Metabolism of Aldoximes and Nitriles in Plant-Associated Bacteria and Its Potential in Plant-Bacteria Interactions

. 2022 Mar 02 ; 10 (3) : . [epub] 20220302

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35336124

Grantová podpora
I 4607 FWF Austrian Science Fund
452120 Charles University
GF20-23532L Czech Science Foundation

Odkazy

PubMed 35336124
PubMed Central PMC8955678
DOI 10.3390/microorganisms10030549
PII: microorganisms10030549
Knihovny.cz E-zdroje

In plants, aldoximes per se act as defense compounds and are precursors of complex defense compounds such as cyanogenic glucosides and glucosinolates. Bacteria rarely produce aldoximes, but some are able to transform them by aldoxime dehydratase (Oxd), followed by nitrilase (NLase) or nitrile hydratase (NHase) catalyzed transformations. Oxds are often encoded together with NLases or NHases in a single operon, forming the aldoxime-nitrile pathway. Previous reviews have largely focused on the use of Oxds and NLases or NHases in organic synthesis. In contrast, the focus of this review is on the contribution of these enzymes to plant-bacteria interactions. Therefore, we summarize the substrate specificities of the enzymes for plant compounds. We also analyze the taxonomic and ecological distribution of the enzymes. In addition, we discuss their importance in selected plant symbionts. The data show that Oxds, NLases, and NHases are abundant in Actinobacteria and Proteobacteria. The enzymes seem to be important for breaking through plant defenses and utilizing oximes or nitriles as nutrients. They may also contribute, e.g., to the synthesis of the phytohormone indole-3-acetic acid. We conclude that the bacterial and plant metabolism of aldoximes and nitriles may interfere in several ways. However, further in vitro and in vivo studies are needed to better understand this underexplored aspect of plant-bacteria interactions.

Zobrazit více v PubMed

Sørensen M., Neilson E.H.J., Møller B.L. Oximes: Unrecognized chameleons in general and specialized plant metabolism. Mol. Plant. 2018;11:95–117. doi: 10.1016/j.molp.2017.12.014. PubMed DOI

Howden A.J., Preston G.M. Nitrilase enzymes and their role in plant-microbe interactions. Microb. Biotechnol. 2009;2:441–451. doi: 10.1111/j.1751-7915.2009.00111.x. PubMed DOI PMC

Piotrowski M. Primary or secondary? Versatile nitrilases in plant metabolism. Phytochemistry. 2008;69:2655–2667. doi: 10.1016/j.phytochem.2008.08.020. PubMed DOI

Kato Y., Tsuda T., Asano Y. Purification and partial characterization of N-hydroxy-l-phenylalanine decarboxylase/oxidase from Bacillus sp. strain OxB-1, an enzyme involved in aldoxime biosynthesis in the “aldoxime-nitrile pathway”. Biochim. Biophys. Acta. 2007;1774:856–865. doi: 10.1016/j.bbapap.2007.04.010. PubMed DOI

Betke T., Higuchi J., Rommelmann P., Oike K., Nomura T., Kato Y., Asano Y., Gröger H. Biocatalytic synthesis of nitriles through dehydration of aldoximes: The substrate scope of aldoxime dehydratases. ChemBioChem. 2018;19:768–779. doi: 10.1002/cbic.201700571. PubMed DOI

Martínková L. Nitrile metabolism in fungi: A review of its key enzymes nitrilases with focus on their biotechnological impact. Fungal Biol. Rev. 2019;33:149–157. doi: 10.1016/j.fbr.2018.11.002. DOI

Shen J.-D., Cai X., Liu Z.-Q., Zheng Y.-G. Nitrilase: A promising biocatalyst in industrial applications for green chemistry. Crit. Rev. Biotechnol. 2020;41:72–93. doi: 10.1080/07388551.2020.1827367. PubMed DOI

Stolz A., Eppinger E., Sosedov O., Kiziak C. Comparative analysis of the conversion of mandelonitrile and 2-phenylpropionitrile by a large set of variants generated from a nitrilase originating from Pseudomonas fluorescens EBC191. Molecules. 2019;24:4232. doi: 10.3390/molecules24234232. PubMed DOI PMC

Bhalla T.C., Kumar V., Kumar V. Enzymes of aldoxime-nitrile pathway for organic synthesis. Rev. Environ. Sci. Bio-Technol. 2018;17:229–239. doi: 10.1007/s11157-018-9467-0. DOI

Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007;31:425–448. doi: 10.1111/j.1574-6976.2007.00072.x. PubMed DOI

Santoyo G., Moreno-Hagelsieb G., Orozco-Mosqueda Mdel C., Glick B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016;183:92–99. doi: 10.1016/j.micres.2015.11.008. PubMed DOI

Mahadevan S. Conversion of 3-indolacetaldoxime to 3-indoleacetonitrile by plants. Arch. Biochem. Biophys. 1963;100:557–558. doi: 10.1016/0003-9861(63)90127-9. DOI

Kato Y., Ooi R., Asano Y. Isolation and characterization of a bacterium possessing a novel aldoxime-dehydration activity and nitrile-degrading enzymes. Arch. Microbiol. 1998;170:85–90. doi: 10.1007/s002030050618. PubMed DOI

Kato Y., Nakamura K., Sakiyama H., Mayhew S.G., Asano Y. Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: Purification, characterization, and molecular cloning of the gene. Biochemistry. 2000;39:800–809. doi: 10.1021/bi991598u. PubMed DOI

Oinuma K., Hashimoto Y., Konishi K., Goda M., Noguchi T., Higashibata H., Kobayashi M. Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. Sequencing, gene expression, purification, and characterization. J. Biol. Chem. 2003;278:29600–29608. doi: 10.1074/jbc.M211832200. PubMed DOI

Martínková L., Rucká L., Nešvera J., Pátek M. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J. Microbiol. Biotechnol. 2017;33:11. doi: 10.1007/s11274-016-2173-6. PubMed DOI

Asano Y., Tani Y., Yamada H. A new enzyme nitrile hydratase which degrades acetonitrile in combination with amidase. Agr. Biol. Chem. 1980;44:2251–2252. doi: 10.1080/00021369.1980.10864311. DOI

Hinzmann A., Betke T., Asano Y., Gröger H. Synthetic processes toward nitriles without the use of cyanide: A biocatalytic concept based on dehydration of aldoximes in water. Chem. Eur. J. 2021;27:5313–5321. doi: 10.1002/chem.202001647. PubMed DOI PMC

Pedras M.S., Minic Z., Thongbam P.D., Bhaskar V., Montaut S. Indolyl-3-acetaldoxime dehydratase from the phytopathogenic fungus Sclerotinia sclerotiorum: Purification, characterization, and substrate specificity. Phytochemistry. 2010;71:1952–1962. doi: 10.1016/j.phytochem.2010.10.002. PubMed DOI

Kato Y., Asano Y. Purification and characterization of aldoxime dehydratase of the head blight fungus, Fusarium graminearum. Biosci. Biotechnol. Biochem. 2005;69:2254–2257. doi: 10.1271/bbb.69.2254. PubMed DOI

Kato Y., Asano Y. Molecular and enzymatic analysis of the “aldoxime-nitrile pathway” in the glutaronitrile degrader Pseudomonas sp. K-9. Appl. Microbiol. Biotechnol. 2006;70:92–101. doi: 10.1007/s00253-005-0044-4. PubMed DOI

Xie S.X., Kato Y., Komeda H., Yoshida S., Asano Y. A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcus globerulus A-4. Biochemistry. 2003;42:12056–12066. doi: 10.1021/bi035092u. PubMed DOI

Kato Y., Yoshida S., Xie S.-X., Asano Y. Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J. Biosci. Bioeng. 2004;97:250–259. doi: 10.1016/S1389-1723(04)70200-5. PubMed DOI

Rädisch R., Chmátal M., Rucká L., Novotný P., Petrásková L., Halada P., Kotík M., Pátek M., Martínková L. Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp. Int. J. Biol. Macromol. 2018;115:746–753. doi: 10.1016/j.ijbiomac.2018.04.103. PubMed DOI

Kato Y., Asano Y. High-level expression of a novel FMN-dependent heme-containing lyase, phenylacetaldoxime dehydratase of Bacillus sp. strain OxB-1, in heterologous hosts. Protein Expres. Purif. 2003;28:131–139. doi: 10.1016/S1046-5928(02)00638-1. PubMed DOI

Basic Local Alignment Search Tool. [(accessed on 2 February 2022)]; Available online: https://blast.ncbi.nlm.nih.gov.

Knoch E., Motawie M.S., Olsen C.E., Møller B.L., Lyngkjaer M.F. Biosynthesis of the leucine derived alpha-, beta- and gamma-hydroxynitrile glucosides in barley (Hordeum vulgare L.) Plant. J. 2016;88:247–256. doi: 10.1111/tpj.13247. PubMed DOI

Kato Y., Tsuda T., Asano Y. Nitrile hydratase involved in aldoxime metabolism from Rhodococcus sp. strain YH3-3 purification and characterization. Eur. J. Biochem. 1999;263:662–670. doi: 10.1046/j.1432-1327.1999.00535.x. PubMed DOI

Nagasawa T., Nanba H., Ryuno K., Takeuchi K., Yamada H. Nitrile hydratase of Pseudomonas chlororaphis B23. Eur. J. Biochem. 1987;162:691–698. doi: 10.1111/j.1432-1033.1987.tb10692.x. PubMed DOI

Nagamune T., Kurata H., Hirata M., Honda J., Koike H., Ikeuchi M., Inoue Y., Hirata A., Endo I. Purification of inactivated photoresponsive nitrile hydratase. Biochem. Biophys. Res. Commun. 1990;168:437–442. doi: 10.1016/0006-291X(90)92340-6. PubMed DOI

Nojiri M., Nakayama H., Odaka M., Yohda M., Takio K., Endo I. Cobalt-substituted Fe-type nitrile hydratase of Rhodococcus sp. N-771. FEBS Lett. 2000;465:173–177. doi: 10.1016/S0014-5793(99)01746-9. PubMed DOI

Duca D., Rose D.R., Glick B.R. Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl. Environ. Microbiol. 2014;80:4640–4649. doi: 10.1128/AEM.00649-14. PubMed DOI PMC

Robertson D.E., Chaplin J.A., DeSantis G., Podar M., Madden M., Chi E., Richardson T., Milan A., Miller M., Weiner D.P., et al. Exploring nitrilase sequence space for enantioselective catalysis. Appl. Environ. Microbiol. 2004;70:2429–2436. doi: 10.1128/AEM.70.4.2429-2436.2004. PubMed DOI PMC

Zhu D., Mukherjee C., Yang Y., Rios B.E., Gallagher D.T., Smith N.N., Biehl E.R., Hua L. A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity. J. Biotechnol. 2008;133:327–333. doi: 10.1016/j.jbiotec.2007.10.001. PubMed DOI

Kato Y., Ooi R., Asano Y. Distribution of aldoxime dehydratase in microorganisms. Appl. Environ. Microbiol. 2000;66:2290–2296. doi: 10.1128/AEM.66.6.2290-2296.2000. PubMed DOI PMC

Kato Y., Yoshida S., Asano Y. Polymerase chain reaction for identification of aldoxime dehydratase in aldoxime- or nitrile-degrading microorganisms. FEMS Microbiol. Lett. 2005;246:243–249. doi: 10.1016/j.femsle.2005.04.011. PubMed DOI

Sharma M., Mishra V., Rau N., Sharma R.S. Increased iron-stress resilience of maize through inoculation of siderophore-producing Arthrobacter globiformis from mine. J. Basic. Microbiol. 2016;56:719–735. doi: 10.1002/jobm.201500450. PubMed DOI

Worsley S.F., Newitt J., Rassbach J., Batey S.F.D., Holmes N.A., Murrell J.C., Wilkinson B., Hutchings M.I. Streptomyces endophytes promote host health and enhance growth across plant species. Appl. Environ. Microbiol. 2020;86:e01053-20. doi: 10.1128/AEM.01053-20. PubMed DOI PMC

Vick S.H.W., Fabian B.K., Dawson C.J., Foster C., Asher A., Hassan K.A., Midgley D.J., Paulsen I.T., Tetu S.G. Delving into defence: Identifying the Pseudomonas protegens Pf-5 gene suite involved in defence against secreted products of fungal, oomycete and bacterial rhizosphere competitors. Microb. Genom. 2021;7:671. doi: 10.1099/mgen.0.000671. PubMed DOI PMC

Gonzalez-Benitez N., Martin-Rodriguez I., Cuesta I., Arrayas M., White J.F., Molina M.C. Endophytic microbes are tools to increase tolerance in Jasione plants against arsenic stress. Front. Microbiol. 2021;12:664271. doi: 10.3389/fmicb.2021.664271. PubMed DOI PMC

Yandigeri M.S., Meena K.K., Singh D., Malviya N., Singh D.P., Solanki M.K., Yadav A.K., Arora D.K. Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul. 2012;68:411–420. doi: 10.1007/s10725-012-9730-2. DOI

Song L., Wang M.Z., Shi J.J., Xue Z.Q., Wang M.X., Qian S.J. High resolution X-ray molecular structure of the nitrile hydratase from Rhodococcus erythropolis AJ270 reveals posttranslational oxidation of two cysteines into sulfinic acids and a novel biocatalytic nitrile hydration mechanism. Biochem. Biophys. Res. Commun. 2007;362:319–324. doi: 10.1016/j.bbrc.2007.07.184. PubMed DOI

VanInsberghe D., Maas K.R., Cardenas E., Strachan C.R., Hallam S.J., Mohn W.W. Non-symbiotic Bradyrhizobium ecotypes dominate North American forest soils. ISME J. 2015;9:2435–2441. doi: 10.1038/ismej.2015.54. PubMed DOI PMC

Jones F.P., Clark I.M., King R., Shaw L.J., Woodward M.J., Hirsch P.R. Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes—A genome comparison. Sci. Rep. 2016;6:25858. doi: 10.1038/srep25858. PubMed DOI PMC

Adeleke B.S., Babalola O.O., Glick B.R. Plant growth-promoting root-colonizing bacterial endophytes. Rhizosphere. 2021;20:100433. doi: 10.1016/j.rhisph.2021.100433. DOI

Han J.I., Choi H.K., Lee S.W., Orwin P.M., Kim J., Laroe S.L., Kim T.G., O’Neil J., Leadbetter J.R., Lee S.Y., et al. Complete genome sequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J. Bacteriol. 2011;193:1183–1190. doi: 10.1128/JB.00925-10. PubMed DOI PMC

Agrawal M., Archana G. Phenotypic display of plant growth-promoting traits in individual strains and multispecies consortia of plant growth promoting rhizobacteria and rhizobia under salinity stress. Rhizosphere. 2021;20:443. doi: 10.1016/j.rhisph.2021.100443. DOI

Guo H., Glaeser S.P., Alabid I., Imani J., Haghighi H., Kämpfer P., Kogel K.H. The abundance of endofungal bacterium Rhizobium radiobacter (syn. Agrobacterium tumefaciens) increases in its fungal host Piriformospora indica during the tripartite sebacinalean symbiosis with higher plants. Front. Microbiol. 2017;8:629. doi: 10.3389/fmicb.2017.00629. PubMed DOI PMC

Cavalcanti M.I.P., Nascimento R.d.C., Rodrigues D.R., Escobar I.E.C., Fraiz A.C.R., de Souza A.P., de Freitas A.D.S., Nóbrega R.S.A., Fernandes-Júnior P.I. Maize growth and yield promoting endophytes isolated into a legume root nodule by a cross-over approach. Rhizosphere. 2020;15:100211. doi: 10.1016/j.rhisph.2020.100211. DOI

Thuku R.N., Brady D., Benedik M.J., Sewell B.T. Microbial nitrilases: Versatile, spiral forming, industrial enzymes. J. Appl. Microbiol. 2009;106:703–727. doi: 10.1111/j.1365-2672.2008.03941.x. PubMed DOI

Chlebek D., Pinski A., Żur J., Michalska J., Hupert-Kocurek K. Genome mining and evaluation of the biocontrol potential of Pseudomonas fluorescens BRZ63, a new endophyte of oilseed rape (Brassica napus L.) against fungal pathogens. Int. J. Mol. Sci. 2020;21:8740. doi: 10.3390/ijms21228740. PubMed DOI PMC

Jiang F., Chen L., Belimov A.A., Shaposhnikov A.I., Gong F., Meng X., Hartung W., Jeschke D.W., Davies W.J., Dodd I.C. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J. Exp. Bot. 2012;63:6421–6430. doi: 10.1093/jxb/ers301. PubMed DOI PMC

Omura H., Kuroda M., Kobayashi M., Shimizu S., Yoshida T., Nagasawa T. Purification, characterization and gene cloning of thermostable O-acetyl-L-serine sulfhydrylase forming beta-cyano-L-alanine. J. Biosci. Bioeng. 2003;95:470–475. doi: 10.1016/S1389-1723(03)80047-6. PubMed DOI

Howden A.J.M., Jill Harrison C., Preston G.M. A conserved mechanism for nitrile metabolism in bacteria and plants. Plant J. 2009;57:243–253. doi: 10.1111/j.1365-313X.2008.03682.x. PubMed DOI

Rucká L., Kulik N., Novotný P., Sedova A., Petrásková L., Příhodová R., Křístková B., Halada P., Pátek M., Martínková L. Plant nitrilase homologues in fungi: Phylogenetic and functional analysis with focus on nitrilases in Trametes versicolor and Agaricus bisporus. Molecules. 2020;25:3861. doi: 10.3390/molecules25173861. PubMed DOI PMC

Bruto M., Prigent-Combaret C., Luis P., Moënne-Loccoz Y., Muller D. Frequent, independent transfers of a catabolic gene from bacteria to contrasted filamentous eukaryotes. Proc. R. Soc. B. 2014;281:20140848. doi: 10.1098/rspb.2014.0848. PubMed DOI PMC

Casanova-Sáez R., Voß U. Auxin metabolism controls developmental decisions in land plants. Trends Plant Sci. 2019;24:741–754. doi: 10.1016/j.tplants.2019.05.006. PubMed DOI

Enders T.A., Strader L.C. Auxin activity: Past, present, and future. Am. J. Bot. 2015;102:180–196. doi: 10.3732/ajb.1400285. PubMed DOI PMC

Mashiguchi K., Tanaka K., Sakai T., Sugawara S., Kawaide H., Natsume M., Hanada A., Yaeno T., Shirasu K., Yao H., et al. The main auxin biosynthesis pathway in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2011;108:18512–18517. doi: 10.1073/pnas.1108434108. PubMed DOI PMC

Bogner C.W., Kamdem R.S., Sichtermann G., Matthäus C., Holscher D., Popp J., Proksch P., Grundler F.M., Schouten A. Bioactive secondary metabolites with multiple activities from a fungal endophyte. Microb. Biotechnol. 2017;10:175–188. doi: 10.1111/1751-7915.12467. PubMed DOI PMC

Hernández-León R., Rojas-Solís D., Contreras-Pérez M., Orozco-Mosqueda M.d.C., Macías-Rodríguez L.I., Reyes-de la Cruz H., Valencia-Cantero E., Santoyo G. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control. 2015;81:83–92. doi: 10.1016/j.biocontrol.2014.11.011. DOI

Kiziak C., Conradt D., Stolz A., Mattes R., Klein J. Nitrilase from Pseudomonas fluorescens EBC191: Cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology. 2005;151:3639–3648. doi: 10.1099/mic.0.28246-0. PubMed DOI

Abdellatif L., Ben-Mahmoud O.M., Yang C., Hanson K.G., Gan Y., Hamel C. The H2-oxidizing rhizobacteria associated with field-grown lentil promote the growth of lentil inoculated with hup+ Rhizobium through multiple modes of action. J. Plant Growth Regul. 2016;36:348–361. doi: 10.1007/s00344-016-9645-7. DOI

Zhao S., Zhou N., Zhao Z.Y., Zhang K., Wu G.H., Tian C.Y. Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Curr. Microbiol. 2016;73:574–581. doi: 10.1007/s00284-016-1096-7. PubMed DOI

Zhang L.J., Yin B., Wang C., Jiang S.Q., Wang H.L., Yuan Y.A., Wei D.Z. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Syechocystis sp. PCC6803. J. Struct. Biol. 2014;188:93–101. doi: 10.1016/j.jsb.2014.10.003. PubMed DOI

Heinemann U., Engels D., Bürger S., Kiziak C., Mattes R., Stolz A. Cloning of a nitrilase gene from the cyanobacterium Synechocystis sp. strain PCC6803 and heterologous expression and characterization of the encoded protein. Appl. Environ. Microbiol. 2003;69:4359–4366. doi: 10.1128/AEM.69.8.4359-4366.2003. PubMed DOI PMC

Rucká L., Chmátal M., Kulik N., Petrásková L., Pelantová H., Novotný P., Příhodová R., Pátek M., Martínková L. Genetic and functional diversity of nitrilases in Agaricomycotina. Int. J. Mol. Sci. 2019;20:5990. doi: 10.3390/ijms20235990. PubMed DOI PMC

Savory E.A., Fuller S.L., Weisberg A.J., Thomas W.J., Gordon M.I., Stevens D.M., Creason A.L., Belcher M.S., Serdani M., Wiseman M.S., et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. Elife. 2017;6:e30925. doi: 10.7554/eLife.30925. PubMed DOI PMC

Savory E.A., Weisberg A.J., Stevens D.M., Creason A.L., Fuller S.L., Pearce E.M., Chang J.H. Phytopathogenic Rhodococcus have diverse plasmids with few conserved virulence functions. Front. Microbiol. 2020;11:1022. doi: 10.3389/fmicb.2020.01022. PubMed DOI PMC

Vandeputte O., Oden S., Mol A., Vereecke D., Goethals K., El Jaziri M., Prinsen E. Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Appl. Environ. Microbiol. 2005;71:1169–1177. doi: 10.1128/AEM.71.3.1169-1177.2005. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aldoxime dehydratases: production, immobilization, and use in multistep processes

. 2024 Nov 15 ; 108 (1) : 518. [epub] 20241115

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...