Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38935624
PubMed Central
PMC11247488
DOI
10.1021/acs.jpca.4c02756
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The accommodation of an excess electron by polycyclic aromatic hydrocarbons (PAHs) has important chemical and technological implications ranging from molecular electronics to charge balance in interstellar molecular clouds. Here, we use two-dimensional photoelectron spectroscopy and equation-of-motion coupled-cluster calculations of the radical anions of acridine (C13H9N-) and phenazine (C12H8N2-) and compare our results for these species to those for the anthracene anion (C14H10-). The calculations predict the observed resonances and additionally find low-energy two-particle-one-hole states, which are not immediately apparent in the spectra, and offer a slightly revised interpretation of the resonances in anthracene. The study of acridine and phenazine allows us to understand how N atom substitution affects electron accommodation. While the electron affinity associated with the ground state anion undergoes a sizable increase with the successive substitution of N atoms, the two lowest energy excited anion states are not affected significantly by the substitution. The net result is that there is an increase in the energy gap between the two lowest energy resonances and the bound ground electronic state of the radical anion from anthracene to acridine to phenazine. Based on an energy gap law for the rate of internal conversion, this increased gap makes ground state formation progressively less likely, as evidenced by the photoelectron spectra.
Department of Chemistry Durham University Durham DH1 3LE U K
Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania 15260 United States
Zobrazit více v PubMed
Flood A. H.; Stoddart J. F.; Steuerman D. W.; Heath J. R. Whence Molecular Electronics?. Science 2004, 306 (5704), 2055–2056. 10.1126/science.1106195. PubMed DOI
Heath J. R. Molecular Electronics. Annu. Rev. Mater. Res. 2009, 39 (1), 1–23. 10.1146/annurev-matsci-082908-145401. DOI
Petty M. C.; Nagase T.; Suzuki H.; Naito H.. Molecular Electronics. In Springer Handbook of Electronic and Photonic Materials; Kasap S.; Capper P., Eds.; Springer Handbooks; Springer International Publishing: Cham, 2017; pp 1–1.
Omont A. Physics and Chemistry of Interstellar Polycyclic Aromatic Molecules. Astron. Astrophys. 1986, 164, 159–178.
Lepp S.; Dalgarno A. Polycyclic Aromatic Hydrocarbons in Interstellar Chemistry. Astrophys. J. 1988, 324, 553–556. 10.1086/165915. DOI
Allamandola L. J.; Tielens A. G. G. M.; Barker J. R. Interstellar Polycyclic Aromatic Hydrocarbons - The Infrared Emission Bands, the Excitation/Emission Mechanism, and the Astrophysical Implications. Astrophys. J. Suppl. Ser. 1989, 71, 733–775. 10.1086/191396. PubMed DOI
Wakelam V.; Herbst E. Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry. Astrophys. J. 2008, 680, 371–383. 10.1086/587734. DOI
Hudgins D. M.; Bauschlicher C. W.; Allamandola L. J. Variations in the Peak Position of the 6.2 Μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population. Astrophys. J. 2005, 632 (1), 316.10.1086/432495. DOI
Tielens A. G. G. M. The Molecular Universe. Rev. Mod. Phys. 2013, 85 (3), 1021–1081. 10.1103/RevModPhys.85.1021. DOI
McCarthy M. C.; McGuire B. A. Aromatics and Cyclic Molecules in Molecular Clouds: A New Dimension of Interstellar Organic Chemistry. J. Phys. Chem. A 2021, 125 (16), 3231–3243. 10.1021/acs.jpca.1c00129. PubMed DOI
McGuire B. A. 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. Astrophys. J. Suppl. Ser. 2022, 259 (2), 30.10.3847/1538-4365/ac2a48. DOI
Schiedt J.; Weinkauf R. photodetachment Photoelectron Spectroscopy of Mass Selected Anions: Anthracene and the Anthracene-H2O Cluster. Chem. Phys. Lett. 1997, 266 (1–2), 201–205. 10.1016/S0009-2614(96)01512-6. DOI
Ando N.; Mitsui M.; Nakajima A. Comprehensive Photoelectron Spectroscopic Study of Anionic Clusters of Anthracene and Its Alkyl Derivatives: Electronic Structures Bridging Molecules to Bulk. J. Chem. Phys. 2007, 127 (23), 234305.10.1063/1.2805185. PubMed DOI
Kregel S. J.; Thurston G. K.; Garand E. Photoelectron Spectroscopy of Anthracene and Fluoranthene Radical Anions. J. Chem. Phys. 2018, 148 (23), 234306.10.1063/1.5036757. PubMed DOI
Schulz G. J. Resonances in Electron Impact on Diatomic Molecules. Rev. Mod. Phys. 1973, 45 (3), 423–486. 10.1103/RevModPhys.45.423. DOI
Jordan K. D.; Burrow P. D. Temporary Anion States of Polyatomic Hydrocarbons. Chem. Rev. 1987, 87 (3), 557–588. 10.1021/cr00079a005. DOI
Horke D. A.; Li Q.; Blancafort L.; Verlet J. R. R. Ultrafast Above-Threshold Dynamics of the Radical Anion of a Prototypical Quinone Electron-Acceptor. Nat. Chem. 2013, 5 (8), 711–717. 10.1038/nchem.1705. PubMed DOI
Campbell E. E. B.; Levine R. D. Delayed Ionization and Fragmentation En Route to Thermionic Emission: Statistics and Dynamics. Annu. Rev. Phys. Chem. 2000, 51 (1), 65–98. 10.1146/annurev.physchem.51.1.65. PubMed DOI
Sanche L.; Schulz G. J. Electron Transmission Spectroscopy: Resonances in Triatomic Molecules and Hydrocarbons. J. Chem. Phys. 1973, 58 (2), 479–493. 10.1063/1.1679228. DOI
Allan M. Study of Triplet States and Short-Lived Negative Ions by Means of Electron Impact Spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1989, 48 (2), 219–351. 10.1016/0368-2048(89)80018-0. DOI
Regeta K.; Allan M. Autodetachment Dynamics of Acrylonitrile Anion Revealed by Two-Dimensional Electron Impact Spectra. Phys. Rev. Lett. 2013, 110 (20), 20320110.1103/PhysRevLett.110.203201. PubMed DOI
Allan M.; Regeta K.; Gorfinkiel J. D.; Mašín Z.; Grimme S.; Bannwarth C. Recent Research Directions in Fribourg: Nuclear Dynamics in Resonances Revealed by 2-Dimensional EEL Spectra, Electron Collisions with Ionic Liquids and Electronic Excitation of Pyrimidine. Eur. Phys. J. D 2016, 70 (5), 123.10.1140/epjd/e2016-70153-2. DOI
Anstöter C. S.; Mensa-Bonsu G.; Nag P.; Ranković M.; Ragesh Kumar R.; Boichenko A. N.; Bochenkova A. V.; Fedor J.; Verlet J. R. R. Mode-Specific Vibrational Autodetachment Following Excitation of Electronic Resonances by Electrons and Photons. Phys. Rev. Lett. 2020, 124 (20), 20340110.1103/PhysRevLett.124.203401. PubMed DOI
Dvořák J.; Ranković M.; Houfek K.; Nag P.; Čurík R.; Fedor J.; Čížek M. Vibronic Coupling through the Continuum in the e+CO_{2} System. Phys. Rev. Lett. 2022, 129 (1), 01340110.1103/PhysRevLett.129.013401. PubMed DOI
West C. W.; Bull J. N.; Antonkov E.; Verlet J. R. R. Anion Resonances of Para-Benzoquinone Probed by Frequency-Resolved Photoelectron Imaging. J. Phys. Chem. A 2014, 118 (48), 11346–11354. 10.1021/jp509102p. PubMed DOI
Anstöter C. S.; Bull J. N.; Verlet J. R. R. Ultrafast Dynamics of Temporary Anions Probed through the Prism of photodetachment. Int. Rev. Phys. Chem. 2016, 35 (4), 509–538. 10.1080/0144235X.2016.1203522. DOI
Stanley L. H.; Anstöter C. S.; Verlet J. R. R. Resonances of the Anthracenyl Anion Probed by Frequency-Resolved Photoelectron Imaging of Collision-Induced Dissociated Anthracene Carboxylic Acid. Chem. Sci. 2017, 8 (4), 3054–3061. 10.1039/C6SC05405F. PubMed DOI PMC
Mensa-Bonsu G.; Lietard A.; Tozer D. J.; Verlet J. R. R. Low Energy Electron Impact Resonances of Anthracene Probed by 2D Photoelectron Imaging of Its Radical Anion. J. Chem. Phys. 2020, 152 (17), 174303.10.1063/5.0007470. PubMed DOI
Lietard A.; Verlet J. R. R.; Slimak S.; Jordan K. D. Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. J. Phys. Chem. A 2021, 125 (32), 7004–7013. 10.1021/acs.jpca.1c05586. PubMed DOI
Eppink A. T. J. B.; Parker D. H. Velocity Map Imaging of Ions and Electrons Using Electrostatic Lenses: Application in Photoelectron and Photofragment Ion Imaging of Molecular Oxygen. Rev. Sci. Instrum. 1997, 68 (9), 3477–3484. 10.1063/1.1148310. DOI
Reid K. L. Photoelectron Angular Distributions. Annu. Rev. Phys. Chem. 2003, 54 (1), 397–424. 10.1146/annurev.physchem.54.011002.103814. PubMed DOI
Sanov A. Laboratory-Frame Photoelectron Angular Distributions in Anion photodetachment: Insight into Electronic Structure and Intermolecular Interactions. Annu. Rev. Phys. Chem. 2014, 65 (1), 341–363. 10.1146/annurev-physchem-040513-103656. PubMed DOI
Jagau T.-C. Theory of Electronic Resonances: Fundamental Aspects and Recent Advances. Chem. Commun. 2022, 58 (34), 5205–5224. 10.1039/D1CC07090H. PubMed DOI
Stanton J. F.; Gauss J. Analytic Energy Derivatives for Ionized States Described by the Equation-of-motion Coupled Cluster Method. J. Chem. Phys. 1994, 101 (10), 8938–8944. 10.1063/1.468022. DOI
Nooijen M.; Bartlett R. J. Equation of Motion Coupled Cluster Method for Electron Attachment. J. Chem. Phys. 1995, 102 (9), 3629–3647. 10.1063/1.468592. DOI
Hazi A. U.; Taylor H. S. Stabilization Method of Calculating Resonance Energies: Model Problem. Phys. Rev. A 1970, 1 (4), 1109–1120. 10.1103/PhysRevA.1.1109. DOI
Falcetta M. F.; DiFalco L. A.; Ackerman D. S.; Barlow J. C.; Jordan K. D. Assessment of Various Electronic Structure Methods for Characterizing Temporary Anion States: Application to the Ground State Anions of N2, C2H2, C2H4, and C6H6. J. Phys. Chem. A 2014, 118 (35), 7489–7497. 10.1021/jp5003287. PubMed DOI
Buschow K. H. J.; Hoijtink G. J. Electronic Transitions of Some Polyacene Mononegative and Dinegative Ions. J. Chem. Phys. 1964, 40 (9), 2501–2504. 10.1063/1.1725554. DOI
Shida T.; Iwata S. Absorption Spectra of Dianthracene Anion Radical and Anthracene Dimer Anion. J. Chem. Phys. 1972, 56 (6), 2858–2864. 10.1063/1.1677618. DOI
Shida T.; Iwata S. Electronic Spectra of Ion Radicals and Their Molecular Orbital Interpretation. III. Aromatic Hydrocarbons. J. Am. Chem. Soc. 1973, 95 (11), 3473–3483. 10.1021/ja00792a005. DOI
Burrow P. D.; Michejda J. A.; Jordan K. D. Electron Transmission Study of the Temporary Negative Ion States of Selected Benzenoid and Conjugated Aromatic Hydrocarbons. J. Chem. Phys. 1987, 86 (1), 9–24. 10.1063/1.452598. DOI
Song J. K.; Lee N. K.; Kim J. H.; Han S. Y.; Kim S. K. Anion Clusters of Anthracene, Ann– (N = 1–16). J. Chem. Phys. 2003, 119 (6), 3071–3077. 10.1063/1.1589743. DOI
Jalehdoost A.; von Issendorff B. Photon Energy Dependence of the Photoelectron Spectra of the Anthracene Anion: On the Influence of Autodetaching States. J. Chem. Phys. 2023, 158 (19), 194302.10.1063/5.0145038. PubMed DOI
Kokubo S.; Ando N.; Koyasu K.; Mitsui M.; Nakajima A. Negative Ion Photoelectron Spectroscopy of acridine Molecular Anion and Its Monohydrate. J. Chem. Phys. 2004, 121 (22), 11112–11117. 10.1063/1.1818132. PubMed DOI
Castro K. P.; Clikeman T. T.; DeWeerd N. J.; Bukovsky E. V.; Rippy K. C.; Kuvychko I. V.; Hou G.-L.; Chen Y.-S.; Wang X.-B.; Strauss S. H.; Boltalina O. V. Incremental Tuning Up of Fluorous Phenazine Acceptors. Chem. – Eur. J. 2016, 22 (12), 3930–3936. 10.1002/chem.201504122. PubMed DOI
Lietard A.; Mensa-Bonsu G.; Verlet J. R. R. The Effect of Solvation on Electron Capture Revealed Using Anion Two-Dimensional Photoelectron Spectroscopy. Nat. Chem. 2021, 13, 737–742. 10.1038/s41557-021-00687-1. PubMed DOI
Rogers J. P.; Anstöter C. S.; Bull J. N.; Curchod B. F. E.; Verlet J. R. R. Photoelectron Spectroscopy of the Hexafluorobenzene Cluster Anions: (C6F6)n– (n = 1–5) and I–(C6F6). J. Phys. Chem. A 2019, 123 (8), 1602–1612. 10.1021/acs.jpca.8b11627. PubMed DOI
Even U. The Even-Lavie Valve as a Source for High Intensity Supersonic Beam. EPJ. Technol. Instrum. 2015, 2 (1), 1–22. 10.1140/epjti/s40485-015-0027-5. DOI
Wiley W. C.; McLaren I. H. Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955, 26 (12), 1150–1157. 10.1063/1.1715212. DOI
Roberts G. M.; Nixon J. L.; Lecointre J.; Wrede E.; Verlet J. R. R. Toward Real-Time Charged-Particle Image Reconstruction Using Polar Onion-Peeling. Rev. Sci. Instrum. 2009, 80 (5), 05310410.1063/1.3126527. PubMed DOI
Dunning T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90 (2), 1007–1023. 10.1063/1.456153. DOI
Jordan K. D. Construction of Potential Energy Curves in Avoided Crossing Situations. Chem. Phys. 1975, 9 (1), 199–204. 10.1016/0301-0104(75)80130-3. DOI
Isaacson A. D.; Truhlar D. G. Single-Root, Real-Basis-Function Method with Correct Branch-Point Structure for Complex Resonances Energies. Chem. Phys. Lett. 1984, 110 (2), 130–134. 10.1016/0009-2614(84)80161-X. DOI
Becke A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37 (2), 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Vosko S. H.; Wilk L.; Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58 (8), 1200–1211. 10.1139/p80-159. DOI
Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
Jagau T.-C.; Dao D. B.; Holtgrewe N. S.; Krylov A. I.; Mabbs R. Same but Different: Dipole-Stabilized Shape Resonances in CuF– and AgF–. J. Phys. Chem. Lett. 2015, 6 (14), 2786–2793. 10.1021/acs.jpclett.5b01174. PubMed DOI
Bull J. N.; West C. W.; Verlet J. R. R. On the Formation of Anions: Frequency-, Angle-, and Time-Resolved Photoelectron Imaging of the Menadione Radical Anion. Chem. Sci. 2015, 6 (2), 1578–1589. 10.1039/C4SC03491K. PubMed DOI PMC
Hart C. A.; Schlimgen A. W.; Dao D. B.; Head-Marsden K.; Mabbs R. The Overlooked Role of Excited Anion States in NiO2–photodetachment. J. Chem. Phys. 2024, 160 (4), 04430410.1063/5.0188066. PubMed DOI
Sagan C. R.; Anstöter C. S.; Thodika M.; Wilson K. D.; Matsika S.; Garand E. Spectroscopy and Theoretical Modeling of Tetracene Anion Resonances. J. Phys. Chem. Lett. 2022, 13 (44), 10245–10252. 10.1021/acs.jpclett.2c02931. PubMed DOI
Lietard A.; Verlet J. R. R. Effect of Microhydration on the Temporary Anion States of Pyrene. J. Phys. Chem. Lett. 2022, 13 (16), 3529–3533. 10.1021/acs.jpclett.2c00523. PubMed DOI PMC
Cooper G. A.; Clarke C. J.; Verlet J. R. R. Low-Energy Shape Resonances of a Nucleobase in Water. J. Am. Chem. Soc. 2023, 145 (2), 1319–1326. 10.1021/jacs.2c11440. PubMed DOI PMC
Andersen J. U.; Bonderup E.; Hansen K. Thermionic Emission from Clusters. J. Phys. B: At. Mol. Opt. Phys. 2002, 35 (5), R1.10.1088/0953-4075/35/5/201. DOI
Adams C. L.; Hansen K.; Weber J. M. Vibrational Autodetachment from Anionic Nitroalkane Chains: From Molecular Signatures to Thermionic Emission. J. Phys. Chem. A 2019, 123 (40), 8562–8570. 10.1021/acs.jpca.9b07780. PubMed DOI