The Acute Immune Responses of the Common Carp Cyprinus carpio to PLGA Microparticles-The Interactions of a Teleost Fish with a Foreign Material
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35204827
PubMed Central
PMC8869309
DOI
10.3390/biom12020326
PII: biom12020326
Knihovny.cz E-resources
- Keywords
- PLGA, antigen, aquaculture, carrier, common carp, foreign body, inflammation, microparticle, teleost fish, vaccine,
- MeSH
- Antigens MeSH
- Glycols MeSH
- Immunity MeSH
- Carps * MeSH
- Polylactic Acid-Polyglycolic Acid Copolymer MeSH
- Lactic Acid MeSH
- Polyglycolic Acid MeSH
- Mammals MeSH
- Vaccines * pharmacology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens MeSH
- Glycols MeSH
- Polylactic Acid-Polyglycolic Acid Copolymer MeSH
- Lactic Acid MeSH
- Polyglycolic Acid MeSH
- Vaccines * MeSH
Poly lactic-co-glycolic acid (PLGA) particles safely and effectively deliver pharmaceutical ingredients, with many applications approved for clinical use in humans. In fishes, PLGA particles are being considered as carriers of therapeutic drugs and vaccine antigens. However, existing studies focus mainly on vaccine antigens, the endpoint immune responses to these (e.g., improved antibody titres), without deeper understanding of whether fishes react to the carrier. To test whether or not PLGA are recognized by or interact at all with the immune system of a teleost fish, we prepared, characterized and injected PLGA microparticles intraperitoneally into common carp. The influx, phenotype of inflammatory leukocytes, and their capacity to produce reactive oxygen species and phagocytose PLGA microparticles were tested by flow cytometry, qPCR, and microscopy. PLGA microparticles were indeed recognized. However, they induced only transient recruitment of inflammatory leukocytes that was resolved 4 days later whereas only the smallest µm-sized particles were phagocytosed. The overall response resembled that described in mammals against foreign materials. Given the similarities between our findings and those described in mammals, PLGA particles can be adapted to play a dual role as both antigen and drug carriers in fishes, depending on the administered dose and their design.
See more in PubMed
Schoubben A., Ricci M., Giovagnoli S. Meeting the unmet: From traditional to cutting-edge techniques for poly lactide and poly lactide-co-glycolide microparticle manufacturing. J. Pharm. Investig. 2019;49:381–404. doi: 10.1007/s40005-019-00446-y. DOI
Akagi T., Baba M., Akashi M. Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine. In: Kunugi S., Yamaoka T., editors. Polymers in Nanomedicine. Springer; Berlin/Heidelberg, Germany: 2012. pp. 31–64. DOI
McKeever U., Barman S., Hao T., Chambers P., Song S., Lunsford L., Hsu Y.Y., Roy K., Hedley M.L. Protective immune responses elicited in mice by immunization with formulations of poly(lactide-co-glycolide) microparticles. Vaccine. 2002;20:1524–1531. doi: 10.1016/S0264-410X(01)00509-6. PubMed DOI
Allen R.P., Bolandparvaz A., Ma J.A., Manickam V.A., Lewis J.S. Latent, Immunosuppressive Nature of Poly(lactic-co-glycolic acid) Microparticles. ACS Biomater. Sci. Eng. 2018;4:900–918. doi: 10.1021/acsbiomaterials.7b00831. PubMed DOI PMC
Fredriksen B.N., Saevareid K., McAuley L., Lane M.E., Bogwald J., Dalmo R.A. Early immune responses in Atlantic salmon (Salmo salar L.) after immunization with PLGA nanoparticles loaded with a model antigen and beta-glucan. Vaccine. 2011;29:8338–8349. doi: 10.1016/j.vaccine.2011.08.087. PubMed DOI
Fredriksen B.N., Grip J. PLGA/PLA micro- and nanoparticle formulations serve as antigen depots and induce elevated humoral responses after immunization of Atlantic salmon (Salmo salar L.) Vaccine. 2012;30:656–667. doi: 10.1016/j.vaccine.2011.10.105. PubMed DOI
Holvold L.B., Fredriksen B.N., Bogwald J., Dalmo R.A. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles. Fish Shellfish Immunol. 2013;35:890–899. doi: 10.1016/j.fsi.2013.06.030. PubMed DOI
O’donnell G., Reilly P., Davidson G., Ellis A. The uptake of human gamma globulin incorporated into poly (D,L-lactide-co-glycolide) microparticles following oral intubation in Atlantic salmon, Salmo salar L. Fish Shellfish Immunol. 1996;6:507–520. doi: 10.1006/fsim.1996.0048. DOI
Lavelle E.C., Jenkins P.G., Harris J.E. Oral immunization of rainbow trout with antigen microencapsulated in poly(DL-lactide-co-glycolide) microparticles. Vaccine. 1997;15:1070–1078. doi: 10.1016/S0264-410X(97)00013-3. PubMed DOI
Tian J., Yu J. Poly(lactic-co-glycolic acid) nanoparticles as candidate DNA vaccine carrier for oral immunization of Japanese flounder (Paralichthys olivaceus) against lymphocystis disease virus. Fish Shellfish Immunol. 2011;30:109–117. doi: 10.1016/j.fsi.2010.09.016. PubMed DOI
Behera T., Nanda P.K., Mohanty C., Mohapatra D., Swain P., Das B.K., Routray P., Mishra B.K., Sahoo S.K. Parenteral immunization of fish, Labeo rohita with Poly D,L-lactide-co-glycolic acid (PLGA) encapsulated antigen microparticles promotes innate and adaptive immune responses. Fish Shellfish Immunol. 2010;28:320–325. doi: 10.1016/j.fsi.2009.11.009. PubMed DOI
Yun S., Jun J.W., Giri S.S., Kim H.J., Chi C., Kim S.G., Kim S.W., Kang J.W., Han S.J., Kwon J., et al. Immunostimulation of Cyprinus carpio using phage lysate of Aeromonas hydrophila. Fish Shellfish Immunol. 2019;86:680–687. doi: 10.1016/j.fsi.2018.11.076. PubMed DOI
Yogeshwari G. Poly D,L-lactide-co-glycolic Acid (PLGA)-encapsulated CpG-oligonucleotide (ODN) on Immune Response in Cyprinus carpio against Aeromonas hydrophila. J. Aquac. Res. Dev. 2015;6 doi: 10.4172/2155-9546.1000327. DOI
Matejkova J., Podhorec P. Sustained drug delivery system in fish and the potential for use of PLGA microparticles: A review. Veterinární Med. 2019;64:287–293. doi: 10.17221/161/2018-VETMED. DOI
Coffman R.L., Sher A., Seder R.A. Vaccine adjuvants: Putting innate immunity to work. Immunity. 2010;33:492–503. doi: 10.1016/j.immuni.2010.10.002. PubMed DOI PMC
Sato M., Sano H., Iwaki D., Kudo K., Konishi M., Takahashi H., Takahashi T., Imaizumi H., Asai Y., Kuroki Y. Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 2003;171:417–425. doi: 10.4049/jimmunol.171.1.417. PubMed DOI
Chadzinska M., Leon-Kloosterziel K.M., Plytycz B., Lidy Verburg-van Kemenade B.M. In vivo kinetics of cytokine expression during peritonitis in carp: Evidence for innate and alternative macrophage polarization. Dev. Comp. Immunol. 2008;32:509–518. doi: 10.1016/j.dci.2007.08.008. PubMed DOI
Afonso A., Lousada S., Silva J., Ellis A.E., Silva M.T. Neutrophil and macrophage responses to inflammation in the peritoneal cavity of rainbow trout Oncorhynchus mykiss. A light and electron microscopic cytochemical study. Dis. Aquat. Organ. 1998;34:27–37. doi: 10.3354/dao034027. PubMed DOI
Korytar T., Wiegertjes G.F., Zuskova E., Tomanova A., Lisnerova M., Patra S., Sieranski V., Sima R., Born-Torrijos A., Wentzel A.S., et al. The kinetics of cellular and humoral immune responses of common carp to presporogonic development of the myxozoan Sphaerospora molnari. Parasit. Vectors. 2019;12:1–16. doi: 10.1186/s13071-019-3462-3. PubMed DOI PMC
Piazzon M.C., Wentzel A.S., Wiegertjes G.F., Forlenza M. Carp Il10a and Il10b exert identical biological activities in vitro, but are differentially regulated in vivo. Dev. Comp. Immunol. 2017;67:350–360. doi: 10.1016/j.dci.2016.08.016. PubMed DOI
Piazzon M.C., Savelkoul H.S., Pietretti D., Wiegertjes G.F., Forlenza M. Carp Il10 Has Anti-Inflammatory Activities on Phagocytes, Promotes Proliferation of Memory T Cells, and Regulates B Cell Differentiation and Antibody Secretion. J. Immunol. 2015;194:187–199. doi: 10.4049/jimmunol.1402093. PubMed DOI
Embregts C.W.E., Rigaudeau D., Vesely T., Pokorova D., Lorenzen N., Petit J., Houel A., Dauber M., Schutze H., Boudinot P., et al. Intramuscular DNA Vaccination of Juvenile Carp against Spring Viremia of Carp Virus Induces Full Protection and Establishes a Virus-Specific B and T Cell Response. Front. Immunol. 2017;8:1340. doi: 10.3389/fimmu.2017.01340. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Moritomo T., Serata K., Teshirogi K., Aikawa H., Inoue Y., Itou T., Nakanishi T. Flow cytometric analysis of the neutrophil respiratory burst of ayu, Plecoglossus altivelis: Comparison with other fresh water fish. Fish Shellfish Immunol. 2003;15:29–38. doi: 10.1016/S1050-4648(02)00136-5. PubMed DOI
Kalgraff C.A., Wergeland H.I., Pettersen E.F. Flow cytometry assays of respiratory burst in Atlantic salmon (Salmo salar L.) and in Atlantic cod (Gadus morhua L.) leucocytes. Fish Shellfish Immunol. 2011;31:381–388. doi: 10.1016/j.fsi.2011.05.028. PubMed DOI
Hastuti S.D., Quach A., Costabile M., Barton M.D., Pyecroft S.B., Ferrante A. Measuring the Asian seabass (Lates calcarifer) neutrophil respiratory burst activity by the dihydrorhodamine-123 reduction flow cytometry assay in whole blood. Fish Shellfish Immunol. 2019;92:871–880. doi: 10.1016/j.fsi.2019.07.018. PubMed DOI
Meinderts S.M., Baker G., van Wijk S., Beuger B.M., Geissler J., Jansen M.H., Saris A., Ten Brinke A., Kuijpers T.W., van den Berg T.K., et al. Neutrophils acquire antigen-presenting cell features after phagocytosis of IgG-opsonized erythrocytes. Blood Adv. 2019;3:1761–1773. doi: 10.1182/bloodadvances.2018028753. PubMed DOI PMC
Elamanchili P., Diwan M., Cao M., Samuel J. Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine. 2004;22:2406–2412. doi: 10.1016/j.vaccine.2003.12.032. PubMed DOI
Yoshida M., Babensee J.E. Poly(lactic-co-glycolic acid) enhances maturation of human monocyte-derived dendritic cells. J. Biomed. Mater. Res. Part A. 2004;71:45–54. doi: 10.1002/jbm.a.30131. PubMed DOI
Grainger D.W. All charged up about implanted biomaterials. Nat. Biotechnol. 2013;31:507–509. doi: 10.1038/nbt.2600. PubMed DOI
Anderson J.M., Rodriguez A., Chang D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008;20:86–100. doi: 10.1016/j.smim.2007.11.004. PubMed DOI PMC
Gurevich D.B., French K.E., Collin J.D., Cross S.J., Martin P. Live imaging the foreign body response in zebrafish reveals how dampening inflammation reduces fibrosis. J. Cell Sci. 2019;133 doi: 10.1242/jcs.236075. PubMed DOI PMC
Takaki K.K., Rinaldi G., Berriman M., Pagan A.J., Ramakrishnan L. Schistosoma mansoni Eggs Modulate the Timing of Granuloma Formation to Promote Transmission. Cell Host Microbe. 2021;29:58–67.e5. doi: 10.1016/j.chom.2020.10.002. PubMed DOI PMC
Song K.C., Lee H.S., Choung I.Y., Cho K.I., Ahn Y., Choi E.J. The effect of type of organic phase solvents on the particle size of poly(D,L-lactide-co-glycolide) nanoparticles. Colloids Surf. Phys. Eng. Asp. 2006;276:162–167. doi: 10.1016/j.colsurfa.2005.10.064. DOI
Ito F., Fujimori H., Honnami H., Kawakami H., Kanamura K., Makino K. Study of types and mixture ratio of organic solvent used to dissolve polymers for preparation of drug-containing PLGA microspheres. Eur. Polym. J. 2009;45:658–667. doi: 10.1016/j.eurpolymj.2008.12.037. DOI
Nomura T., Routh A.F. Benign preparation of aqueous core poly lactic-co-glycolic acid (PLGA) microcapsules. J. Colloid Interface Sci. 2018;513:1–9. doi: 10.1016/j.jcis.2017.11.007. PubMed DOI
Men Y., Thomasin C., Merkle H.P., Gander B., Corradin G. A single administration of tetanus toxoid in biodegradable microspheres elicits T cell and antibody responses similar or superior to those obtained with aluminum hydroxide. Vaccine. 1995;13:683–689. doi: 10.1016/0264-410x(94)00046-p. PubMed DOI
Partidos C.D., Vohra P., Jones D., Farrar G., Steward M.W. CTL responses induced by a single immunization with peptide encapsulated in biodegradable microparticles. J. Immunol. Methods. 1997;206:143–151. doi: 10.1016/S0022-1759(97)00102-6. PubMed DOI
Jepson M.A., Simmons N.L., O’Hagan D.T., Hirst B.H. Comparison of poly(DL-lactide-co-glycolide) and polystyrene microsphere targeting to intestinal M cells. J. Drug Target. 1993;1:245–249. doi: 10.3109/10611869308996082. PubMed DOI
Torche A.M., Le Dimna M., Le Corre P., Mesplede A., Le Gal S., Cariolet R., Le Potier M.F. Immune responses after local administration of IgY loaded-PLGA microspheres in gut-associated lymphoid tissue in pigs. Vet. Immunol. Immunopathol. 2006;109:209–217. doi: 10.1016/j.vetimm.2005.08.016. PubMed DOI
Mueller M., Schlosser E., Gander B., Groettrup M. Tumor eradication by immunotherapy with biodegradable PLGA microspheres--an alternative to incomplete Freund’s adjuvant. Int. J. Cancer. 2011;129:407–416. doi: 10.1002/ijc.25914. PubMed DOI
Lin A., Lore K. Granulocytes: New Members of the Antigen-Presenting Cell Family. Front. Immunol. 2017;8:1781. doi: 10.3389/fimmu.2017.01781. PubMed DOI PMC