Aldoxime dehydratases: production, immobilization, and use in multistep processes
Language English Country Germany Media electronic
Document type Journal Article, Review
Grant support
GF20-23532L
Grantová Agentura České Republiky
I 4607
Austrian Science Fund
CZ.02.01.01/00/22_008/0004597
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO61388971
Mikrobiologický Ústav, Akademie Věd České Republiky
PubMed
39545989
PubMed Central
PMC11568032
DOI
10.1007/s00253-024-13272-6
PII: 10.1007/s00253-024-13272-6
Knihovny.cz E-resources
- Keywords
- Aldoxime dehydratase, Biocatalyst, Immobilization, Multistep reaction, Nitrile synthesis,
- MeSH
- Hydro-Lyases * metabolism genetics MeSH
- Enzymes, Immobilized * metabolism genetics MeSH
- Nitriles * metabolism MeSH
- Oximes metabolism chemistry MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- aldoxime dehydratase MeSH Browser
- Hydro-Lyases * MeSH
- Enzymes, Immobilized * MeSH
- Nitriles * MeSH
- Oximes MeSH
The synthesis of nitriles is of utmost importance for preparative organic chemistry. The classical routes are often associated with disadvantages such as toxicity of the reagents and drastic conditions. The uses of enzymes like aldoxime dehydratases (Oxds) and hydroxynitrile lyases constitute attractive benign alternatives. In this review, we summarize the recent trends regarding Oxds. Thousands of oxd genes were sequenced but less than thirty Oxds were investigated on protein level. We give an overview of these Oxds, their sequence analysis, conditions required for their overexpression, and their purification and assays. We then focus on the use of Oxds especially in multistep reactions combining the chemical or chemoenzymatic synthesis of aldoximes from different starting materials with the enzymatic dehydration of aldoximes to nitriles, possibly followed by the hydration of nitriles to amides. Progress in Oxd immobilization is also highlighted. Based on data published mainly in the last 5 years, we evaluate the industrial prospects of these enzyme processes in comparison with some other innovations in nitrile synthesis. KEY POINTS: • Aldoxime dehydratases (Oxds) are promising for cyanide-free routes to nitriles • A comprehensive overview of wet-lab explored Oxds is provided • Recent trends include combining Oxds with other enzymes or chemical catalysts.
Austrian Centre of Industrial Biotechnology GmbH Krenngasse 37 8010 Graz Austria
Institute of Molecular Biotechnology Graz University of Technology Petersgasse 14 8010 Graz Austria
See more in PubMed
Akhtar R, Zahoor AF, Rasool N, Ahmad M, Ali KG (2022) Recent trends in the chemistry of Sandmeyer reaction: a review. Mol. Divers. 26:1837–1873. 10.1007/s11030-021-10295-3 PubMed PMC
An XD, Yu SY (2015a) Direct synthesis of nitriles from aldehydes using an O-benzoyl hydroxylamine (BHA) as the nitrogen source. Org Lett 17:5064–5067. 10.1021/acs.orglett.5b02547 PubMed
An XD, Yu SY (2015b) Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine. Org Lett 17:2692–2695. 10.1021/acs.orglett.5b01096 PubMed
Anbarasan P, Neumann H, Beller M (2011) A general rhodium-catalyzed cyanation of aryl and alkenyl boronic acids. Angew Chem Int Ed 50:519–522. 10.1002/anie.201006044 PubMed
Betke T, Higuchi J, Rommelmann P, Oike K, Nomura T, Kato Y, Asano Y, Gröger H (2018) Biocatalytic synthesis of nitriles through dehydration of aldoximes: the substrate scope of aldoxime dehydratases. ChemBioChem 19:768–779. 10.1002/cbic.201700571 PubMed
Bhalla TC, Kumar V, Kumar V, Thakur N, Savitri (2018) Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl Biochem Biotechnol 185:925–946. 10.1007/s12010-018-2705-7 PubMed
Chen K (2021) Recent progress on discovery and research of aldoxime dehydratases. Green Synth Catal 2:179–186. 10.1016/j.gresc.2021.04.001
Chen ZJ, Mao FY, Zheng HT, Xiao QJ, Ding ZH, Wang AM, Pei XL (2021) Cyanide-free synthesis of aromatic nitriles from aldoximes: discovery and application of a novel heme-containing aldoxime dehydratase. Enzyme Microb Technol 150:109883. 10.1016/j.enzmictec.2021.109883 PubMed
Chen JR, Zhang YL, Zhang XY, Wen SY, Qiao M, Liu JH, Zhang YY (2024) Kinetic model of asymmetric dehydration of aldoxime catalyzed by immobilized OxdPsp in an organic solvent. Green Chem 26:4065–4073. 10.1039/d4gc00263f
Choi JE, Shinoda S, Inoue R, Zheng DJ, Gröger H, Asano Y (2019) Cyanide-free synthesis of an aromatic nitrile from a biorenewable-based aldoxime: development and application of a recombinant aldoxime dehydratase as a biocatalyst. Biocatal Biotransform 37:414–420. 10.1080/10242422.2019.1591376
Choi JE, Shinoda S, Asano Y, Gröger H (2020) Aldoxime dehydratase mutants as improved biocatalysts for a sustainable synthesis of biorenewables-based 2-furonitrile. Catalysts 10:362. 10.3390/catal10040362
Domínguez de María P (2021) Nitrile synthesis with aldoxime dehydratases: a biocatalytic platform with applications in asymmetric synthesis, bulk chemicals, and biorefineries. Molecules 26:4466. 10.3390/molecules26154466 PubMed PMC
Fiege K, Frankenberg-Dinkel N (2020) Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme‑dependent proteins. Microb Cell Fact 19:190. 10.1186/s12934-020-01447-5 PubMed PMC
Finnigan W, Lubberink M, Hepworth LJ, Citoler J, Mattey AP, Ford GJ, Sangster J, Cosgrove SC, da Costa BZ, Heath RS, Thorpe TW, Yu YQ, Flitsch SL, Turner NJ (2023) RetroBioCat database: a platform for collaborative curation and automated meta-analysis of biocatalysis data. ACS Catal 13:11771–11780. 10.1021/acscatal.3c01418 PubMed PMC
Ganesan M, Nagaraaj P (2020) Recent developments in dehydration of primary amides to nitriles. Org Chem Front 7:3792–3814. 10.1039/d0qo00843e
Gröger H, Asano Y (2020) Cyanide-free enantioselective catalytic strategies for the synthesis of chiral nitriles. J Org Chem 85:6243–6251. 10.1021/acs.joc.9b02773 PubMed
Hinzmann A, Adebar N, Betke T, Leppin M, Gröger H (2019a) Biotransformations in pure organic medium: organic solvent-labile enzymes in the batch and flow synthesis of nitriles. Eur J Org Chem 2019:6911–6916. 10.1002/ejoc.201901168
Hinzmann A, Glinski S, Worm M, Gröger H (2019b) Enzymatic synthesis of aliphatic nitriles at a substrate loading of up to 1.4 kg/L: a biocatalytic record achieved with a heme protein. J Org Chem 84:4867–4872. 10.1021/acs.joc.9b00184 PubMed
Hinzmann A, Stricker M, Gröger H (2020a) Chemoenzymatic cascades toward aliphatic nitriles starting from biorenewable feedstocks. ACS Sustain Chem Eng 8:17088–17096. 10.1021/acssuschemeng.0c04981
Hinzmann A, Stricker M, Gröger H (2020b) Immobilization of aldoxime dehydratases and their use as biocatalysts in aqueous reaction media. Catalysts 10:1073. 10.3390/catal10091073
Hinzmann A, Betke T, Asano Y, Gröger H (2021) Synthetic processes toward nitriles without the use of cyanide: a biocatalytic concept based on dehydration of aldoximes in water. Chemistry 27:5313–5321. 10.1002/chem.202001647 PubMed PMC
Hinzmann M, Yavuzer H, Hinzmann A, Gröger H (2023b) Database-driven in silico-identification and characterization of novel aldoxime dehydratases. J Biotechnol 367:81–88. 10.1016/j.jbiotec.2023.02.007 PubMed
Hinzmann M, Yavuzer H, Bittmann M, Gröger H (2023a) Novel approach toward industrial aromatic nitriles via biocatalysis: from rational enzyme design to sustainable, energy-saving technology platform. Chem Catalysis 3: 100572. 10.1016/j.checat.2023.100572
Holmes IP, Kagan HB (2000a) The asymmetric addition of trimethylsilylcyanide to aldehydes catalysed by anionic chiral nucleophiles. - Part 1. Tetrahedron Lett 41:7453–7456. 10.1016/s0040-4039(00)01275-2
Holmes IP, Kagan HB (2000b) The asymmetric addition of trimethylsilylcyanide to aldehydes catalysed by anionic chiral nucleophiles. Part 2. Tetrahedron Lett 41:7457–7460. 10.1016/s0040-4039(00)01276-4
Horvat M, Winkler M (2020) In vivo reduction of medium- to long-chain fatty acids by carboxylic acid reductase (CAR) enzymes: limitations and solutions. ChemCatChem 12:5076–5090. 10.1002/cctc.202000895
Horvat M, Weilch V, Rädisch R, Hecko S, Schiefer A, Rudroff F, Wilding B, Klempier N, Pátek M, Martínková L, Winkler M (2022) Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime. Catal Sci Technol 12:62–66. 10.1039/d1cy01694f PubMed PMC
Irmisch S, Clavijo McCormick A, Gunther J, Schmidt A, Boeckler GA, Gershenzon J, Unsicker SB, Köllner TG (2014) Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar. Plant J 80:1095–1107. 10.1111/tpj.12711 PubMed
Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner TG (2015) The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation. BMC Plant Biol 15:128. 10.1186/s12870-015-0526-1 PubMed PMC
Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. 10.1093/bioinformatics/8.3.275 PubMed
Kato Y, Asano Y (2005) Purification and characterization of aldoxime dehydratase of the head blight fungus, Fusarium graminearum. Biosci Biotechnol Biochem 69:2254–2257. 10.1271/bbb.69.2254 PubMed
Kato Y, Asano Y (2006) Molecular and enzymatic analysis of the “aldoxime-nitrile pathway” in the glutaronitrile degrader Pseudomonas sp K-9. Appl Microbiol Biotechnol 70:92–101. 10.1007/s00253-005-0044-4 PubMed
Kato Y, Ooi R, Asano Y (1999) A new enzymatic method of nitrile synthesis by Rhodococcus sp. strain YH3-3. J Mol Catal B: Enzym 6:249–256. 10.1016/s1381-1177(98)00080-0
Kato Y, Nakamura K, Sakiyama H, Mayhew SG, Asano Y (2000) Novel heme-containing lyase, phenylacetaldoxime dehydratase from Bacillus sp. strain OxB-1: Purification, characterization, and molecular cloning of the gene. Biochemistry 39:800–809. 10.1021/bi991598u PubMed
Kato Y, Yoshida S, Xie S-X, Asano Y (2004) Aldoxime dehydratase co-existing with nitrile hydratase and amidase in the iron-type nitrile hydratase-producer Rhodococcus sp. N-771. J Biosci Bioeng 97:250–259. 10.1016/s1389-1723(04)70200-5 PubMed
Křístková B, Rädisch R, Kulik N, Horvat M, Rucká L, Grulich M, Rudroff F, Kádek A, Pátek M, Winkler M, Martínková L (2023) Scanning aldoxime dehydratase sequence space and characterization of a new aldoxime dehydratase from Fusarium vanettenii. Enzyme Microb Technol 164:110187. 10.1016/j.enzmictec.2022.110187 PubMed
Křístková B, Martínková L, Rucká L, Kotik M, Kulik N, Rädisch R, Winkler M, Pátek M (2024) Immobilization of aldoxime dehydratases on metal affinity resins and use of the immobilized catalysts for the synthesis of nitriles important in fragrance industry. J Biotechnol 384:12–19. 10.1016/j.jbiotec.2024.02.005 PubMed
Kumano T, Suzuki T, Shimizu S, Kobayashi M (2016) Nitrile-synthesizing enzyme: screening, purification and characterization. J Gen Appl Microbiol 62:167–173. 10.2323/jgam.2016.02.003 PubMed
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. 10.1093/molbev/msy096 PubMed PMC
Li J, Xu W, Ding J, Lee K-H (2016) The application of NCTS (N-cyano-N-phenyl-p-toluenesulfonamide) in palladium-catalyzed cyanation of arenediazonium tetrafluoroborates and aryl halides. Tetrahedron Lett 57:1205–1209
Liu MY, Li SY (2024) Nitrile biosynthesis in nature: how and why? Nat Prod Rep 41:649–671. 10.1039/d3np00028a PubMed
Matsui D, Muraki N, Chen K, Mori T, Ingram AA, Oike K, Gröger H, Aono S, Asano Y (2022) Crystal structural analysis of aldoxime dehydratase from Bacillus sp. OxB-1: importance of surface residues in optimization for crystallization. J Inorg Biochem 230:111770. 10.1016/j.jinorgbio.2022.111770 PubMed
Méndez-Sánchez D, Lavandera I, Gotor V, Gotor-Fernández V (2017) Novel chemoenzymatic oxidation of amines into oximes based on hydrolase-catalysed peracid formation. Org Biomol Chem 15:3196–3201. 10.1039/c7ob00374a PubMed
Miao Y, Metzner R, Asano Y (2017) Kemp elimination catalyzed by naturally occurring aldoxime dehydratases. ChemBioChem 18:451–454. 10.1002/cbic.201600596 PubMed
Mishra V (2020) Affinity tags for protein purification. Curr Protein Pept Sci 21:821–830. 10.2174/1389203721666200606220109 PubMed
Müller AT, Nakamura Y, Reichelt M, Luck K, Cosio E, Lackus ND, Gershenzon J, Mithöfer A, Köllner TG (2024) Biosynthesis, herbivore induction, and defensive role of phenylacetaldoxime glucoside. Plant Physiol 194:329–346. 10.1093/plphys/kiad448 PubMed PMC
Nomura J, Hashimoto H, Ohta T, Hashimoto Y, Wada K, Naruta Y, Oinuma K, Kobayashi M (2013) Crystal structure of aldoxime dehydratase and its catalytic mechanism involved in carbon-nitrogen triple-bond synthesis. Proc Natl Acad Sci U S A 110:2810–2815. 10.1073/pnas.1200338110 PubMed PMC
Oinuma K, Hashimoto Y, Konishi K, Goda M, Noguchi T, Higashibata H, Kobayashi M (2003) Novel aldoxime dehydratase involved in carbon-nitrogen triple bond synthesis of Pseudomonas chlororaphis B23. Sequencing, gene expression, purification, and characterization. J Biol Chem 278:29600–29608. 10.1074/jbc.M211832200 PubMed
Pedras MS, Minic Z, Thongbam PD, Bhaskar V, Montaut S (2010) Indolyl-3-acetaldoxime dehydratase from the phytopathogenic fungus Sclerotinia sclerotiorum: purification, characterization, and substrate specificity. Phytochemistry 71:1952–1962. 10.1016/j.phytochem.2010.10.002 PubMed
Pei XL, Xiao QJ, Feng YM, Chen L, Yang FL, Wang QY, Li NX, Wang AM (2023) Enzymatic properties of a non-classical aldoxime dehydratase capable of producing alkyl and arylalkyl nitriles. Appl Microbiol Biotechnol 107:7089–7104. 10.1007/s00253-023-12767-y PubMed
Plass C, Hinzmann A, Terhorst M, Brauer W, Oike K, Yavuzer H, Asano Y, Vorholt AJ, Betke T, Gröger H (2019) Approaching bulk chemical nitriles from alkenes: a hydrogen cyanide-free approach through a combination of hydroformylation and biocatalysis. ASC Catal 9:5198–5203. 10.1021/acscatal.8b05062
Priya BV, Padhi SK (2023) Hydroxynitrile lyase discovery, engineering, and promiscuity towards asymmetric synthesis: recent progress. Eur J Org Chem 26:202300776. 10.1002/ejoc.202300776
Rädisch R, Chmátal M, Rucká L, Novotný P, Petrásková L, Halada P, Kotik M, Pátek M, Martínková L (2018) Overproduction and characterization of the first enzyme of a new aldoxime dehydratase family in Bradyrhizobium sp. Int J Biol Macromol 115:746–753. 10.1016/j.ijbiomac.2018.04.103 PubMed
Rädisch R, Pátek M, Křístková B, Winkler M, Křen V, Martínková L (2022) Metabolism of aldoximes and nitriles in plant-associated bacteria and its potential in plant-bacteria interactions. Microorganisms 10:549. 10.3390/microorganisms10030549 PubMed PMC
Ramsey IK (2010) Trilostane in dogs. Vet Clin N Am-Small Anim Pract 40:269–283. 10.1016/j.cvsm.2009.10.008 PubMed
Rong YX, Jensen SI, Lindorff-Larsen K, Nielsen AT (2023) Folding of heterologous proteins in bacterial cell factories: cellular mechanisms and engineering strategies. Biotechnol Adv 63:108079. 10.1016/j.biotechadv.2022.108079 PubMed
Sawai H, Sugimoto H, Kato Y, Asano Y, Shiro Y, Aono S (2009) X-ray crystal structure of Michaelis complex of aldoxime dehydratase. J Biol Chem 284:32089–32096. 10.1074/jbc.M109.018762 PubMed PMC
Seth A (2024) Microbial aldoxime dehydratase enzymes and nitrile biosynthesis. In: Seth A, Mehta PK (eds) The Chemistry of Nitriles. Nova Science Publishers Inc, New York, pp 15–29
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. 10.1101/gr.1239303 PubMed PMC
Sørensen M, Neilson EHJ, Møller BL (2018) Oximes: unrecognized chameleons in general and specialized plant metabolism. Mol Plant 11:95–117. 10.1016/j.molp.2017.12.014 PubMed
Soumya PK, Vaishak TB, Saranya S, Anilkumar G (2021) Recent advances in the rhodium-catalyzed cyanation reactions. Appl Organomet Chem 35:6340. 10.1002/aoc.6340
Su W, Gong TJ, Xiao B, Fu Y (2015) Rhodium(III)-catalyzed cyanation of vinylic C-H bonds: N-cyano-N-phenyl-p-toluenesulfonamide as a cyanation reagent. Chem Commun 51:11848–11851. 10.1039/c4cc09790d PubMed
Terhorst M, Plass C, Hinzmann A, Guntermann A, Jolmes T, Rösler J, Panke D, Gröger H, Vogt D, Vorholt AJ, Seidensticker T (2020) One-pot synthesis of aldoximes from alkenes via Rh-catalysed hydroformylation in an aqueous solvent system. Green Chem 22:7974–7982. 10.1039/d0gc03141k
Winkler M, Ling JG (2022) Biocatalytic carboxylate reduction – recent advances and new enzymes. ChemCatChem 14:202200441. 10.1002/cctc.202200441
Winkler M, Dokulil K, Weber H, Pavkov-Keller T, Wilding B (2015) The nitrile-forming enzyme 7-cyano-7-deazaguanine synthase from Geobacillus kaustophilus: a reverse nitrilase? ChemBioChem 16:2373–2378. 10.1002/cbic.201500335 PubMed
Winkler M, Horvat M, Schiefer A, Weilch V, Rudroff F, Pátek M, Martínková L (2023) Organic acid to nitrile: a chemoenzymatic three-step route. Adv Synth Catal 365:37–42. 10.1002/adsc.202201053 PubMed PMC
Xiao QJ, Feng YM, Chen L, Li M, Zhang PF, Wang QY, Wang AM, Pei XL (2023) Engineered aldoxime dehydratase to enable the chemoenzymatic conversion of benzyl amines to aromatic nitriles. Bioorg Chem 134:106468. 10.1016/j.bioorg.2023.106468 PubMed
Xie SX, Kato Y, Asano Y (2001) High yield synthesis of nitriles by a new enzyme, phenylacetaldoxime dehydratase, from Bacillus sp strain OxB-1. Biosci Biotechnol Biochem 65:2666–2672. 10.1271/bbb.65.2666 PubMed
Xie SX, Kato Y, Komeda H, Yoshida S, Asano Y (2003) A gene cluster responsible for alkylaldoxime metabolism coexisting with nitrile hydratase and amidase in Rhodococcusgloberulus A-4. Biochemistry 42:12056–12066. 10.1021/bi035092u PubMed
Yamaguchi T (2024) Exploration and utilization of novel aldoxime, nitrile, and nitro compounds metabolizing enzymes from plants and arthropods. Biosci Biotechnol Biochem 88:138–146. 10.1093/bbb/zbad168 PubMed
Yamaguchi T, Asano Y (2024) Nitrile-synthesizing enzymes and biocatalytic synthesis of volatile nitrile compounds: a review. J Biotechnol 384:20–28. 10.1016/j.jbiotec.2024.02.007 PubMed
Yavuzer H, Asano Y, Gröger H (2021) Rationalizing the unprecedented stereochemistry of an enzymatic nitrile synthesis through a combined computational and experimental approach. Angew Chem Int Ed 60:19162–19168. 10.1002/anie.202017234 PubMed PMC
Yavuzer H, Yang J, Gröger H (2023) Rational biocatalyst design for a cyanide-free synthesis of long-chain fatty nitriles from their aldoximes. Lipid Sci Technol 125:2200177. 10.1002/ejlt.202200177
Zallot R, Oberg N, Gerlt JA (2019) The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58:4169–4182. 10.1021/acs.biochem.9b00735 PubMed PMC
Zheng D, Asano Y (2020) Biocatalytic asymmetric ring-opening of dihydroisoxazoles: a cyanide-free route to complementary enantiomers of β-hydroxy nitriles from olefins. Green Chem 22:4930–4936. 10.1039/d0gc01445a
Zheng D, Asano Y (2021) A cyanide-free biocatalytic process for synthesis of complementary enantiomers of 4-chloro-3-hydroxybutanenitrile from allyl chloride. ChemCatChem 13:4237–4242. 10.1002/cctc.202100835
Zheng HT, Xiao QJ, Mao FY, Wang AM, Li M, Wang QY, Zhang PF, Pei XL (2022) Programing a cyanide-free transformation of aldehydes to nitriles and one-pot synthesis of amides through tandem chemo-enzymatic cascades. RSC Adv 12:17873–17881. 10.1039/d2ra03256b PubMed PMC