Fluorescence lifetime imaging microscopy of endogenous fluorophores in health and disease
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
GACR22-07091S
Grantová Agentura České Republiky
LM2023050 Czech-BioImaging
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39946024
DOI
10.1007/s10974-025-09689-9
PII: 10.1007/s10974-025-09689-9
Knihovny.cz E-zdroje
- Klíčová slova
- FAD, FLIM, FLIRR, NAD(P)H, Redox state,
- MeSH
- flavinadenindinukleotid metabolismus MeSH
- fluorescenční barviva * MeSH
- fluorescenční mikroskopie metody MeSH
- lidé MeSH
- NADP metabolismus MeSH
- neurodegenerativní nemoci metabolismus MeSH
- optické zobrazování metody MeSH
- oxidace-redukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- flavinadenindinukleotid MeSH
- fluorescenční barviva * MeSH
- NADP MeSH
Fluorescence Lifetime Imaging Microscopy (FLIM) of endogenous fluorophores has recently emerged as a powerful, marker-free, and non-invasive tool for investigating cellular metabolism. This cutting-edge imaging technique provides valuable insights into cellular energy states by measuring the fluorescence lifetimes of intrinsically fluorescent redox cofactors. The lifetimes of these cofactors reflect their binding states to enzymes, thus indicating enzymatic activity within specific metabolic pathways. As a result, FLIM can help to reveal the overall redox status of the cell and, to some extent, shifts between oxidative phosphorylation and glycolysis. The application of FLIM in metabolic research has shown significant progress across a diverse range of pathological contexts, including cancer, diabetes, neurodegenerative disorders, and various forms of cardiopathology.The aim of this mini-review is to introduce the methodology of NAD(P)H and FAD/FMN FLIM, outline its underlying principles, and demonstrate its ability to reveal changes in cellular metabolism. Additionally, this mini-review highlights FLIM's potential for understanding cellular redox states, detecting metabolic shifts in various disease models, and contributing to the development of therapeutic strategies.
Zobrazit více v PubMed
Ahmad R, Galletly NP, Thillainayagam AV et al (2010) Wide-field fluorescence lifetime imaging of cancer. Biomed Opt Express 1:627–640. https://doi.org/10.1364/BOE.1.000627 PubMed DOI PMC
Alam SR, Wallrabe H, Svindrych Z et al (2017) Investigation of mitochondrial metabolic response to doxorubicin in prostate Cancer cells: an NADH, FAD and Tryptophan FLIM Assay. Sci Rep 7:104511–104510. https://doi.org/10.1038/s41598-017-10856-3 DOI
Bec J, Vela D, Phipps JE et al (2021) Label-free visualization and quantification of biochemical markers of atherosclerotic plaque progression using intravascular fluorescence lifetime. JACC Cardiovasc Imaging 14:1832–1842. https://doi.org/10.1016/J.JCMG.2020.10.004 PubMed DOI
Becker W (2005) Advanced Time-correlated single photon counting techniques. Springer Berlin Heidelberg, Berlin, Heidelberg
Becker W (2012) Fluorescence lifetime imaging - techniques and applications. J Microsc 247:119–136. https://doi.org/10.1111/j.1365-2818.2012.03618.x PubMed DOI
Becker W (2014) The Bh TCSPC Handbook, 6th edn. Becker & Hickl GmbH, Berlin, Germany
Becker W (2015) Advanced Time-correlated single photon counting applications. Springer International Publishing, Cham, Switzerland
Becker W, Braun L, Suarez-Ibarrol R, Miernik A (2020) Metabolic imaging by simultaneous FLIM of NAD(P)H and FAD. Curr Dir Biomed Eng 6:0–2. https://doi.org/10.1515/cdbme-2020-3064 DOI
Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684. https://doi.org/10.1021/cr900343z PubMed DOI PMC
Bird DK, Yan L, Vrotsos KM et al (2005) Metabolic mapping of MCF10A human breast cells via Multiphoton Fluorescence Lifetime Imaging of the Coenzyme NADH. Cancer Res 65:8766–8773. https://doi.org/10.1158/0008-5472.CAN-04-3922 PubMed DOI
Blacker TS, Duchen MR (2016) Investigating mitochondrial redox state using NADH and NADPH autofluorescence. Free Radic Biol Med 100:53–65. https://doi.org/10.1016/j.freeradbiomed.2016.08.010 PubMed DOI PMC
Blacker TS, Mann ZF, Gale JE et al (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms4936 DOI
Blacker TS, Duchen MR, Bain AJ (2023) NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption. Biophys J 122:1240–1253. https://doi.org/10.1016/j.bpj.2023.02.014 PubMed DOI PMC
Booth MJ, Wilson T (2004) Low-cost, frequency-domain, fluorescence lifetime confocal microscopy. J Microsc 214:36–42. https://doi.org/10.1111/J.0022-2720.2004.01316.X PubMed DOI
Brandao M, Iwakura R, Basilio F et al (2015) Fluorescence lifetime of normal, benign, and malignant thyroid tissues. J Biomed Opt 20. https://doi.org/10.1117/1.JBO.20.6.067003 . 067003/1–6
Brooks GA (2002) Lactate shuttles in Nature. Biochem Soc Trans 30:258–264. https://doi.org/10.1042/BST0300258 PubMed DOI
Butte PV, Fang Q, Jo JA et al (2010) Intraoperative delineation of primary brain tumors using time-resolved fluorescence spectroscopy. J Biomed Opt 15:0270081–0270088. https://doi.org/10.1117/1.3374049 DOI
Cao R, Wallrabe H, Siller K et al (2019) Single-cell redox states analyzed by fluorescence lifetime metrics and tryptophan FRET interaction with NAD(P)H. Cytom Part A 95:110–121. https://doi.org/10.1002/cyto.a.23711 DOI
Cao R, Wallrabe H, Periasamy A (2020a) Multiphoton FLIM imaging of NAD(P)H and FAD with one excitation wavelength. J Biomed Opt 25:1–16. https://doi.org/10.1117/1.jbo.25.1.014510 PubMed DOI
Cao R, Wallrabe H, Siller K, Periasamy A (2020b) Optimization of FLIM imaging, fitting and analysis for auto-fluorescent NAD(P)H and FAD in cells and tissues. Methods Appl Fluoresc 8:1–12. https://doi.org/10.1088/2050-6120/ab6f25 DOI
Chance B (1976) Pyridine nucleotide as an indicator of the oxygen requirements for energy-linked functions of mitochondria. Circ Res 38:I31–I38. https://doi.org/https://pubmed.ncbi.nlm.nih.gov/178460/ PubMed
Chance B, Cohen P, Jobsis F, Schoener B (1962) Intracellular oxidation-reduction states in vivo. Science 137:499–508. https://doi.org/10.1126/SCIENCE.137.3529.499 PubMed DOI
Chance B, Schoener B, Oshino R et al (1979) Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J Biol Chem 254:4764–4771. https://doi.org/10.1016/S0021-9258(17)30079-0 PubMed DOI
Chen H, Wang C, Wei X et al (2015) Malate-aspartate shuttle inhibitor aminooxyacetate acid induces apoptosis and impairs Energy Metabolism of both resting Microglia and LPS-Activated Microglia. Neurochem Res 40:1311–1318. https://doi.org/10.1007/S11064-015-1589-Y PubMed DOI
Cheng Y, Mateasik A, Poirier N et al (2009) Analysis of NAD(P)H fluorescence components in cardiac myocytes from human biopsies: a new tool to improve diagnostics of rejection of transplanted patients. Multiphot Microsc Biomed Sci IX 7183:1–8. https://doi.org/10.1117/12.808001 DOI
Chorvat D, Chorvatova A (2006) Spectrally resolved time-correlated single photon counting: a novel approach for characterization of endogenous fluorescence in isolated cardiac myocytes. Eur Biophys J 36:73–83. https://doi.org/10.1007/S00249-006-0104-4 PubMed DOI
Curtabbi A, Enríquez JA (2022) The ins and outs of the flavin mononucleotide cofactor of respiratory complex I. IUBMB Life 74:629–644. https://doi.org/10.1002/IUB.2600 PubMed DOI
Datta R, Alfonso-Garciá A, Cinco R, Gratton E (2015) Fluorescence lifetime imaging of endogenous biomarker of oxidative stress. Sci Rep 5:98481–98410. https://doi.org/10.1038/SREP09848 DOI
Datta R, Heylman C, George SC, Gratton E (2016) Label-free imaging of metabolism and oxidative stress in human induced pluripotent stem cell-derived cardiomyocytes. Biomed Opt Express 7:1690–1701. https://doi.org/10.1364/BOE.7.001690 PubMed DOI PMC
Datta R, Heaster TM, Sharick JT et al (2020) Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications. J Biomed Opt 25:0712031–0712043. https://doi.org/10.1117/1.jbo.25.7.071203 DOI
Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94:L14–L16. https://doi.org/10.1529/biophysj.107.120154 PubMed DOI
Drössler P, Holzer W, Penzkofer A, Hegemann P (2002) pH dependence of the absorption and emission behaviour of riboflavin in aqueous solution. Chem Phys 282:429–439. https://doi.org/10.1016/S0301-0104(02)00731-0 DOI
Eggert D, Gaertner D, Rühm A et al (2024) Differentiation of tumors of the Upper Respiratory Tract using Optical metabolic imaging. Lasers Surg Med. https://doi.org/10.1002/lsm.23870 PubMed DOI PMC
Farhana A, Lappin SL (2023) Biochemistry, Lactate Dehydrogenase. StatPearls
Ferri G, Tesi M, Massarelli F et al (2020) Metabolic response of Insulinoma 1E cells to glucose stimulation studied by fluorescence lifetime imaging. FASEB BioAdvances 2:409–418. https://doi.org/10.1096/FBA.2020-00014 PubMed DOI PMC
Ferri G, Pesce L, Tesi M et al (2021) β-Cell pathophysiology: a review of Advanced Optical Microscopy Applications. Int J Mol Sci 22:1–17. https://doi.org/10.3390/IJMS222312820 DOI
Fiedorczuk K, Letts JA, Degliesposti G et al (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538:406–410. https://doi.org/10.1038/NATURE19794 PubMed DOI PMC
Galbán J, Sanz-Vicente I, Navarro J, De Marcos S (2016) The intrinsic fluorescence of FAD and its application in analytical chemistry: a review. Methods Appl Fluoresc 4:1–20. https://doi.org/10.1088/2050-6120/4/4/042005 DOI
García DI, Lanigan P, Webb M et al (2007) Fluorescence lifetime imaging to detect actomyosin states in mammalian muscle sarcomeres. Biophys J 93:2091–2101. https://doi.org/10.1529/BIOPHYSJ.106.096479 PubMed DOI PMC
Gladden LB (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558:5–30. https://doi.org/10.1113/jphysiol.2003.058701 PubMed DOI PMC
Gnaiger E (2023) Complex II ambiguities—FADH2 in the electron transfer system. J Biol Chem 300:1–19. https://doi.org/10.1016/J.JBC.2023.105470 DOI
Grecco HE, Schuermann KC (2012) flatFLIM: enhancing the dynamic range of frequency domain FLIM. Opt Express 20:20730–20741. https://doi.org/10.1364/OE.20.020730 PubMed DOI
Gregg T, Poudel C, Schmidt BA et al (2016) Pancreatic β-cells from mice offset age-associated mitochondrial deficiency with reduced KATP channel activity. Diabetes 65:2700–2710. https://doi.org/10.2337/DB16-0432/-/DC1 PubMed DOI PMC
Guo H-W, Yu J-S, Hsu S-H et al (2015) Correlation of NADH fluorescence lifetime and oxidative phosphorylation metabolism in the osteogenic differentiation of human mesenchymal stem cell. J Biomed Opt 20:017004. https://doi.org/10.1117/1.JBO.20.1.017004 PubMed DOI
Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299. https://doi.org/10.1042/0264-6021:3430281 PubMed DOI PMC
Hazra A, Chatterjee A, Chatterjee D et al (2009) Coenzyme and Prosthetic Group Biosynthesis. In: Encyclopedia of Microbiology, Third Edition. Academic Press, pp 79–88
Hu L, Wang N, Cardona E, Walsh AJ (2020) Fluorescence intensity and lifetime redox ratios detect metabolic perturbations in T cells. Biomed Opt Express 11:5674. https://doi.org/10.1364/boe.401935 PubMed DOI PMC
Huang S, Heikal AA, Webb WW (2002) Two-Photon Fluorescence Spectroscopy and Microscopy of NAD(P)H and Flavoprotein. Biophys J 82:2811–2825. https://doi.org/10.1016/S0006-3495(02)75621-X PubMed DOI PMC
Islam SDM, Susdorf T, Penzkofer A, Hegemann P (2003) Fluorescence quenching of flavin adenine dinucleotide in aqueous solution by pH dependent isomerisation and photo-induced electron transfer. Chem Phys 295:137–149. https://doi.org/10.1016/J.CHEMPHYS.2003.08.013 DOI
Jain A, Blum C, Subramaniam V (2009) Fluorescence lifetime spectroscopy and imaging of visible fluorescent proteins. In: Verdonck P (ed) Advances in Biomedical Engineering. Elsevier, pp 147–176
Jo JA, Park J, Pande P et al (2015) Simultaneous morphological and biochemical endogenous optical imaging of atherosclerosis. Eur Hear J Cardiovasc Imaging 16:910–918. https://doi.org/10.1093/EHJCI/JEV018 DOI
Kalinina S, Breymayer J, Schäfer P et al (2016) Correlative NAD(P)H-FLIM and oxygen sensing-PLIM for metabolic mapping. J Biophotonics 9:800–811. https://doi.org/10.1002/JBIO.201500297 PubMed DOI
Kalinina S, Freymueller C, Naskar N et al (2021) Bioenergetic Alterations of Metabolic Redox Coenzymes as NADH, FAD and FMN by means of fluorescence lifetime imaging techniques. Int J Mol Sci 22:1–15. https://doi.org/10.3390/ijms22115952 DOI
Karrobi K, Tank A, Fuzail MA et al (2023) Fluorescence Lifetime Imaging Microscopy (FLIM) reveals spatial-metabolic changes in 3D breast cancer spheroids. Sci Rep 2023 131 13:1–12. https://doi.org/10.1038/s41598-023-30403-7 DOI
Kim S, Nam HS, Lee MW et al (2021) Comprehensive Assessment of high-risk plaques by Dual-Modal Imaging Catheter in coronary artery. JACC Basic Transl Sci 6:948–960. https://doi.org/10.1016/J.JACBTS.2021.10.005 PubMed DOI PMC
Kolenc OI, Quinn KP (2019) Evaluating cell metabolism through autofluorescence imaging of NAD(P)H and FAD. Antioxid Redox Signal 30:875–889. https://doi.org/10.1089/ars.2017.7451 PubMed DOI PMC
Kurian GA, Rajagopal R, Vedantham S, Rajesh M (2016) The role of oxidative stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxid Med Cell Longev 2016:1–14. https://doi.org/10.1155/2016/1656450 DOI
Lagarto JL, Dyer BT, Talbot CB et al (2018) Characterization of NAD(P)H and FAD autofluorescence signatures in a Langendorff isolated-perfused rat heart model. Biomed Opt Express 9:4961–4978. https://doi.org/10.1364/boe.9.004961 PubMed DOI PMC
Lakowicz JR, Szmacinski H, Nowaczyk K et al (1992a) Fluorescence lifetime imaging. Anal Biochem 202:316–330. https://doi.org/10.1016/0003-2697(92)90112-K PubMed DOI PMC
Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992b) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci U S A 89:1271–1275. https://doi.org/10.1073/PNAS.89.4.1271 PubMed DOI PMC
Leung RWK, Yeh S-CA, Fang Q (2011) Effects of incomplete decay in fluorescence lifetime estimation. Biomed Opt Express 2:2517. https://doi.org/10.1364/BOE.2.002517 PubMed DOI PMC
Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464. https://doi.org/10.1146/ANNUREV-CELLBIO-092910-154237 PubMed DOI
Ma N, Digman MA, Malacrida L, Gratton E (2016) Measurements of absolute concentrations of NADH in cells using the phasor FLIM method. Biomed Opt Express 7:2441–2452. https://doi.org/10.1364/boe.7.002441 PubMed DOI PMC
Manno C, Tammineni E, Figueroa L et al (2022) A novel method for determining murine skeletal muscle fiber type using autofluorescence lifetimes. J Gen Physiol 154. https://doi.org/10.1085/JGP.202213143
Marcek Chorvatova A (2015) Time-resolved spectroscopy of NAD(P)H in live Cardiac myocytes. In: Becker W (ed) Advanced Time-correlated single photon counting applications. Springer International Publishing, Cham, pp 67–85
Marcek Chorvatova A, Cagalinec M, Chorvat D (2021) Time-resolved imaging of mitochondrial Flavin Fluorescence and its applications for evaluating the oxidative state in living Cardiac cells a. In: Weissig V, Edeas M (eds) Methods in Molecular Biology. Springer Nature, pp 403–414
Mayevsky A, Rogatsky GG (2007) Mitochondrial function in vivo evaluated by NADH fluorescence: from animal models to human studies. Am J Physiol Cell Physiol 292. https://doi.org/10.1152/AJPCELL.00249.2006
Meleshina AV, Dudenkova VV, Shirmanova MV et al (2016) Probing metabolic states of differentiating stem cells using two-photon FLIM. Sci Rep 6:218531–218511. https://doi.org/10.1038/srep21853 DOI
Miura R (2001) Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Chem Rec 1:183–194. https://doi.org/10.1002/tcr.1007 PubMed DOI
n den Berg PAW, Feenstra KA, Mark AE et al (2002) Dynamic conformations of flavin adenine dinucleotide: simulated molecular dynamics of the flavin cofactor related to the time-resolved fluorescence characteristics. J Phys Chem B 106:8858–8869. https://doi.org/10.1021/JP020356S/SUPPL_FILE/JP020356S_S.PDF DOI
Niederschweiberer MA, Schaefer PM, Singh LN et al (2021) NADH Fluorescence Lifetime Imaging Microscopy reveals selective mitochondrial dysfunction in neurons overexpressing Alzheimer’s disease–related proteins. Front Mol Biosci 8:1–12. https://doi.org/10.3389/FMOLB.2021.671274/FULL DOI
Nielsen TT, Støttrup NB, Løfgren B, Bøtker HE (2011) Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. Cardiovasc Res 91:382–391. https://doi.org/10.1093/CVR/CVR051 PubMed DOI
Osellame LD, Blacker TS, Duchen MR (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723. https://doi.org/10.1016/j.beem.2012.05.003 PubMed DOI PMC
Ostrander JH, McMahon CM, Lem S et al (2010) Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res 70:4759–4766. https://doi.org/10.1158/0008-5472.CAN-09-2572/655643/P/OPTICAL-REDOX-RATIO-DIFFERENTIATES-BREAST-CANCER . PubMed DOI
Ouyang Y, Liu Y, Wang ZM et al (2021) FLIM as a Promising Tool for Cancer diagnosis and treatment monitoring. Nano-Micro Lett 13:1–27. https://doi.org/10.1007/s40820-021-00653-z DOI
Potter M, Newport E, Morten KJ (2016) The Warburg effect: 80 years on. Biochem Soc Trans 44:1499–1505. https://doi.org/10.1042/BST20160094 PubMed DOI PMC
Qian T, Heaster TM, Houghtaling AR et al (2021) Label-free imaging for quality control of cardiomyocyte differentiation. Nat Commun 12:1–11. https://doi.org/10.1038/s41467-021-24868-1 DOI
Quinn KP, Sridharan GV, Hayden RS et al (2013) Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep 3:34321–34310. https://doi.org/10.1038/SREP03432 DOI
Raimundo N, Baysal BE, Shadel GS (2011) Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med 17:641–649. https://doi.org/10.1016/J.MOLMED.2011.06.001 PubMed DOI PMC
Reichert D, Wadiura LI, Erkkilae MT et al (2023) Flavin fluorescence lifetime and autofluorescence optical redox ratio for improved visualization and classification of brain tumors. Front Oncol 13:1–10. https://doi.org/10.3389/fonc.2023.1105648 DOI
Rice WL, Kaplan DL, Georgakoudi I (2010) Two-Photon Microscopy for Non-invasive, quantitative monitoring of stem cell differentiation. PLoS ONE 5:e10075. https://doi.org/10.1371/JOURNAL.PONE.0010075 PubMed DOI PMC
Riganti C, Gazzano E, Polimeni M et al (2012) The pentose phosphate pathway: an antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med 53:421–436. https://doi.org/10.1016/J.FREERADBIOMED.2012.05.006 PubMed DOI
Rodimova S, Bobrov N, Mozherov A et al (2023) The Effect of Diabetes Mellitus Type 1 on the Energy Metabolism of Hepatocytes: Multiphoton Microscopy and fluorescence lifetime imaging. Int J Mol Sci 24:1–18. https://doi.org/10.3390/ijms242317016 DOI
Rodrigo R, Retamal C, Schupper D et al (2022) Antioxidant cardioprotection against Reperfusion Injury: potential therapeutic roles of Resveratrol and Quercetin. Molecules 27:1–23. https://doi.org/10.3390/MOLECULES27082564 DOI
Sameni S, Syed A, Marsh JL, Digman MA (2016) The phasor-FLIM fingerprints reveal shifts from OXPHOS to enhanced glycolysis in Huntington Disease. Sci Rep 6:347551–347558. https://doi.org/10.1038/srep34755 DOI
Schaefer PM, Hilpert D, Niederschweiberer M et al (2017) Mitochondrial matrix pH as a decisive factor in neurometabolic imaging. Neurophotonics 4:0450041–0450017. https://doi.org/10.1117/1.nph.4.4.045004 DOI
Schaefer PM, Kalinina S, Rueck A et al (2019) NADH Autofluorescence-A marker on its way to Boost Bioenergetic Research. Cytometry A 95:34–46. https://doi.org/10.1002/CYTO.A.23597 PubMed DOI
Schmitz R, Tweed K, Walsh C et al (2021) Extracellular pH affects the fluorescence lifetimes of metabolic co-factors. https://doi.org/101117/1JBO265056502 26:056502/1–10. https://doi.org/10.1117/1.JBO.26.5.056502
Schweitzer D, Schenke S, Hammer M et al (2007) Towards metabolic mapping of the human retina. Microscopy Research and technique. Wiley-Liss Inc., pp 410–419
Shoubridge EA (2012) Supersizing the mitochondrial respiratory chain. Cell Metab 15:271–272. https://doi.org/10.1016/J.CMET.2012.02.009 PubMed DOI
Skala MC, Riching KM, Bird DK et al (2007a) In vivo Multiphoton Fluorescence Lifetime Imaging of Proteinbound and Free NADH in Normal and pre-cancerous epithelia. J Biomed Opt 12:1–19. https://doi.org/10.1117/1.2717503.In DOI
Skala MC, Riching KM, Gendron-Fitzpatrick A et al (2007b) In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci U S A 104:19494–19499. https://doi.org/10.1073/pnas.0708425104 PubMed DOI PMC
Song A, Zhao N, Hilpert DC et al (2024) Visualizing subcellular changes in the NAD(H) pool size versus redox state using fluorescence lifetime imaging microscopy of NADH. Commun Biol 2024 71 7:1–13. https://doi.org/10.1038/s42003-024-06123-7 DOI
Sun F, Dai C, Xie J, Hu X (2012) Biochemical issues in estimation of cytosolic free NAD/NADH ratio. PLoS ONE 7:e34525. https://doi.org/10.1371/JOURNAL.PONE.0034525 PubMed DOI PMC
Szabelski M, Luchowski R, Gryczynski Z et al (2009) Evaluation of instrument response functions for lifetime imaging detectors using quenched Rose Bengal solutions. Chem Phys Lett 471:153–159. https://doi.org/10.1016/J.CPLETT.2009.02.001 DOI
Tian H, Zhao X, Zhang Y, Xia Z (2023) Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 163:1148271–1148211. https://doi.org/10.1016/j.biopha.2023.114827 DOI
Ussher JR, Jaswal JS, Lopaschuk GD (2012) Pyridine nucleotide regulation of cardiac intermediary metabolism. Circ Res 111:628–641. https://doi.org/10.1161/CIRCRESAHA.111.246371 PubMed DOI
Varghese F, Atcheson E, Bridges HR, Hirst J (2015) Characterization of clinically identified mutations in NDUFV1, the flavin-binding subunit of respiratory complex I, using a yeast model system. Hum Mol Genet 24:6350–6360. https://doi.org/10.1093/HMG/DDV344 PubMed DOI PMC
Vergen J, Hecht C, Zholudeva LV et al (2012) Metabolic imaging using two-photon excited NADH intensity and fluorescence lifetime imaging. Microsc Microanal 18:761–770. https://doi.org/10.1017/S1431927612000529 PubMed DOI
Verveer PJ, Hanley QS (2009) Frequency domain FLIM theory, instrumentation, and data analysis. In: Gadella TWJ (ed) Laboratory techniques in Biochemistry and Molecular Biology, 1st edn. Elesvier B.V., pp 59–94
Wallrabe H, Svindrych Z, Alam SR et al (2018) Segmented cell analyses to measure redox states of autofluorescent NAD(P)H, FAD & Trp in cancer cells by FLIM. Sci Rep 8:791–711. https://doi.org/10.1038/s41598-017-18634-x DOI
Walsh AJ, Skala MC (2015) Optical metabolic imaging quantifies heterogeneous cell populations. Biomed Opt Express 6:559–573. https://doi.org/10.1364/boe.6.000559 PubMed DOI PMC
Wang Z, Gurlo T, Matveyenko AV et al (2021) Live-cell imaging of glucose-induced metabolic coupling of β and α cell metabolism in health and type 2 diabetes. Commun Biol 4:1–11. https://doi.org/10.1038/s42003-021-02113-1 DOI
Warburg O (1956) On the origin of cancer cells. Sci (80-) 123:309–314. https://doi.org/10.1126/science.123.3191.309 DOI
Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8:519–530. https://doi.org/10.1085/JGP.8.6.519 PubMed DOI PMC
Xiao W, Wang RS, Handy DE, Loscalzo J (2018) NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism. Antioxid Redox Signal 28:251–272. https://doi.org/10.1089/ars.2017.7216 PubMed DOI PMC
Xu HN, Zhao H, Chellappa K et al (2019) Optical redox imaging of fixed unstained muscle slides reveals useful Biological Information. Mol Imaging Biol 21:417–425 PubMed PMC
Ying W (2008) NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences. Antioxid Redox Signal 10:179–206. https://doi.org/10.1089/ars.2007.1672 PubMed DOI
Zanotelli MR, Zhang J, Reinhart-King CA (2021) Mechanoresponsive metabolism in cancer cell migration and metastasis. Cell Metab 33:1307–1321. https://doi.org/10.1016/J.CMET.2021.04.002/ASSET/17FCF070-4C69-43E1-9E21-B85656638356/MAIN.ASSETS/GR2_LRG.JPG PubMed DOI PMC
Zapata-Pérez R, Wanders RJA, Van Karnebeek CDM, Houtkooper RH (2021) NAD + homeostasis in human health and disease. EMBO Mol Med 13:e13943. https://doi.org/10.15252/EMMM.202113943 PubMed DOI PMC
Zhang J, Wallrabe H, Siller K et al (2024) Measuring metabolic changes in Cancer cells using Two-Photon Fluorescence Lifetime Imaging Microscopy and Machine-Learning Analysis. J Biophotonics 18. https://doi.org/10.1002/jbio.202400426
Zuurbier CJ, Bertrand L, Beauloye CR et al (2020) Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 24:5937–5954. https://doi.org/10.1111/jcmm.15180 PubMed DOI PMC