Silencing of carbonic anhydrase I enhances the malignant potential of exosomes secreted by prostatic tumour cells
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30916466
PubMed Central
PMC6484292
DOI
10.1111/jcmm.14265
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS, PC3 cells, carbonic anhydrase I, exosomes, malignant potential, siCA1, siMock,
- MeSH
- buňky PC-3 MeSH
- energetický metabolismus genetika MeSH
- exozómy genetika metabolismus MeSH
- karboanhydrasa I genetika metabolismus MeSH
- lidé MeSH
- nádory prostaty genetika metabolismus patologie MeSH
- pohyb buněk genetika MeSH
- proliferace buněk genetika MeSH
- regulace genové exprese enzymů * MeSH
- regulace genové exprese u nádorů * MeSH
- RNA interference * MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- karboanhydrasa I MeSH
We report results showing that the silencing of carbonic anhydrase I (siCA1) in prostatic (PC3) tumour cells has a significant impact on exosome formation. An increased diameter, concentration and diversity of the produced exosomes were noticed as a consequence of this knock-down. The protein composition of the exosomes' cargo was also altered. Liquid chromatography and mass spectrometry analyses identified 42 proteins significantly altered in PC3 siCA1 exosomes compared with controls. The affected proteins are mainly involved in metabolic processes, biogenesis, cell component organization and defense/immunity. Interestingly, almost all of them have been described as 'enhancers' of tumour development through the promotion of cell proliferation, migration and invasion. Thus, our results indicate that the reduced expression of the CA1 protein enhances the malignant potential of PC3 cells.
Biomedical Research Center SAS Bratislava Slovak Republic
Center of Experimental Medicine SAS Bratislava Slovak Republic
Institute of Microbiology of the CAS v v i Prague Czech Republic
Zobrazit více v PubMed
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569. PubMed
Yáñez‐Mó M, Siljander PR‐M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. PubMed PMC
Fais S, O'Driscoll L, Borras FE, et al. Evidence‐based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano. 2016;10:3886‐3899. PubMed
Weidle UH, Birzelle F, Kollmorgen G, Rüge R. The multiple roles of exosomes in metastasis. Cancer Genomics—Proteomics. 2017;14:3641‐3655. PubMed PMC
Minciacchi VR, Freeman MR, Di Vizio D. Extracellular Vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol. 2015;40:41‐51. PubMed PMC
Sharma A, Khatun Z, Shiras A. Tumor exosomes: cellular postmen of cancer diagnosis and personalized therapy. Nanomedicine. 2016;11:421‐437. PubMed
Taylor DD, Gercel‐Taylor C. MicroRNA signatures of tumor‐derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13‐21. PubMed
Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer‐derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100:1603‐1607. PubMed PMC
Lundholm M, Schröder M, Nagaeva O, et al. Prostate Tumor‐derived exosomes down‐regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. PLoS One. 2014;9:e108925. PubMed PMC
Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015;8:83. PubMed PMC
Zheng H, Zhan Y, Liu S, et al. The roles of tumor‐derived exosomes in non‐small cell lung cancer and their clinical implications. J Exp Clin Cancer Res. 2018;37:226. PubMed PMC
Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23(146–8):9. PubMed
Badger MR, Price GD. The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol. 1994;45:369‐392.
D'Ambrosio K, De Simone G, Supuran CT. Human Carbonic anhydrases: catalytic properties, structural features, and tissue distribution BT—carbonic anhydrases as biocatalysts, Amsterdam: Elsevier; 2015:17‐30.
Gambhir KK, Ornasir J, Headings V, Bonar A. Decreased total carbonic anhydrase esterase activity and decreased levels of carbonic anhydrase 1 isozyme in erythrocytes of type II diabetic patients. Biochem Genet. 2007;45:431‐439. PubMed
Kim J, Gao P, Liu Y‐C, Dang CV. Hypoxia‐inducible factor 1 and dysregulated c‐Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007;27:7381‐7393. PubMed PMC
Supuran CT, Scozzafava A. Carbonic anhydrase inhibitors and their therapeutic potential. Expert Opin Ther Pat. 2000;10:575‐600.
Mori M, Staniunas RJ, Barnard GF, Jessup JM, Steele GD Jr, Chen LB. The significance of carbonic anhydrase expression in human colorectal cancer. Gastroenterology. 1993;105:820‐826. PubMed
Wang D, Lu X, Zhang X, Li ZG, Li CX. Carbonic anhydrase 1 is a promising biomarker for early detection of non‐small cell lung cancer. Tumor Biol. 2016;37:553‐559. PubMed
Takakura M, Yokomizo A, Tanaka Y, et al. Carbonic anhydrase I as a new plasma biomarker for prostate cancer. ISRN Oncol. 2012;2012:768190. PubMed PMC
Lakota J, Skultety L, Dubrovcakova M, Altaner C. Presence of serum carbonic anhydrase autoantibodies in patients relapsed after autologous stem cell transplantation indicates an improved prognosis. Neoplasma. 2008;55:488‐492. PubMed
Lakota J, Vulic R, Dubrovcakova M,Tyciakova S. Sera of patients with spontaneous tumour regression and elevated anti‐CA I autoantibodies change the gene expression of ECM proteins. J Cell Mol Med. 2017;21:543‐551. PubMed PMC
Vulic R, Tyciakova S, Dubrovcakova M, Skultety L, Lakota J. Silencing of CA1 mRNA in tumour cells does not change the gene expression of the extracellular matrix proteins. J Cell Mol Med. 2018;22:695‐699. PubMed PMC
Benada O, Pokorný V. Modification of the Polaron sputter‐coater unit for glow‐discharge activation of carbon support films. J Electron Microsc Tech. 1990;16:235‐239. PubMed
Harris JR. Negative Staining of Thinly Spread Biological Samples In: Kuo J, ed. Electron Microscopy. Methods in Molecular Biology. Totowa, NJ: Humana Press; 2007:369:107‐142. PubMed
Vizcaíno JA, Csordas A, del‐Toro, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;2016(44):D447‐D456. PubMed PMC
Whiteside TL. Tumor‐derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103‐141. PubMed PMC
Oji Y, Tatsumi N, Fukuda M, et al. The translation elongation factor eEF2 is a novel tumor‐associated antigen overexpressed in various types of cancers. Int J Oncol. 2014;44:1461‐1469. PubMed PMC
Zhang X, Hu L, Du M, et al. Eukaryotic elongation factor 2 (eEF2) is a potential biomarker of prostate cancer. Pathol Oncol Res 2017;2:885‐890. PubMed
Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans. 2007;35:12‐17. PubMed
Dahlmann B. Role of proteasomes in disease. BMC Biochem. 2007;8:S3. PubMed PMC
Chen L, Madura K. Increased proteasome activity, ubiquitin‐conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res. 2005;65:5599‐5606. PubMed
Ren S, Smith MJ, Louro ID, et al. The p44S10 locus, encoding a subunit of the proteasome regulatory particle, is amplified during progression of cutaneous malignant melanoma. Oncogene. 2000;19:1419. PubMed
Lin H‐K, Altuwaijri S, Lin W‐J, Kan PY, Collins LL, Chang C. Proteasome activity is required for androgen receptor transcriptional activity via regulation of androgen receptor nuclear translocation and interaction with coregulators in prostate cancer cells. J Biol Chem. 2002;277:36570‐36576. PubMed
Ruggero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol. 2013;5:a012336. PubMed PMC
Lavery A, Gilson C, Chowdhury S. PARP inhibitors and stratified treatment of prostate cancer. Expert Rev Anticancer Ther. 2016;16:1213‐1215. PubMed
Ossovskaya V, Koo IC, Kaldjian EP, Alvares C, Sherman BM. Upregulation of poly (ADP‐ribose) polymerase‐1 (PARP1) in triple‐negative breast cancer and other primary human tumor types. Genes Cancer. 2010;1:812‐821. PubMed PMC
Dhanraj Deshmukh YQ. Role of PARP1 in prostate cancer. Am J Clin Exp Urol. 2015;3:3641‐12. PubMed PMC
Brown JS, O'Carrigan B, Jackson SP, Yap TA. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 2017;7:20‐37. PubMed PMC
Iqbal MA, Gupta V, Gopinath P, Bamezai RN. Pyruvate kinase M2 and cancer: an updated assessment. FEBS Lett. 2014;588:2685‐2692. PubMed
Wong N, Yan J, Ojo D, DeMelo J, Cutz JC, Tang D. Changes in PKM2 Associate with prostate cancer progression. Cancer Invest. 2014;32:330‐338. PubMed
Chen T, Huang Z, Tian Y, et al. Clinical significance and prognostic value of triosephosphate isomerase expression in gastric cancer. Medicine (Baltimore). 2017;96:e6865. PubMed PMC
Montgomerie JZ, Gracy RW, Holshuh HJ, Keyser AJ, Bennett CJ, Schick DG. The 28K Protein in urinary bladder, squamous metaplasia and urine is triosephosphate isomerase. Clin Biochem. 1997;30:613‐618. PubMed
Huang L, Xu A‐M, Liu W. Transglutaminase 2 in cancer. Am J Cancer Res. 2015;5:2756‐2776. PubMed PMC
Nelson RE, Fessler LI, Takagi Y, et al. Peroxidasin: a novel enzyme‐matrix protein of Drosophila development. EMBO J. 1994;13:3438‐3447. PubMed PMC
Jayachandran A, Prithviraj P, Lo P‐H, et al. Identifying and targeting determinants of melanoma cellular invasion. Oncotarget. 2016;7:41186‐41202. PubMed PMC
Tauber S, Jais A, Jeitler M, et al. Transcriptome analysis of human cancer reveals a functional role of heme oxygenase‐1 in tumor cell adhesion. Mol Cancer. 2010;9:200. PubMed PMC
Liu Y, Carson‐Walter EB, Cooper A, Winans BN, Johnson MD, Walter KA. Vascular gene expression patterns are conserved in primary and metastatic brain tumors. J Neurooncol. 2010;99:13‐24. PubMed PMC
Desmond JC, Raynaud S, Tung E, Hofmann WK, Haferlach T, Koeffler H. Discovery of epigenetically silenced genes in acute myeloid leukemias. Leukemia. 2007;21:1026‐1034. PubMed
Sitole BN, Mavri‐Damelin D. Peroxidasin is regulated by the epithelial‐mesenchymal transition master transcription factor Snai1. Gene. 2018;646:195‐202. PubMed
Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR. Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci. 2006;31:164‐172. PubMed
Matta A, Siu KM, Ralhan R. 14‐3‐3 zeta as novel molecular target for cancer therapy. Expert Opin Ther Targets. 2012;16:515‐523. PubMed
Vardabasso C, Hasson D, Ratnakumar K, Chung CY, Duarte LF, Bernstein E. Histone variants: emerging players in cancer biology. Cell Mol Life Sci. 2014;71:379‐404. PubMed PMC
Fife CM, McCarroll JA, Kavallaris M. Movers and shakers: cell cytoskeleton in cancer metastasis. Br J Pharmacol. 2014;171:5507‐5523. PubMed PMC
Lin K, He S, He L, et al. Complement component 3 is a prognostic factor of non‐small cell lung cancer. Mol Med Rep. 2014;10:811‐817. PubMed
Wang H, Wang D, Li C, Zhang X, Zhou X, Huang J. High Kpnβ1 expression promotes non‐small cell lung cancer proliferation and chemoresistance via the PI3‐kinase/AKT pathway. Tissue Cell. 2018;51:39‐48. PubMed
Stelma T, Leaner VD. KPNB1‐mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells. Oncotarget. 2017;8:32833‐32847. PubMed PMC
Lu T, Bao Z, Wang Y, et al. Karyopherinβ1 regulates proliferation of human glioma cells via Wnt/β‐catenin pathway. Biochem Biophys Res Commun. 2016;478:1189‐1197. PubMed
Zhu J, Wang Y, Huang H, et al. Upregulation of KPNβ1 in gastric cancer cell promotes tumor cell proliferation and predicts poor prognosis. Tumor Biol. 2016;37:661‐672. PubMed