation arrest. PLoS One. 2014;9:e93404. doi: 10.1371/journal.pone.0093404. PubMed DOI PMC

Srivastava J, Chaturvedi CP, Rahman K, Gupta R, Sharma A, Chandra D, Singh MK, Gupta A, Yadav S, Nityanand S. Differential expression of miRNAs and their target genes: Exploring a new perspective of acquired aplastic anemia pathogenesis. Int J Lab Hematol. 2020;42:501–509. doi: 10.1111/ijlh.13245. PubMed DOI

Lu S, Yadav AK, Qiao X. Identification of potential miRNA-mRNA interaction network in bone marrow T cells of acquired aplastic anemia. Hematology. 2020;25:168–175. doi: 10.1080/16078454.2020.1757332. PubMed DOI

Adhikari S, Mandal P. Integrated analysis of global gene and microRNA expression profiling associated with aplastic anaemia. Life Sci. 2019;228:47–52. doi: 10.1016/j.lfs.2019.04.045. PubMed DOI

Hosokawa K, Kajigaya S, Feng X, Desierto MJ, Fernandez Ibanez MD, Rios O, Weinstein B, Scheinberg P, Townsley DM, Young NS. A plasma microRNA signature as a biomarker for acquired aplastic anemia. Haematologica. 2017;102:69–78. doi: 10.3324/haematol.2016.151076. PubMed DOI PMC

Hosokawa K, Muranski P, Feng X, Keyvanfar K, Townsley DM, Dumitriu B, Chen J, Kajigaya S, Taylor JG, Hourigan CS, et al. Identification of novel microRNA signatures linked to acquired aplastic anemia. Haematologica. 2015;100:1534–1545. doi: 10.3324/haematol.2015.126128. PubMed DOI PMC

Sun YX, Li H, Feng Q, Li X, Yu YY, Zhou LW, Gao Y, Li GS, Ren J, Ma CH, et al. Dysregulated miR34a/diacylglycerol kinase ζ interaction enhances T-cell activation in acquired aplastic anemia. Oncotarget. 2017;8:6142–6154. doi: 10.18632/oncotarget.14046. PubMed DOI PMC

Giudice V, Banaszak LG, Gutierrez-Rodrigues F, Kajigaya S, Panjwani R, Ibanez MDPF, Rios O, Bleck CK, Stempinski ES, Raffo DQ, et al. Circulating exosomal microRNAs in acquired aplastic anemia and myelodysplastic syndromes. Haematologica. 2018;103:1150–1159. doi: 10.3324/haematol.2017.182824. PubMed DOI PMC

Benetatos L, Hatzimichael E, Dasoula A, Dranitsaris G, Tsiara S, Syrrou M, Georgiou I, Bourantas KL. CpG methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk Res. 2010;34:148–153. doi: 10.1016/j.leukres.2009.06.019. PubMed DOI

Szikszai K, Krejcik Z, Klema J, Loudova N, Hrustincova A, Belickova M, Hruba M, Vesela J, Stranecky V, Kundrat D, et al. LncRNA profiling reveals that the deregulation of H19, WT1-AS, TCL6, and LEF1-AS1 is associated with higher-risk myelodysplastic syndrome. Cancers (Basel) 2020;12:2726. doi: 10.3390/cancers12102726. PubMed DOI PMC

Yao CY, Chen CH, Huang HH, Hou HA, Lin CC, Tseng MH, Kao CJ, Lu TP, Chou WC, Tien HF. A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes. Blood Adv. 2017;1:1505–1516. doi: 10.1182/bloodadvances.2017008284. PubMed DOI PMC

Liu K, Beck D, Thoms JAI, Liu L, Zhao W, Pimanda JE, Zhou X. Annotating function to differentially expressed LincRNAs in myelodysplastic syndrome using a network-based method. Bioinformatics. 2017;33:2622–2630. doi: 10.1093/bioinformatics/btx280. PubMed DOI PMC

Wu Z, Gao S, Zhao X, Chen J, Keyvanfar K, Feng X, Kajigaya S, Young NS. Long noncoding RNAs of single hematopoietic stem and progenitor cells in healthy and dysplastic human bone marrow. Haematologica. 2019;104:894–906. doi: 10.3324/haematol.2018.208926. PubMed DOI PMC

Hung SY, Lin CC, Hsu CL, Yao CY, Wang YH, Tsai CH, Hou HA, Chou WC, Tien HF. The expression levels of long non-coding RNA KIAA0125 are associated with distinct clinical and biological features in myelodysplastic syndromes. Br J Haematol. 2021;192:589–598. doi: 10.1111/bjh.17231. PubMed DOI

Li N, Ma Y, Wang W, Yin CC, Wu W, Sun R, Zhao G, Li S, Wang X. LOC101928834, a novel lncRNA in Wnt/β-catenin signaling pathway, promotes cell proliferation and predicts poor clinical outcome in myelodysplastic syndromes. Clin Sci (Lond) 2020;134:1279–1293. doi: 10.1042/CS20200439. PubMed DOI

Congrains-Castillo A, Niemann FS, Santos Duarte AS, Olalla-Saad ST. LEF1-AS1 long non-coding RNA, inhibits proliferation in myeloid malignancy. J Cell Mol Med. 2019;23:3021–3025. doi: 10.1111/jcmm.14152. PubMed DOI PMC

Wang J, Liu X, Hao C, Lu Y, Duan X, Liang R, Gao G, Zhang T. MEG3 modulates TIGIT expression and CD4 + T cell activation through absorbing miR-23a. Mol Cell Biochem. 2019;454:67–76. doi: 10.1007/s11010-018-3453-2. PubMed DOI

Jiang S, Xia M, Yang J, Shao J, Liao X, Zhu J, Jiang H. Novel insights into a treatment for aplastic anemia based on the advanced proliferation of bone marrow-derived mesenchymal stem cells induced by fibroblast growth factor 1. Mol Med Rep. 2015;12:7877–7882. doi: 10.3892/mmr.2015.4421. PubMed DOI PMC

Lu S, Song X, Chen J, Qiao X. Identification of differentially expressed lncRNAs and mRNAs in children with acquired aplastic anemia by RNA sequencing. Biomed Res Int. 2020;2020:8962090. doi: 10.1155/2020/8962090. PubMed DOI PMC

Risitano AM, Maciejewski JP, Green S, Plasilova M, Zeng W, Young NS. In-vivo dominant immune responses in aplastic anaemia: Molecular tracking of putatively pathogenetic T-cell clones by TCR beta-CDR3 sequencing. Lancet. 2004;364:355–364. doi: 10.1016/S0140-6736(04)16724-X. PubMed DOI

Risitano AM, Kook H, Zeng W, Chen G, Young NS, Maciejewski JP. Oligoclonal and polyclonal CD4 and CD8 lymphocytes in aplastic anemia and paroxysmal nocturnal hemoglobinuria measured by V beta CDR3 spectratyping and flow cytometry. Blood. 2002;100:178–183. doi: 10.1182/blood-2002-01-0236. PubMed DOI

Melenhorst JJ, Eniafe R, Follmann D, Nakamura R, Kirby M, Barrett AJ. Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodys- plastic syndrome. Br J Haematol. 2002;119:97–105. doi: 10.1046/j.1365-2141.2002.03802.x. PubMed DOI

Fozza C, Contini S, Galleu A, Simula MP, Virdis P, Bonfigli S, Longinotti M. Patients with myelodysplastic syndromes display several T-cell expansions, which are mostly polyclonal in the CD4(+) subset and oligoclonal in the CD8(+) subset. Exp Hematol. 2009;37:947–955. doi: 10.1016/j.exphem.2009.04.009. PubMed DOI

Kochenderfer JN, Kobayashi S, Wieder ED, Su C, Molldrem JJ. Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression. Blood. 2002;100:3639–3645. doi: 10.1182/blood-2002-01-0155. PubMed DOI

Li X, Xu F, He Q, Wu L, Zhang Z, Chang C. Comparison of immunological abnormalities of lymphocytes in bone marrow in myelodysplastic syndrome (MDS) and aplastic anemia (AA) Intern Med. 2010;49:1349–1355. doi: 10.2169/internalmedicine.49.3477. PubMed DOI

Solomou EE, Rezvani K, Mielke S, Malide D, Keyvanfar K, Visconte V, Kajigaya S, Barrett AJ, Young NS. Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia. Blood. 2007;110:1603–1606. doi: 10.1182/blood-2007-01-066258. PubMed DOI PMC

Bouchliou I, Miltiades P, Nakou E, Spanoudakis E, Goutzouvelidis A, Vakalopoulou S, Garypidou V, Kotoula V, Bourikas G, Tsatalas C, Kotsianidis I. Th17 and Foxp3(+) T regulatory cell dynamics and distribution in myelodysplastic syndromes. Clin Immunol. 2011;139:350–359. doi: 10.1016/j.clim.2011.03.001. PubMed DOI

Sloand EM, Barrett AJ. Immunosuppression for myelodys- plastic syndrome: How bench to bedside to bench research led to success. Hematol Oncol Clin North Am. 2010;24:331–341. doi: 10.1016/j.hoc.2010.02.009. PubMed DOI PMC

Sloand EM, Mainwaring L, Fuhrer M, Ramkissoon S, Risitano AM, Keyvanafar K, Lu J, Basu A, Barrett AJ, Young NS. Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood. 2005;106:841–851. doi: 10.1182/blood-2004-05-2017. PubMed DOI PMC

Sloand EM, Melenhorst JJ, Tucker ZC, Pfannes L, Brenchley JM, Yong A, Visconte V, Wu C, Gostick E, Scheinberg P, et al. T-cell immune responses to Wilms tumor 1 protein in myelodysplasia responsive to immunosuppressive therapy. Blood. 2011;117:2691–2699. doi: 10.1182/blood-2010-04-277921. PubMed DOI PMC

Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S, Takahashi M, Tanizawa T, Kamiyama R, Hirokawa K. Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia. 1997;11:2049–2054. doi: 10.1038/sj.leu.2400844. PubMed DOI

Allampallam K, Shetty VT, Raza A. Cytokines and MDS. Cancer Treat Res. 2001;108:93–100. doi: 10.1007/978-1-4615-1463-3_6. PubMed DOI

Stifter G, Heiss S, Gastl G, Tzankov A, Stauder R. Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: Relationship to anemia and prognosis. Eur J Haematol. 2005;75:485–491. doi: 10.1111/j.1600-0609.2005.00551.x. PubMed DOI

Zhang Z, Li X, Guo J, Xu F, He Q, Zhao Y, Yang Y, Gu S, Zhang Y, Wu L, Chang C. Interleukin-17 enhances the production of interferon-γ and tumour necrosis factor-α by bone marrow T lymphocytes from patients with lower risk myelodysplastic syndromes. Eur J Haematol. 2013;90:375–384. doi: 10.1111/ejh.12074. PubMed DOI

Fattizzo B, Serpenti F, Barcellini W, Caprioli C. Hypoplastic myelodysplastic syndromes: Just an overlap syndrome? Cancers (Basel) 2021;13:132. doi: 10.3390/cancers13010132. PubMed DOI PMC

Giudice V, Feng X, Lin Z, Hu W, Zhang F, Qiao W, Ibanez MDPF, Rios O, Young NS. Deep sequencing and flow cytometric characterization of expanded effector memory CD8+CD57+ T cells frequently reveals T-cell receptor Vβ oligoclonality and CDR3 homology in acquired aplastic anemia. Haematologica. 2018;103:759–769. doi: 10.3324/haematol.2017.176701. PubMed DOI PMC

de Latour RP, Visconte V, Takaku T, Wu C, Erie AJ, Sarcon AK, Desierto MJ, Scheinberg P, Keyvanfar K, Nunez O, et al. Th17 immune responses contribute to the pathophysiology of aplastic anemia. Blood. 2010;116:4175–4184. doi: 10.1182/blood-2010-01-266098. PubMed DOI PMC

Vibhuti, Tripathy NK, Nityanand S. Massive apoptosis of bone marrow cells in aplastic anaemia. Br J Haematol. 2002;117:993–994. doi: 10.1046/j.1365-2141.2002.03537_1.x. PubMed DOI

Callera F, Falcão RP. Increased apoptotic cells in bone marrow biopsies from patients with aplastic anaemia. Br J Haematol. 1997;98:18–20. doi: 10.1046/j.1365-2141.1997.1532971.x. PubMed DOI

Callera F, Garcia AB, Falcão RP. Fas-mediated apoptosis with normal expression of bcl-2 and p53 in lymphocytes from aplastic anaemia. Br J Haematol. 1998;100:698–703. doi: 10.1046/j.1365-2141.1998.00625.x. PubMed DOI

Kordasti S, Costantini B, Seidl T, Perez Abellan P, Martinez Llordella M, McLornan D, Diggins KE, Kulasekararaj A, Benfatto C, Feng X, et al. Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment. Blood. 2016;128:1193–1205. doi: 10.1182/blood-2016-03-703702. PubMed DOI PMC

Young NS, Maciejewski JP. Genetic and environmental effects in paroxysmal nocturnal hemoglobinuria: This little PIG-A goes 'Why? Why? Why?'. J Clin Invest. 2000;106:637–641. doi: 10.1172/JCI11002. PubMed DOI PMC

Gargiulo L, Papaioannou M, Sica M, Talini G, Chaidos A, Richichi B, Nikolaev AV, Nativi C, Layton M, de la Fuente J, et al. Glycosylphosphatidylinositol-specific, CD1d-restricted T cells in paroxysmal nocturnal hemoglobinuria. Blood. 2013;121:2753–2761. doi: 10.1182/blood-2012-11-469353. PubMed DOI

Hanaoka N, Kawaguchi T, Horikawa K, Nagakura S, Mitsuya H, Nakakuma H. Immunoselection by natural killer cells of PIGA mutant cells missing stress-inducible ULBP. Blood. 2006;107:1184–1191. doi: 10.1182/blood-2005-03-1337. PubMed DOI

Shen W, Clemente MJ, Hosono N, Yoshida K, Przychodzen B, Yoshizato T, Shiraishi Y, Miyano S, Ogawa S, Maciejewski JP, Makishima H. Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria. J Clin Invest. 2014;124:4529–4538. doi: 10.1172/JCI74747. PubMed DOI PMC

Sadighi Akha AA. Aging and the immune system: An overview. J Immunol Methods. 2018;463:21–26. doi: 10.1016/j.jim.2018.08.005. PubMed DOI

Gidvani V, Ramkissoon S, Sloand EM, Young NS. Cytokine gene polymorphisms in acquired bone marrow failure. Am J Hematol. 2007;82:721–724. doi: 10.1002/ajh.20881. PubMed DOI

Saunthararajah Y, Nakamura R, Nam JM, Robyn J, Loberiza F, Maciejewski JP, Simonis T, Molldrem J, Young NS, Barrett AJ. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood. 2002;100:1570–1574. doi: 10.1182/blood.V100.5.1570.h81702001570_1570_1574. PubMed DOI

Maciejewski JP, Follmann D, Nakamura R, Saunthararajah Y, Rivera CE, Simonis T, Brown KE, Barrett JA, Young NS. Increased frequency of HLA-DR2 in patients with paroxysmal nocturnal hemoglobinuria and the PNH/aplastic anemia syndrome. Blood. 2001;98:3513–3519. doi: 10.1182/blood.V98.13.3513. PubMed DOI

Wang H, Chuhjo T, Yasue S, Omine M, Nakao S. Clinical significance of a minor population of paroxysmal nocturnal hemoglobinuria-type cells in bone marrow failure syndrome. Blood. 2002;100:3897–3902. doi: 10.1182/blood-2002-03-0799. PubMed DOI

Katagiri T, Sato-Otsubo A, Kashiwase K, Morishima S, Sato Y, Mori Y, Kato M, Sanada M, Morishima Y, Hosokawa K, et al. Frequent loss of HLA alleles associated with copy number-neutral 6p LOH in acquired aplastic anemia. Blood. 2011;118:6601–6609. doi: 10.1182/blood-2011-07-365189. PubMed DOI

Osumi T, Miharu M, Saji H, Kusunoki Y, Kojima H, Nakamura J, Shimada H. Nonsense mutation in HLA-B*40-02 in a case with acquired aplastic anaemia: A possible origin of clonal escape from autoimmune insult. Br J Haematol. 2013;162:706–707. doi: 10.1111/bjh.12395. PubMed DOI

Babushok DV, Duke JL, Xie HM, Stanley N, Atienza J, Perdigones N, Nicholas P, Ferriola D, Li Y, Huang H, et al. Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017;1:1900–1910. doi: 10.1182/bloodadvances.2017010918. PubMed DOI PMC

Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R. Beta 2-microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature. 1990;344:742–746. doi: 10.1038/344742a0. PubMed DOI

Brümmendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001;97:895–900. doi: 10.1182/blood.V97.4.895. PubMed DOI

Scheinberg P, Cooper JN, Sloand EM, Wu CO, Calado RT, Young NS. Association of telomere length of peripheral blood leukocytes with hematopoietic relapse, malignant transformation, and survival in severe aplastic anemia. JAMA. 2010;304:1358–1364. doi: 10.1001/jama.2010.1376. PubMed DOI PMC

Boultwood J, Fidler C, Kusec R, Rack K, Elliott PJ, Atoyebi O, Chapman R, Oscier DG, Wainscoat JS. Telomere length in myelodysplastic syndromes. Am J Hematol. 1997;56:266–271. doi: 10.1002/(SICI)1096-8652(199712)56:4<266::AID-AJH12>3.0.CO;2-7. PubMed DOI

Rollison DE, Epling-Burnette PK, Park JY, Lee JH, Park H, Jonathan K, Cole AL, Painter JS, Guerrier M, Meléndez-Santiago J, et al. Telomere length in myelodysplastic syndromes. Leuk Lymphoma. 2011;52:1528–1536. doi: 10.3109/10428194.2011.568648. PubMed DOI PMC

Sanz GF, Sanz MA, Greenberg PL. Prognostic factors and scoring systems in myelodysplastic syndromes. Haematologica. 1998;83:358–368. PubMed

Bouillon AS, Ferreira MS, Werner B, Hummel S, Panse JP, Reinecke P, Schemenau J, Haas R, Traulsen A, Bruemmendorf TH, et al. Comprehensive analysis of telomere biology in patients with aplastic anemia and hypoplastic myelodysplastic syndrome: Further evidence for a common mechanism. Blood. 2015;126:2858. doi: 10.1182/blood.V126.23.2858.2858. DOI

Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ, Lansdorp PM, Young NS. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352:1413–1424. doi: 10.1056/NEJMoa042980. PubMed DOI

Ueda Y, Calado RT, Norberg A, Kajigaya S, Roos G, Hellstrom-Lindberg E, Young NS. A mutation in the H/ACA box of telomerase RNA component gene (TERC) in a young patient with myelodysplastic syndrome. BMC Med Genet. 2014;15:68. doi: 10.1186/1471-2350-15-68. PubMed DOI PMC

Young NS. Current concepts in the pathophysiology and treatment of aplastic anemia. Hematology Am Soc Hematol Educ Program. 2013;2013:76–81. doi: 10.1182/asheducation-2013.1.76. PubMed DOI PMC

Savage SA, Calado RT, Xin ZT, Ly H, Young NS, Chanock SJ. Genetic variation in telomeric repeat binding factors 1 and 2 in aplastic anemia. Exp Hematol. 2006;34:664–671. doi: 10.1016/j.exphem.2006.02.008. PubMed DOI

Marsh JCW, Gutierrez-Rodrigues F, Cooper J, Jiang J, Gandhi S, Kajigaya S, Feng X, Ibanez MDPF, Donaires FS, Lopes da Silva JP, et al. Heterozygous RTEL1 variants in bone marrow failure and myeloid neoplasms. Blood Adv. 2018;2:36–48. doi: 10.1182/bloodadvances.2017008110. PubMed DOI PMC

Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A, Wichmann M, et al. Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 2011;29:2499–2506. doi: 10.1200/JCO.2010.33.4938. PubMed DOI

Jerez A, Clemente MJ, Makishima H, Rajala H, Gómez-Seguí I, Olson T, McGraw K, Przychodzen B, Kulasekararaj A, Afable M, et al. STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelo- dysplastic syndrome patients. Blood. 2013;122:2453–2459. doi: 10.1182/blood-2013-04-494930. PubMed DOI PMC

Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345:1623–1627. doi: 10.1126/science.1255904. PubMed DOI PMC

Wlodarski MW, Collin M, Horwitz MS. GATA2 deficiency and related myeloid neoplasms. Semin Hematol. 2017;54:81–86. doi: 10.1053/j.seminhematol.2017.05.002. PubMed DOI PMC

Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128:337–347. doi: 10.1182/blood-2016-01-636381. PubMed DOI PMC

West RR, Stafford DA, White AD, Bowen DT, Padua RA. Cytogenetic abnormalities in the myelodysplastic syndromes and occupational or environmental exposure. Blood. 2000;95:2093–2097. doi: 10.1182/blood.V95.6.2093. PubMed DOI

Negoro E, Nagata Y, Clemente MJ, Hosono N, Shen W, Nazha A, Yoshizato T, Hirsch C, Przychodzen B, Mahfouz RZ, et al. Origins of myelodysplastic syndromes after aplastic anemia. Blood. 2017;130:1953–1957. doi: 10.1182/blood-2017-02-767731. PubMed DOI PMC

Pons A, Nomdedeu B, Navarro A, Gaya A, Gel B, Diaz T, Valera S, Rozman M, Belkaid M, Montserrat E, Monzo M. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk Lymphoma. 2009;50:1854–1859. doi: 10.3109/10428190903147645. PubMed DOI

Krejčík Z, Beličková M, Hruštincová A, Kléma J, Zemanová Z, Michalová K, Čermák J, Jonášová A, Dostálová Merkerová M. Aberrant expression of the microRNA cluster in 14q32 is associated with del(5q) myelodysplastic syndrome and lenalidomide treatment. Cancer Genet. 2015;208:156–161. doi: 10.1016/j.cancergen.2015.03.003. PubMed DOI

Starczynowski DT, Kuchenbauer F, Wegrzyn J, Rouhi A, Petriv O, Hansen CL, Humphries RK, Karsan A. MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp Hematol. 2011;39:167–178.e4. doi: 10.1016/j.exphem.2010.09.011. PubMed DOI

Chen Y, Zhao G, Li N, Luo Z, Wang X, Gu J. Role of 4-aminobutyrate aminotransferase (ABAT) and the lncRNA co-expression network in the development of myelodysplastic syndrome. Oncol Rep. 2019;42:509–520. PubMed PMC

Kordasti S, Marsh J, Al-Khan S, Jiang J, Smith A, Mohamedali A, Abellan PP, Veen C, Costantini B, Kulasekararaj AG, et al. Functional characterization of CD4+ T cells in aplastic anemia. Blood. 2012;119:2033–2043. doi: 10.1182/blood-2011-08-368308. PubMed DOI

Serio B, Risitano A, Giudice V, Montuori N, Selleri C. Immunological derangement in hypocellular myelodysplastic syndromes. Transl Med UniSa. 2014;8:31–42. PubMed PMC

Kordasti SY, Afzali B, Lim Z, Ingram W, Hayden J, Barber L, Matthews K, Chelliah R, Guinn B, Lombardi G, et al. IL-17-producing CD4(+) T cells, pro-inflammatory cytokines and apoptosis are increased in low risk myelodysplastic syndrome. Br J Haematol. 2009;145:64–72. doi: 10.1111/j.1365-2141.2009.07593.x. PubMed DOI

Zhang HF, Huang ZD, Wu XR, Li Q, Yu ZF. Comparison of T lymphocyte subsets in aplastic anemia and hypoplastic myelodysplastic syndromes. Life Sci. 2017;189:71–75. doi: 10.1016/j.lfs.2017.09.020. PubMed DOI

Serio B, Selleri C, Maciejewski JP. Impact of immunogenetic polymorphisms in bone marrow failure syndromes. Mini Rev Med Chem. 2011;11:544–552. doi: 10.2174/138955711795843356. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...