• This record comes from PubMed

Cyanobacterial harmful bloom lipopolysaccharides: pro-inflammatory effects on epithelial and immune cells in vitro

. 2024 Feb ; 98 (2) : 481-491. [epub] 20231208

Language English Country Germany Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
GA19-09980S Grantová Agentura České Republiky
LM2023069 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_043/0009632 Operational Programme Research, Development, and Education
857560-CETOCOEN Excellence Horizon 2020
RVO 67985939 Jiangsu Provincial Key Research and DResearch Development Project of the Institute of Botanyevelopment Program

Links

PubMed 38063875
PubMed Central PMC10794361
DOI 10.1007/s00204-023-03644-8
PII: 10.1007/s00204-023-03644-8
Knihovny.cz E-resources

Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 µg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.

See more in PubMed

Bernardová K, Babica P, Marsálek B, Bláha L. Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga. J Appl Toxicol. 2008;28:72–77. doi: 10.1002/jat.1257. PubMed DOI

Binó L, Kučera J, Štefková K, Švihálková Šindlerová L, Lánová M, Kudová J, Kubala L, Pacherník J. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem Biol Interact. 2016;244:204–214. doi: 10.1016/j.cbi.2015.12.007. PubMed DOI

Bláhová L, Adamovský O, Kubala L, Švihálková Šindlerová L, Zounková R, Bláha L. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon. 2013;76:187–196. doi: 10.1016/j.toxicon.2013.10.011. PubMed DOI

Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI

Caroff M, Novikov A. Lipopolysaccharides: structure, function and bacterial identification. OCL. 2020;27:31. doi: 10.1051/ocl/2020025. DOI

Durai P, Batool M, Choi S. Structure and effects of cyanobacterial lipopolysaccharides. Mar Drugs. 2015;13:4217–4230. doi: 10.3390/md13074217. PubMed DOI PMC

Fujii M, Sato Y, Ito H, Masago Y, Omura T. Monosaccharide composition of the outer membrane lipopolysaccharide and O-chain from the freshwater cyanobacterium Microcystis aeruginosa NIES-87. J Appl Microbiol. 2012;113:896–903. doi: 10.1111/j.1365-2672.2012.05405.x. PubMed DOI

Gemma S, Molteni M, Rossetti C. Lipopolysaccharides in cyanobacteria: a brief overview. Advances In Microbiology . 2016;6 :391 –397 . doi: 10.4236/aim.2016.65038. DOI

Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI

Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–483. doi: 10.1038/s41579-018-0040-1. PubMed DOI

Kubickova B, Babica P, Hilscherová K, Šindlerová L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ Sci Eur. 2019;31:31. doi: 10.1186/s12302-019-0212-2. DOI

Lang-Yona N, Lehahn Y, Herut B, Burshtein N, Rudich Y. Marine aerosol as a possible source for endotoxins in coastal areas. Sci Total Environ. 2014;499:311–318. doi: 10.1016/j.scitotenv.2014.08.054. PubMed DOI

Meital LT, Coward AS, Windsor MT, Bailey TG, Kuballa A, Russell FD. A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. J Immunol Methods. 2019;472:75–78. doi: 10.1016/j.jim.2019.04.005. PubMed DOI

Moosová Z, Šindlerová L, Ambrůzová B, Ambrožová G, Vašíček O, Velki M, Babica P, Kubala L. Lipopolysaccharides from microcystis cyanobacteria-dominated water bloom and from laboratory cultures trigger human immune innate response. Toxins (Basel) 2019;11:218. doi: 10.3390/toxins11040218. PubMed DOI PMC

Moosova Z, Pekarova M, Sindlerova LS, Vasicek O, Kubala L, Blaha L, Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI

Pekarova M, Koudelka A, Kolarova H, Ambrozova G, Klinke A, Cerna A, Kadlec J, Trundova M, Sindlerova Svihalkova L, Kuchta R, Kuchtova Z, Lojek A, Kubala L. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha. Vascul Pharmacol. 2015;73:138–148. doi: 10.1016/j.vph.2015.06.005. PubMed DOI

Raptová P, Skočková V, Babica P, Sovadinová I, Sychrová E, Vídeňská P, Šplíchalová P, Vašíček O, Šindlerová L (2023) Cyanobacterial water bloom lipopolysaccharides induce pro-inflammatory processes in keratinocytes in vitro. Environ Toxicol Pharmacol, Under review. PubMed

Sehnal L, Smutná M, Bláhová L, Babica P, Šplíchalová P, Hilscherová K. The origin of teratogenic retinoids in cyanobacteria. Toxins (Basel) 2022;14:636. doi: 10.3390/toxins14090636. PubMed DOI PMC

Skácelová O, Lepš J. The relationship of diversity and biomass in phytoplankton communities weakens when accounting for species proportions. Hydrobiologia. 2014;724:67–77. doi: 10.1007/s10750-013-1723-2. DOI

Skočková V, Vašíček O, Sychrová E, Sovadinová I, Babica P, Šindlerová L. Cyanobacterial harmful bloom lipopolysaccharides induce pro-inflammatory effects in immune and intestinal epithelial cells in vitro. Toxins (Basel) 2023;15:169. doi: 10.3390/toxins15030169. PubMed DOI PMC

Snyder DS, Brahamsha B, Azadi P, Palenik B. Structure of compositionally simple lipopolysaccharide from marine synechococcus. J Bacteriol. 2009;191:5499–5509. doi: 10.1128/jb.00121-09. PubMed DOI PMC

Sulc R, Szekely G, Shinde S, Wierzbicka C, Vilela F, Bauer D, Sellergren B. Phospholipid imprinted polymers as selective endotoxin scavengers. Sci Rep. 2017;7:44299. doi: 10.1038/srep44299. PubMed DOI PMC

Swanson-Mungerson M, Williams PG, Gurr JR, Incrocci R, Subramaniam V, Radowska K, Hall ML, Mayer AMS. Biochemical and functional analysis of cyanobacterium Geitlerinema sp. LPS Human Monocytes. Toxicol Sci. 2019;171:421–430. doi: 10.1093/toxsci/kfz153. PubMed DOI PMC

Vašíček O, Hájek J, Bláhová L, Hrouzek P, Babica P, Kubala L, Šindlerová L. Cyanobacterial lipopeptides puwainaphycins and minutissamides induce disruptive and pro-inflammatory processes in Caco-2 human intestinal barrier model. Harmful Algae. 2020;96:101849. doi: 10.1016/j.hal.2020.101849. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...