Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies

. 2017 ; 12 (8) : e0183745. [epub] 20170828

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28846721

The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

Erratum v

PubMed

Zobrazit více v PubMed

Beales J, Turner A, Griffiths S, Snape J, Laurie D. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 2007;115: 721–733. doi: 10.1007/s00122-007-0603-4 PubMed DOI

Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, et al. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol Breed. 2012;31: 27–37. doi: 10.1007/s11032-012-9765-0 DOI

Díaz A, Zikhali M, Turner A, Isaac P, Laurie D. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One. 2012;7: e33234 doi: 10.1371/journal.pone.0033234 PubMed DOI PMC

Zhang X, Gao M, Wang S, Chen F, Cui D. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front Plant Sci. 2015;6: 1–10. doi: 10.3389/fpls.2015.00001 PubMed DOI PMC

Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444: 444–54. doi: 10.1038/nature05329 PubMed DOI PMC

Zmieńko A, Samelak A, Kozłowski P, Figlerowicz M. Copy number polymorphism in plant genomes. Theor Appl Genet. 2014;127: 1–18. doi: 10.1007/s00122-013-2177-7 PubMed DOI PMC

Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36: 949–951. doi: 10.1038/ng1416 PubMed DOI

Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2012;464: 704–712. doi: 10.1038/nature08516.Origins PubMed DOI PMC

Singleton AB, Farrer M, Johnson J, Singleton AB, Hague S, Kachergus J, et al. -Synuclein Locus Triplication Causes Parkinson’s Disease. Science (80-). 2003;302: 841–841. doi: 10.1126/science.1090278 PubMed DOI

Dumas M, Sadick N, Noblesse E, Juan M, Lachman-Weber N, Boury-Jamot M, et al. Hydrating skin by stimulating biosyntheis of aquaporins. J Drugs Dermatology. 2008;6(6 Suppl): 20–24. PubMed

Saintenac C, Jiang D, Akhunov ED. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol. BioMed Central Ltd; 2011;12: R88 doi: 10.1186/gb-2011-12-9-r88 PubMed DOI PMC

Francia E, Morcia C, Pasquariello M, Mazzamurro V, Milc JA, Rizza F, et al. Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol Biol. Springer Netherlands; 2016; 161–175. doi: 10.1007/s11103-016-0505-4 PubMed DOI

Nitcher R, Distelfeld A, Tan C, Yan L, Dubcovsky J. Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genomics. 2013;288: 261–75. doi: 10.1007/s00438-013-0746-8 PubMed DOI PMC

Ehrlich M, Gama-Sosa M, Huang L, Midgett R, Kenneth C, Mccune R, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acid Res. 1982;10: 2709–2721. PubMed PMC

Henderson IIRI, Chan SSRS, Cao X, Johnson L, Jacobsen SSESSE. Accurate sodium bisulfite sequencing in plants. Epigenetics. 2010;5: 47–49. doi: 10.4161/epi.5.1.10560 PubMed DOI PMC

Bird A. The essentials of DNA methylation. Cell. 1992;70: 5–8. doi: 10.1016/0092-8674(92)90526-I PubMed DOI

Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986;44: 535–543. doi: 10.1016/0092-8674(86)90263-1 PubMed DOI

Sun H, Guo Z, Gao L, Zhao G, Zhang W, Zhou R, et al. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytol. 2014; 1–11. doi: 10.1111/nph.12948 PubMed DOI

Diallo A, Ali-Benali M, Badawi M, Houde M, Sarhan F. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol Genet Genomics. 2012;287: 575–90. doi: 10.1007/s00438-012-0701-0 PubMed DOI

Finnegan E, Dennis E. Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol. 2007;17: 1978–83. doi: 10.1016/j.cub.2007.10.026 PubMed DOI

Sung S, Schmitz R, Amasino R. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev. Cold Spring Harbor Laboratory Press; 2006;20: 3244–3248. doi: 10.1101/gad.1493306 PubMed DOI PMC

Milec Z, Tomková L, Sumíková T, Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed. 2012;30: 317–323. doi: 10.1007/s11032-011-9621-7 DOI

Piepho HP. A mixed-model approach to mapping quantitative trait loci in Barley on the basis of multiple environment data. Genetics. 2000;156: 2043–2050. PubMed PMC

Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet. 2006;113: 1409–1420. doi: 10.1007/s00122-006-0365-4 PubMed DOI

IWGSC, Mayer K. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345: 1251788 doi: 10.1126/science.1251788 PubMed DOI

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28: 1647–1649. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13: 134 doi: 10.1186/1471-2105-13-134 PubMed DOI PMC

Ivanicova Z, Jakobson I, Reis D, Safar J, Milec Z, Abrouk M, et al. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae. N Biotechnol. 2016;33: 718–727. doi: 10.1016/j.nbt.2016.01.008 PubMed DOI

Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057994 PubMed DOI PMC

Šimková H, Svensson JT, Condamine P, Hribová E, Suchánková P, Bhat PR, et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9: 294 doi: 10.1186/1471-2164-9-294 PubMed DOI PMC

Bullrich L, Appendino M, Tranquilli G, Lewis S, Dubcovsky J. Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet. 2002;105: 585–593. doi: 10.1007/s00122-002-0982-5 PubMed DOI

Valárik M, Linkiewicz A, Dubcovsky J. A microcolinearity study at the earliness per se gene Eps-A(m)1 region reveals an ancient duplication that preceded the wheat-rice divergence. Theor Appl Genet. 2006;112: 945–957. doi: 10.1007/s00122-005-0198-6 PubMed DOI

Lewis S, Faricelli ME, Appendino ML, Valárik M, Dubcovsky J. The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot. 2008;59: 3595–607. doi: 10.1093/jxb/ern209 PubMed DOI PMC

Cane K, Eagles H, Laurie D, Trevaskis B, Vailance N, Eastwood R, et al. Ppd—B1 and Ppd—D1 and their effects in southern Australian wheat. Crop Pasture Sci. 2013;64: 100–114.

Würschum T, Boeven PHG, Langer SM, Longin CFH, Leiser WL. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet. BMC Genetics; 2015;16: 96 doi: 10.1186/s12863-015-0258-0 PubMed DOI PMC

Newell-Price J, Clark AJL, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab. 2000;11: 142–148. doi: 10.1016/S1043-2760(00)00248-4 PubMed DOI

Force a, Force a, Lynch M, Lynch M, Postlethwait J, Postlethwait J. Preservation of duplicate genes by subfunctionalization. Am Zool. 1999;39: 0. 10101175

Kiss T, Balla K, Veisz O, Láng L, Bedő Z, Griffiths S, et al. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Mol Breed. 2014;34: 297–310. doi: 10.1007/s11032-014-0034-2 PubMed DOI PMC

Della Vedova C, Cone K. Paramutation: The Chromatin Connection. Plant Cell. 2004;16: 1358–1364. doi: 10.1105/tpc.160630 PubMed DOI PMC

Pilu R. Seminars in Cell & Developmental Biology Paramutation phenomena in plants. Semin Cell Dev Biol. Elsevier Ltd; 2015;44: 2–10. doi: 10.1016/j.semcdb.2015.08.015 PubMed DOI

Herman JJ, Spencer HG, Donohue K, Sultan SE. How stable “should” epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution (N Y). 2014;68: 632–643. doi: 10.1111/evo.12324 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace