cyanobacterial harmful bloom
Dotaz
Zobrazit nápovědu
Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 μg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.
- MeSH
- biomasa MeSH
- Caco-2 buňky MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- lipopolysacharidy * toxicita MeSH
- sinice * MeSH
- škodlivý vodní květ MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Freshwater cyanobacterial harmful blooms (CyanoHABs) produce a variety of toxic and bioactive compounds including lipopolysaccharides (LPSs). The gastrointestinal tract can be exposed to them via contaminated water even during recreational activities. However, there is no evidence of an effect of CyanoHAB LPSs on intestinal cells. We isolated LPSs of four CyanoHABs dominated by different cyanobacterial species and LPSs of four laboratory cultures representing the respective dominant cyanobacterial genera. Two intestinal and one macrophage cell lines were used to detect in vitro pro-inflammatory activity of the LPS. All LPSs isolated from CyanoHABs and laboratory cultures induced cytokines production in at least one in vitro model, except for LPSs from the Microcystis PCC7806 culture. LPSs isolated from cyanobacteria showed unique migration patterns in SDS-PAGE that were qualitatively distinct from those of endotoxins from Gram-negative bacteria. There was no clear relationship between the biological activity of the LPS and the share of genomic DNA of Gram-negative bacteria in the respective biomass. Thus, the total share of Gram-negative bacteria, or the presence of Escherichia coli-like LPSs, did not explain the observed pro-inflammatory activities. The pro-inflammatory properties of environmental mixtures of LPSs from CyanoHABs indicate their human health hazards, and further attention should be given to their assessment and monitoring.
Toxic cyanobacterial blooms are a global threat to human health and aquatic biota. While the ecotoxicity of cyanobacterial toxins such as microcystins has been studied extensively, little is known about the risks they pose in the wild, i.e. within complex biomasses. In this work, crustaceans (Daphnia magna) were exposed to varying concentrations (0-405 mg d.w L(-1)) of eight complex cyanobacterial water bloom samples in a series of acute (48 h) and chronic (21 day) toxicity experiments. Further acute and chronic exposure assays were performed using aqueous extracts of the crude biomass samples and two fractions prepared by solid phase extraction (SPE) of the aqueous extracts. The cyanobacterial biomasses differed with respect to their dominant cyanobacterial species and microcystin contents. High acute toxicity was observed for 6 of the 8 crude biomass samples. Chronic exposure assays were performed using one complex biomass sample and its various subsamples/fractions. The complex biomass, the crude aqueous extract, and the microcystin-free SPE permeate all elicited similar and significant lethal effects, with LC50 values of around 35.6 mg biomass d.w L(-1) after 21 days. The cyanobacterial biomass samples also affected reproductive health, significantly increasing the time to the first brood (LOEC = 45 mg d.w L(-1) exposure) and inhibiting fecundity by 50% at 15 mg d.w L(-1). Conversely, the microcystin-containing C18-SPE eluate fraction had only weak effects in the chronic assay. These results indicate that cyanobacterial water blooms are highly toxic to zooplankton (both acutely and chronically) at environmentally relevant concentrations. However, the effects observed in the acute and chronic assays were independent of the samples' microcystin contents. Our results thus point out the importance of other cyanobacterial components such as lipopolysaccharides, various peptides and depsipeptides, polar alkaloid metabolites or other unidentified metabolites in the overall ecotoxicity of complex cyanobacterial blooms.
- MeSH
- bakteriální toxiny toxicita MeSH
- biomasa MeSH
- Daphnia účinky léků MeSH
- mikrocystiny toxicita MeSH
- rozmnožování účinky léků MeSH
- sinice chemie MeSH
- škodlivý vodní květ * MeSH
- testy akutní toxicity MeSH
- testy chronické toxicity MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cyanobacterial species produce wide range of bioactive compounds. This study characterized production of retinoid-like compounds with embryotoxic and teratogenic potential by commonly occurring cyanobacterial species with tendency to form massive water blooms. The major goal was to simultaneously assess the intracellular and extracellular retinoid-like activity from several independent cultivations of one coccal (Microcystis aeruginosa) and four filamentous cyanobacteria (Aphanizomenon gracile, Cylindrospermopsis raciborskii, Limnothrix redekeii, and Planktothrix agardhii) and characterize the variability in its production among cultivations. The retinoid-like activity was evaluated by in vitro assay along with chemical analyses of nine retinoids: all-trans retinoic acid (ATRA), 9-cis retinoic acid (9cis-RA), 13cis-RA, 13cis-RA methyl ester, 5,6 epoxy-RA, 4keto-ATRA, 4keto-retinal, 4hydoxy-retinoic acid (4OH-ATRA), retinal and retinol. The production of retinoid-like compounds was recalculated per volume, per biomass dry weight and per cell to provide relevant data for risk assessment in relation to occurrence of massive water blooms in the environment. Total produced retinoid-like activity of five selected species ranged from 170 to 25,600ng ATRA-equivalents (REQ)/g dm corresponding to 0.001-0.392ng REQ/106 cyanobacterial cells. Results from chemical analyses showed that all tested extracts contained 4keto-ATRA and retinal. All-trans retinoic acid, 9/13cis-retinoic acid and 5,6 epoxy-retinoic acid were detected in most exudate and extract samples. The reported results of recalculated total retinoid-like activity enable potential predictions of its production by the studied species in water blooms of known cell densities relevant for risk assessment.
Cyanobacteria routinely release potentially harmful bioactive compounds into the aquatic environment. Several recent studies suggested a potential link between the teratogenicity of effects caused by cyanobacteria and production of retinoids. To investigate this relationship, we analysed the teratogenicity of field-collected cyanobacterial bloom samples by means of an in vivo zebrafish embryo test, an in vitro reporter gene bioassay and by the chemical analysis of retinoids. Extracts of biomass from cyanobacterial blooms with the dominance of Microcystis aeruginosa and Aphanizomenon klebahnii were collected from water bodies in the Czech Republic and showed significant retinoid-like activity in vitro, as well as high degrees of teratogenicity in vivo. Chemical analysis was then used to identify a set of retinoids in ng per gram of dry weight concentration range. Subsequent fractionation and bioassay-based characterization identified two fractions with significant in vitro retinoid-like activity. Moreover, in most of the retinoids eluted from these fractions, teratogenicity with malformations typical for retinoid signalling disruption was observed in zebrafish embryos after exposure to the total extracts and these in vitro effective fractions. The zebrafish embryo test proved to be a sensitive toxicity indicator of the biomass extracts, as the teratogenic effects occurred at even lower concentrations than those expected from the activity detected in vitro. In fact, teratogenicity with retinoid-like activity was detected at concentrations that are commonly found in biomasses and even in bulk water surrounding cyanobacterial blooms. Overall, these results provide evidence of a link between retinoid-like activity, teratogenicity and the retinoids produced by cyanobacterial water blooms in the surrounding environment.
- MeSH
- Aphanizomenon patogenita MeSH
- dánio pruhované embryologie genetika MeSH
- embryo nesavčí účinky léků MeSH
- Microcystis patogenita MeSH
- reportérové geny MeSH
- retinoidy biosyntéza toxicita MeSH
- sinice chemie patogenita MeSH
- teratogeny toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Cyanobacterial blooms represent a serious threat to the aquatic environment. Among other effects, biochemical markers have been studied in aquatic vertebrates after exposures to toxic cyanobacteria. Some parameters such as protein phosphatases may serve as selective markers of exposure to microcystins, but under natural conditions, fish are exposed to complex mixtures, which affect the overall biomarker response. This review aims to provide a critical summary of biomarker responses in aquatic vertebrates (mostly fish) to toxic cyanobacteria with a special focus on detoxification and oxidative stress. Detoxification biomarkers such as glutathione (GSH) and glutathione-S-transferase (GST) showed very high variability with poor general trends. Often, stimulations and/or inhibitions and/or no effects at GSH or GST have been reported, even within a single study, depending on many variables, including time, dose, tissue, species, etc. Most of the oxidative stress biomarkers (e.g., superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase) provided more consistent responses, but only lipid peroxidation (LPO) seemed to fulfill the criteria needed for biomarkers, i.e., a sufficiently long half-life and systematic response. Indeed, reviewed papers demonstrated that toxic cyanobacteria systematically elevate levels of LPO, which indicates the important role of oxidative damage in cyanobacterial toxicity. In summary, the measurement of biochemical changes under laboratory conditions may provide information on the mode of toxic action. However, comparison of different studies is very difficult, and the practical use of detoxification or oxidative stress biomarkers as diagnostic tools or early warnings of cyanobacterial toxicity is questionable.
- MeSH
- biologické markery analýza MeSH
- biomasa MeSH
- glutathion analýza MeSH
- glutathiontransferasa analýza MeSH
- mikrocystiny škodlivé účinky MeSH
- oxidační stres účinky léků MeSH
- peroxidace lipidů účinky léků MeSH
- ryby metabolismus MeSH
- sinice metabolismus MeSH
- škodlivý vodní květ MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Water bloom-forming cyanobacteria have a severe impact on freshwater quality. Although some cyanobacterial toxins such as microcystins have been studied extensively, other toxins like anatoxin-a (ATX) and their structural analogs - as well as cyanobacterial taxa producing these toxins remain to be explored in detail. The present study investigated levels of ATX, CYN and their homologs along with the occurrence of anaC and cyrJ genes in water blooms in 16 sites in the Czech Republic that were pre-selected concerning the presence of potential toxin producers. Besides, we also studied toxins and genes in a series of strains available in our laboratories. ATX and its congener HATX were detected in 5 natural biomass samples from the Czech Republic (maximum concentration 2.8 micrograms per gram d.w.). Interestingly, the anaC gene coding for ATX production was not detected in any of these toxin-positive biomass samples. The concentrations of ATX congeners in cyanobacterial laboratory strains were about 10-times higher than those of the original ATX, which calls for further research addressing levels and hazards of ATX analogs. Regarding the CYN and 7-deoxyCYN (other CYN congeners were not analyzed in this study) - these toxins were identified in a single small pond in the Czech Republic at concentrations 4.3 and 2.7 micrograms per gram of biomass d.w., respectively (corresponded to dissolved concentrations higher than 1 microgram per liter). The CYN-positive sample was dominated by CYN-producing taxa Raphidiopsis (basionym Cylindrospermopsis) and Cuspidothrix. We also confirmed the presence of a specific cyrJ gene in this natural bloom sample. To our knowledge, this is the first study pointing to Raphidiopsis (Cylindrospermopsis) and Cuspidothrix as producers of CYN in Europe. This observation calls for further research because of their increasing occurrence in (Central) Europe along with the global change. The present study demonstrates the importance of using combined (taxonomical, analytical, and molecular) approaches in the assessment of hazardous cyanobacteria and their toxins in freshwaters.
- MeSH
- alkaloidy * MeSH
- toxiny kmene Cyanobacteria MeSH
- tropany * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
- MeSH
- alkaloidy * farmakologie MeSH
- bakteriální toxiny * metabolismus MeSH
- buněčné sféroidy účinky léků metabolismus MeSH
- buňky Hep G2 MeSH
- homeostáza účinky léků MeSH
- játra * metabolismus účinky léků MeSH
- lidé MeSH
- lipidomika MeSH
- lipogeneze účinky léků MeSH
- metabolismus lipidů * účinky léků MeSH
- proteomika MeSH
- toxiny kmene Cyanobacteria * MeSH
- uracil * analogy a deriváty metabolismus MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Man-made shallow fishponds in the Czech Republic have been facing high eutrophication since the 1950s. Anthropogenic eutrophication and feeding of fish have strongly affected the physicochemical properties of water and its aquatic community composition, leading to harmful algal bloom formation. In our current study, we characterized the phytoplankton community across three eutrophic ponds to assess the phytoplankton dynamics during the vegetation season. We microscopically identified and quantified 29 cyanobacterial taxa comprising non-toxigenic and toxigenic species. Further, a detailed cyanopeptides (CNPs) profiling was performed using molecular networking analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) data coupled with a dereplication strategy. This MS networking approach, coupled with dereplication, on the online global natural product social networking (GNPS) web platform led us to putatively identify forty CNPs: fourteen anabaenopeptins, ten microcystins, five cyanopeptolins, six microginins, two cyanobactins, a dipeptide radiosumin, a cyclooctapeptide planktocyclin, and epidolastatin 12. We applied the binary logistic regression to estimate the CNPs producers by correlating the GNPS data with the species abundance. The usage of the GNPS web platform proved a valuable approach for the rapid and simultaneous detection of a large number of peptides and rapid risk assessments for harmful blooms.
- MeSH
- bakteriální toxiny analýza toxicita MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací * MeSH
- hodnocení rizik MeSH
- metabolomika MeSH
- mikrobiologie vody MeSH
- mikrobiota MeSH
- monitorování životního prostředí * MeSH
- mořské toxiny analýza toxicita MeSH
- online sociální sítě * MeSH
- populační dynamika MeSH
- roční období MeSH
- rybníky mikrobiologie MeSH
- sinice klasifikace růst a vývoj metabolismus MeSH
- škodlivý vodní květ * MeSH
- tandemová hmotnostní spektrometrie * MeSH
- vysokoúčinná kapalinová chromatografie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Microcystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells. 14-d-old Hepoid-HepaRG cultures showed increased expression of OATP1B1/1B3 and sensitivity to MC-LR cytotoxicity at concentrations >10 nM (48 h exposure, EC20 = 26 nM). MC-LR induced neither caspase 3/7 activity nor expression of the endoplasmic reticulum stress marker gene BiP/GRP78, but increased release of pro-inflammatory cytokine IL-8, indicating a necrotic type of cell death. Subcytotoxic (10 nM) and cytotoxic (≥100 nM) MC-LR concentrations disrupted hepatocyte functions, such as xenobiotic metabolism phase-I enzyme activities (cytochrome P450 1A/1B) and albumin secretion, along with reduced expression of CYP1A2 and ALB genes. MC-LR also decreased expression of HNF4A gene, a critical regulator of hepatocyte differentiation and function. Genes encoding hepatobiliary membrane transporters (OATP1B1, BSEP, NTCP), hepatocyte gap junctional gene connexin 32 and the epithelial cell marker E-cadherin were also downregulated. Simultaneous upregulation of connexin 43 gene, primarily expressed by liver progenitor and non-parenchymal cells, indicated a disruption of tissue homeostasis. This was associated with a shift in the expression ratio of E-cadherin to N-cadherin towards the mesenchymal cell marker, a process linked to epithelial-mesenchymal transition (EMT) and hepatocarcinogenesis. The effects observed in the human liver cell in vitro model revealed mechanisms that can potentially contribute to the MC-LR-induced promotion and progression of hepatocellular carcinoma (HCC). Hepoid-HepaRG cultures provide a robust, accessible and versatile in vitro model, capable of sensitively detecting hepatotoxic effects at toxicologically relevant concentrations, allowing for assessing hepatotoxicity mechanisms, human health hazards and impacts of environmental hepatotoxins, such as MC-LR.
- MeSH
- hepatocelulární karcinom * MeSH
- kadheriny MeSH
- lékové postižení jater * MeSH
- lidé MeSH
- mikrocystiny toxicita metabolismus MeSH
- mořské toxiny * MeSH
- nádory jater * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH