Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28846721
PubMed Central
PMC5573275
DOI
10.1371/journal.pone.0183745
PII: PONE-D-16-50376
Knihovny.cz E-zdroje
- MeSH
- fotoperioda MeSH
- genetická variace * MeSH
- lokus kvantitativního znaku MeSH
- metylace DNA MeSH
- promotorové oblasti (genetika) MeSH
- pšenice genetika fyziologie MeSH
- rostlinné geny * MeSH
- variabilita počtu kopií segmentů DNA MeSH
- Publikační typ
- časopisecké články MeSH
The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.
Crop Research Institute Drnovská 507 Prague Czech Republic
Czech University of Life Sciences Prague Kamýcká 129 Prague 6 Czech Republic
Zobrazit více v PubMed
Beales J, Turner A, Griffiths S, Snape J, Laurie D. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet. 2007;115: 721–733. doi: 10.1007/s00122-007-0603-4 PubMed DOI
Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, et al. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol Breed. 2012;31: 27–37. doi: 10.1007/s11032-012-9765-0 DOI
Díaz A, Zikhali M, Turner A, Isaac P, Laurie D. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS One. 2012;7: e33234 doi: 10.1371/journal.pone.0033234 PubMed DOI PMC
Zhang X, Gao M, Wang S, Chen F, Cui D. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front Plant Sci. 2015;6: 1–10. doi: 10.3389/fpls.2015.00001 PubMed DOI PMC
Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature. 2006;444: 444–54. doi: 10.1038/nature05329 PubMed DOI PMC
Zmieńko A, Samelak A, Kozłowski P, Figlerowicz M. Copy number polymorphism in plant genomes. Theor Appl Genet. 2014;127: 1–18. doi: 10.1007/s00122-013-2177-7 PubMed DOI PMC
Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet. 2004;36: 949–951. doi: 10.1038/ng1416 PubMed DOI
Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2012;464: 704–712. doi: 10.1038/nature08516.Origins PubMed DOI PMC
Singleton AB, Farrer M, Johnson J, Singleton AB, Hague S, Kachergus J, et al. -Synuclein Locus Triplication Causes Parkinson’s Disease. Science (80-). 2003;302: 841–841. doi: 10.1126/science.1090278 PubMed DOI
Dumas M, Sadick N, Noblesse E, Juan M, Lachman-Weber N, Boury-Jamot M, et al. Hydrating skin by stimulating biosyntheis of aquaporins. J Drugs Dermatology. 2008;6(6 Suppl): 20–24. PubMed
Saintenac C, Jiang D, Akhunov ED. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome. Genome Biol. BioMed Central Ltd; 2011;12: R88 doi: 10.1186/gb-2011-12-9-r88 PubMed DOI PMC
Francia E, Morcia C, Pasquariello M, Mazzamurro V, Milc JA, Rizza F, et al. Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol Biol. Springer Netherlands; 2016; 161–175. doi: 10.1007/s11103-016-0505-4 PubMed DOI
Nitcher R, Distelfeld A, Tan C, Yan L, Dubcovsky J. Increased copy number at the HvFT1 locus is associated with accelerated flowering time in barley. Mol Genet Genomics. 2013;288: 261–75. doi: 10.1007/s00438-013-0746-8 PubMed DOI PMC
Ehrlich M, Gama-Sosa M, Huang L, Midgett R, Kenneth C, Mccune R, et al. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acid Res. 1982;10: 2709–2721. PubMed PMC
Henderson IIRI, Chan SSRS, Cao X, Johnson L, Jacobsen SSESSE. Accurate sodium bisulfite sequencing in plants. Epigenetics. 2010;5: 47–49. doi: 10.4161/epi.5.1.10560 PubMed DOI PMC
Bird A. The essentials of DNA methylation. Cell. 1992;70: 5–8. doi: 10.1016/0092-8674(92)90526-I PubMed DOI
Keshet I, Lieman-Hurwitz J, Cedar H. DNA methylation affects the formation of active chromatin. Cell. 1986;44: 535–543. doi: 10.1016/0092-8674(86)90263-1 PubMed DOI
Sun H, Guo Z, Gao L, Zhao G, Zhang W, Zhou R, et al. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat (Triticum aestivum). New Phytol. 2014; 1–11. doi: 10.1111/nph.12948 PubMed DOI
Diallo A, Ali-Benali M, Badawi M, Houde M, Sarhan F. Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. Mol Genet Genomics. 2012;287: 575–90. doi: 10.1007/s00438-012-0701-0 PubMed DOI
Finnegan E, Dennis E. Vernalization-induced trimethylation of histone H3 lysine 27 at FLC is not maintained in mitotically quiescent cells. Curr Biol. 2007;17: 1978–83. doi: 10.1016/j.cub.2007.10.026 PubMed DOI
Sung S, Schmitz R, Amasino R. A PHD finger protein involved in both the vernalization and photoperiod pathways in Arabidopsis. Genes Dev. Cold Spring Harbor Laboratory Press; 2006;20: 3244–3248. doi: 10.1101/gad.1493306 PubMed DOI PMC
Milec Z, Tomková L, Sumíková T, Pánková K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Mol Breed. 2012;30: 317–323. doi: 10.1007/s11032-011-9621-7 DOI
Piepho HP. A mixed-model approach to mapping quantitative trait loci in Barley on the basis of multiple environment data. Genetics. 2000;156: 2043–2050. PubMed PMC
Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet. 2006;113: 1409–1420. doi: 10.1007/s00122-006-0365-4 PubMed DOI
IWGSC, Mayer K. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345: 1251788 doi: 10.1126/science.1251788 PubMed DOI
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28: 1647–1649. doi: 10.1093/bioinformatics/bts199 PubMed DOI PMC
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13: 134 doi: 10.1186/1471-2105-13-134 PubMed DOI PMC
Ivanicova Z, Jakobson I, Reis D, Safar J, Milec Z, Abrouk M, et al. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae. N Biotechnol. 2016;33: 718–727. doi: 10.1016/j.nbt.2016.01.008 PubMed DOI
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: Fluorescence In Situ Hybridization in Suspension and Chromosome Flow Sorting Made Easy. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057994 PubMed DOI PMC
Šimková H, Svensson JT, Condamine P, Hribová E, Suchánková P, Bhat PR, et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genomics. 2008;9: 294 doi: 10.1186/1471-2164-9-294 PubMed DOI PMC
Bullrich L, Appendino M, Tranquilli G, Lewis S, Dubcovsky J. Mapping of a thermo-sensitive earliness per se gene on Triticum monococcum chromosome 1Am. Theor Appl Genet. 2002;105: 585–593. doi: 10.1007/s00122-002-0982-5 PubMed DOI
Valárik M, Linkiewicz A, Dubcovsky J. A microcolinearity study at the earliness per se gene Eps-A(m)1 region reveals an ancient duplication that preceded the wheat-rice divergence. Theor Appl Genet. 2006;112: 945–957. doi: 10.1007/s00122-005-0198-6 PubMed DOI
Lewis S, Faricelli ME, Appendino ML, Valárik M, Dubcovsky J. The chromosome region including the earliness per se locus Eps-Am1 affects the duration of early developmental phases and spikelet number in diploid wheat. J Exp Bot. 2008;59: 3595–607. doi: 10.1093/jxb/ern209 PubMed DOI PMC
Cane K, Eagles H, Laurie D, Trevaskis B, Vailance N, Eastwood R, et al. Ppd—B1 and Ppd—D1 and their effects in southern Australian wheat. Crop Pasture Sci. 2013;64: 100–114.
Würschum T, Boeven PHG, Langer SM, Longin CFH, Leiser WL. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat. BMC Genet. BMC Genetics; 2015;16: 96 doi: 10.1186/s12863-015-0258-0 PubMed DOI PMC
Newell-Price J, Clark AJL, King P. DNA methylation and silencing of gene expression. Trends Endocrinol Metab. 2000;11: 142–148. doi: 10.1016/S1043-2760(00)00248-4 PubMed DOI
Force a, Force a, Lynch M, Lynch M, Postlethwait J, Postlethwait J. Preservation of duplicate genes by subfunctionalization. Am Zool. 1999;39: 0. 10101175
Kiss T, Balla K, Veisz O, Láng L, Bedő Z, Griffiths S, et al. Allele frequencies in the VRN-A1, VRN-B1 and VRN-D1 vernalization response and PPD-B1 and PPD-D1 photoperiod sensitivity genes, and their effects on heading in a diverse set of wheat cultivars (Triticum aestivum L.). Mol Breed. 2014;34: 297–310. doi: 10.1007/s11032-014-0034-2 PubMed DOI PMC
Della Vedova C, Cone K. Paramutation: The Chromatin Connection. Plant Cell. 2004;16: 1358–1364. doi: 10.1105/tpc.160630 PubMed DOI PMC
Pilu R. Seminars in Cell & Developmental Biology Paramutation phenomena in plants. Semin Cell Dev Biol. Elsevier Ltd; 2015;44: 2–10. doi: 10.1016/j.semcdb.2015.08.015 PubMed DOI
Herman JJ, Spencer HG, Donohue K, Sultan SE. How stable “should” epigenetic modifications be? Insights from adaptive plasticity and bet hedging. Evolution (N Y). 2014;68: 632–643. doi: 10.1111/evo.12324 PubMed DOI
In-Depth Sequence Analysis of Bread Wheat VRN1 Genes