Cyanobacterial harmful bloom lipopolysaccharides: pro-inflammatory effects on epithelial and immune cells in vitro
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
GA19-09980S
Grantová Agentura České Republiky
LM2023069
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_043/0009632
Operational Programme Research, Development, and Education
857560-CETOCOEN Excellence
Horizon 2020
RVO 67985939
Jiangsu Provincial Key Research and DResearch Development Project of the Institute of Botanyevelopment Program
PubMed
38063875
PubMed Central
PMC10794361
DOI
10.1007/s00204-023-03644-8
PII: 10.1007/s00204-023-03644-8
Knihovny.cz E-resources
- Keywords
- Cyanobacterial harmful blooms, Enterocytes, Immune cells, Inflammation, Keratinocytes, Lipopolysaccharide,
- MeSH
- Biomass MeSH
- Caco-2 Cells MeSH
- Leukocytes, Mononuclear MeSH
- Humans MeSH
- Lipopolysaccharides * toxicity MeSH
- Cyanobacteria * MeSH
- Harmful Algal Bloom MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Lipopolysaccharides * MeSH
Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 µg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.
Department of Experimental Biology Faculty of Science Masaryk University Brno 62500 Czech Republic
RECETOX Faculty of Science Masaryk University Brno 62500 Czech Republic
See more in PubMed
Bernardová K, Babica P, Marsálek B, Bláha L. Isolation and endotoxin activities of lipopolysaccharides from cyanobacterial cultures and complex water blooms and comparison with the effects of heterotrophic bacteria and green alga. J Appl Toxicol. 2008;28:72–77. doi: 10.1002/jat.1257. PubMed DOI
Binó L, Kučera J, Štefková K, Švihálková Šindlerová L, Lánová M, Kudová J, Kubala L, Pacherník J. The stabilization of hypoxia inducible factor modulates differentiation status and inhibits the proliferation of mouse embryonic stem cells. Chem Biol Interact. 2016;244:204–214. doi: 10.1016/j.cbi.2015.12.007. PubMed DOI
Bláhová L, Adamovský O, Kubala L, Švihálková Šindlerová L, Zounková R, Bláha L. The isolation and characterization of lipopolysaccharides from Microcystis aeruginosa, a prominent toxic water bloom forming cyanobacteria. Toxicon. 2013;76:187–196. doi: 10.1016/j.toxicon.2013.10.011. PubMed DOI
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI
Caroff M, Novikov A. Lipopolysaccharides: structure, function and bacterial identification. OCL. 2020;27:31. doi: 10.1051/ocl/2020025. DOI
Durai P, Batool M, Choi S. Structure and effects of cyanobacterial lipopolysaccharides. Mar Drugs. 2015;13:4217–4230. doi: 10.3390/md13074217. PubMed DOI PMC
Fujii M, Sato Y, Ito H, Masago Y, Omura T. Monosaccharide composition of the outer membrane lipopolysaccharide and O-chain from the freshwater cyanobacterium Microcystis aeruginosa NIES-87. J Appl Microbiol. 2012;113:896–903. doi: 10.1111/j.1365-2672.2012.05405.x. PubMed DOI
Gemma S, Molteni M, Rossetti C. Lipopolysaccharides in cyanobacteria: a brief overview. Advances In Microbiology . 2016;6 :391 –397 . doi: 10.4236/aim.2016.65038. DOI
Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI
Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM. Cyanobacterial blooms. Nat Rev Microbiol. 2018;16:471–483. doi: 10.1038/s41579-018-0040-1. PubMed DOI
Kubickova B, Babica P, Hilscherová K, Šindlerová L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ Sci Eur. 2019;31:31. doi: 10.1186/s12302-019-0212-2. DOI
Lang-Yona N, Lehahn Y, Herut B, Burshtein N, Rudich Y. Marine aerosol as a possible source for endotoxins in coastal areas. Sci Total Environ. 2014;499:311–318. doi: 10.1016/j.scitotenv.2014.08.054. PubMed DOI
Meital LT, Coward AS, Windsor MT, Bailey TG, Kuballa A, Russell FD. A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. J Immunol Methods. 2019;472:75–78. doi: 10.1016/j.jim.2019.04.005. PubMed DOI
Moosová Z, Šindlerová L, Ambrůzová B, Ambrožová G, Vašíček O, Velki M, Babica P, Kubala L. Lipopolysaccharides from microcystis cyanobacteria-dominated water bloom and from laboratory cultures trigger human immune innate response. Toxins (Basel) 2019;11:218. doi: 10.3390/toxins11040218. PubMed DOI PMC
Moosova Z, Pekarova M, Sindlerova LS, Vasicek O, Kubala L, Blaha L, Adamovsky O. Immunomodulatory effects of cyanobacterial toxin cylindrospermopsin on innate immune cells. Chemosphere. 2019;226:439–446. doi: 10.1016/j.chemosphere.2019.03.143. PubMed DOI
Pekarova M, Koudelka A, Kolarova H, Ambrozova G, Klinke A, Cerna A, Kadlec J, Trundova M, Sindlerova Svihalkova L, Kuchta R, Kuchtova Z, Lojek A, Kubala L. Asymmetric dimethyl arginine induces pulmonary vascular dysfunction via activation of signal transducer and activator of transcription 3 and stabilization of hypoxia-inducible factor 1-alpha. Vascul Pharmacol. 2015;73:138–148. doi: 10.1016/j.vph.2015.06.005. PubMed DOI
Raptová P, Skočková V, Babica P, Sovadinová I, Sychrová E, Vídeňská P, Šplíchalová P, Vašíček O, Šindlerová L (2023) Cyanobacterial water bloom lipopolysaccharides induce pro-inflammatory processes in keratinocytes in vitro. Environ Toxicol Pharmacol, Under review. PubMed
Sehnal L, Smutná M, Bláhová L, Babica P, Šplíchalová P, Hilscherová K. The origin of teratogenic retinoids in cyanobacteria. Toxins (Basel) 2022;14:636. doi: 10.3390/toxins14090636. PubMed DOI PMC
Skácelová O, Lepš J. The relationship of diversity and biomass in phytoplankton communities weakens when accounting for species proportions. Hydrobiologia. 2014;724:67–77. doi: 10.1007/s10750-013-1723-2. DOI
Skočková V, Vašíček O, Sychrová E, Sovadinová I, Babica P, Šindlerová L. Cyanobacterial harmful bloom lipopolysaccharides induce pro-inflammatory effects in immune and intestinal epithelial cells in vitro. Toxins (Basel) 2023;15:169. doi: 10.3390/toxins15030169. PubMed DOI PMC
Snyder DS, Brahamsha B, Azadi P, Palenik B. Structure of compositionally simple lipopolysaccharide from marine synechococcus. J Bacteriol. 2009;191:5499–5509. doi: 10.1128/jb.00121-09. PubMed DOI PMC
Sulc R, Szekely G, Shinde S, Wierzbicka C, Vilela F, Bauer D, Sellergren B. Phospholipid imprinted polymers as selective endotoxin scavengers. Sci Rep. 2017;7:44299. doi: 10.1038/srep44299. PubMed DOI PMC
Swanson-Mungerson M, Williams PG, Gurr JR, Incrocci R, Subramaniam V, Radowska K, Hall ML, Mayer AMS. Biochemical and functional analysis of cyanobacterium Geitlerinema sp. LPS Human Monocytes. Toxicol Sci. 2019;171:421–430. doi: 10.1093/toxsci/kfz153. PubMed DOI PMC
Vašíček O, Hájek J, Bláhová L, Hrouzek P, Babica P, Kubala L, Šindlerová L. Cyanobacterial lipopeptides puwainaphycins and minutissamides induce disruptive and pro-inflammatory processes in Caco-2 human intestinal barrier model. Harmful Algae. 2020;96:101849. doi: 10.1016/j.hal.2020.101849. PubMed DOI