Effect of N Atom Substitution on Electronic Resonances: A 2D Photoelectron Spectroscopic and Computational Study of Anthracene, Acridine, and Phenazine Anions

. 2024 Jul 11 ; 128 (27) : 5321-5330. [epub] 20240627

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38935624

The accommodation of an excess electron by polycyclic aromatic hydrocarbons (PAHs) has important chemical and technological implications ranging from molecular electronics to charge balance in interstellar molecular clouds. Here, we use two-dimensional photoelectron spectroscopy and equation-of-motion coupled-cluster calculations of the radical anions of acridine (C13H9N-) and phenazine (C12H8N2-) and compare our results for these species to those for the anthracene anion (C14H10-). The calculations predict the observed resonances and additionally find low-energy two-particle-one-hole states, which are not immediately apparent in the spectra, and offer a slightly revised interpretation of the resonances in anthracene. The study of acridine and phenazine allows us to understand how N atom substitution affects electron accommodation. While the electron affinity associated with the ground state anion undergoes a sizable increase with the successive substitution of N atoms, the two lowest energy excited anion states are not affected significantly by the substitution. The net result is that there is an increase in the energy gap between the two lowest energy resonances and the bound ground electronic state of the radical anion from anthracene to acridine to phenazine. Based on an energy gap law for the rate of internal conversion, this increased gap makes ground state formation progressively less likely, as evidenced by the photoelectron spectra.

Zobrazit více v PubMed

Flood A. H.; Stoddart J. F.; Steuerman D. W.; Heath J. R. Whence Molecular Electronics?. Science 2004, 306 (5704), 2055–2056. 10.1126/science.1106195. PubMed DOI

Heath J. R. Molecular Electronics. Annu. Rev. Mater. Res. 2009, 39 (1), 1–23. 10.1146/annurev-matsci-082908-145401. DOI

Petty M. C.; Nagase T.; Suzuki H.; Naito H.. Molecular Electronics. In Springer Handbook of Electronic and Photonic Materials; Kasap S.; Capper P., Eds.; Springer Handbooks; Springer International Publishing: Cham, 2017; pp 1–1.

Omont A. Physics and Chemistry of Interstellar Polycyclic Aromatic Molecules. Astron. Astrophys. 1986, 164, 159–178.

Lepp S.; Dalgarno A. Polycyclic Aromatic Hydrocarbons in Interstellar Chemistry. Astrophys. J. 1988, 324, 553–556. 10.1086/165915. DOI

Allamandola L. J.; Tielens A. G. G. M.; Barker J. R. Interstellar Polycyclic Aromatic Hydrocarbons - The Infrared Emission Bands, the Excitation/Emission Mechanism, and the Astrophysical Implications. Astrophys. J. Suppl. Ser. 1989, 71, 733–775. 10.1086/191396. PubMed DOI

Wakelam V.; Herbst E. Polycyclic Aromatic Hydrocarbons in Dense Cloud Chemistry. Astrophys. J. 2008, 680, 371–383. 10.1086/587734. DOI

Hudgins D. M.; Bauschlicher C. W.; Allamandola L. J. Variations in the Peak Position of the 6.2 Μm Interstellar Emission Feature: A Tracer of N in the Interstellar Polycyclic Aromatic Hydrocarbon Population. Astrophys. J. 2005, 632 (1), 316.10.1086/432495. DOI

Tielens A. G. G. M. The Molecular Universe. Rev. Mod. Phys. 2013, 85 (3), 1021–1081. 10.1103/RevModPhys.85.1021. DOI

McCarthy M. C.; McGuire B. A. Aromatics and Cyclic Molecules in Molecular Clouds: A New Dimension of Interstellar Organic Chemistry. J. Phys. Chem. A 2021, 125 (16), 3231–3243. 10.1021/acs.jpca.1c00129. PubMed DOI

McGuire B. A. 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. Astrophys. J. Suppl. Ser. 2022, 259 (2), 30.10.3847/1538-4365/ac2a48. DOI

Schiedt J.; Weinkauf R. photodetachment Photoelectron Spectroscopy of Mass Selected Anions: Anthracene and the Anthracene-H2O Cluster. Chem. Phys. Lett. 1997, 266 (1–2), 201–205. 10.1016/S0009-2614(96)01512-6. DOI

Ando N.; Mitsui M.; Nakajima A. Comprehensive Photoelectron Spectroscopic Study of Anionic Clusters of Anthracene and Its Alkyl Derivatives: Electronic Structures Bridging Molecules to Bulk. J. Chem. Phys. 2007, 127 (23), 234305.10.1063/1.2805185. PubMed DOI

Kregel S. J.; Thurston G. K.; Garand E. Photoelectron Spectroscopy of Anthracene and Fluoranthene Radical Anions. J. Chem. Phys. 2018, 148 (23), 234306.10.1063/1.5036757. PubMed DOI

Schulz G. J. Resonances in Electron Impact on Diatomic Molecules. Rev. Mod. Phys. 1973, 45 (3), 423–486. 10.1103/RevModPhys.45.423. DOI

Jordan K. D.; Burrow P. D. Temporary Anion States of Polyatomic Hydrocarbons. Chem. Rev. 1987, 87 (3), 557–588. 10.1021/cr00079a005. DOI

Horke D. A.; Li Q.; Blancafort L.; Verlet J. R. R. Ultrafast Above-Threshold Dynamics of the Radical Anion of a Prototypical Quinone Electron-Acceptor. Nat. Chem. 2013, 5 (8), 711–717. 10.1038/nchem.1705. PubMed DOI

Campbell E. E. B.; Levine R. D. Delayed Ionization and Fragmentation En Route to Thermionic Emission: Statistics and Dynamics. Annu. Rev. Phys. Chem. 2000, 51 (1), 65–98. 10.1146/annurev.physchem.51.1.65. PubMed DOI

Sanche L.; Schulz G. J. Electron Transmission Spectroscopy: Resonances in Triatomic Molecules and Hydrocarbons. J. Chem. Phys. 1973, 58 (2), 479–493. 10.1063/1.1679228. DOI

Allan M. Study of Triplet States and Short-Lived Negative Ions by Means of Electron Impact Spectroscopy. J. Electron Spectrosc. Relat. Phenom. 1989, 48 (2), 219–351. 10.1016/0368-2048(89)80018-0. DOI

Regeta K.; Allan M. Autodetachment Dynamics of Acrylonitrile Anion Revealed by Two-Dimensional Electron Impact Spectra. Phys. Rev. Lett. 2013, 110 (20), 20320110.1103/PhysRevLett.110.203201. PubMed DOI

Allan M.; Regeta K.; Gorfinkiel J. D.; Mašín Z.; Grimme S.; Bannwarth C. Recent Research Directions in Fribourg: Nuclear Dynamics in Resonances Revealed by 2-Dimensional EEL Spectra, Electron Collisions with Ionic Liquids and Electronic Excitation of Pyrimidine. Eur. Phys. J. D 2016, 70 (5), 123.10.1140/epjd/e2016-70153-2. DOI

Anstöter C. S.; Mensa-Bonsu G.; Nag P.; Ranković M.; Ragesh Kumar R.; Boichenko A. N.; Bochenkova A. V.; Fedor J.; Verlet J. R. R. Mode-Specific Vibrational Autodetachment Following Excitation of Electronic Resonances by Electrons and Photons. Phys. Rev. Lett. 2020, 124 (20), 20340110.1103/PhysRevLett.124.203401. PubMed DOI

Dvořák J.; Ranković M.; Houfek K.; Nag P.; Čurík R.; Fedor J.; Čížek M. Vibronic Coupling through the Continuum in the e+CO_{2} System. Phys. Rev. Lett. 2022, 129 (1), 01340110.1103/PhysRevLett.129.013401. PubMed DOI

West C. W.; Bull J. N.; Antonkov E.; Verlet J. R. R. Anion Resonances of Para-Benzoquinone Probed by Frequency-Resolved Photoelectron Imaging. J. Phys. Chem. A 2014, 118 (48), 11346–11354. 10.1021/jp509102p. PubMed DOI

Anstöter C. S.; Bull J. N.; Verlet J. R. R. Ultrafast Dynamics of Temporary Anions Probed through the Prism of photodetachment. Int. Rev. Phys. Chem. 2016, 35 (4), 509–538. 10.1080/0144235X.2016.1203522. DOI

Stanley L. H.; Anstöter C. S.; Verlet J. R. R. Resonances of the Anthracenyl Anion Probed by Frequency-Resolved Photoelectron Imaging of Collision-Induced Dissociated Anthracene Carboxylic Acid. Chem. Sci. 2017, 8 (4), 3054–3061. 10.1039/C6SC05405F. PubMed DOI PMC

Mensa-Bonsu G.; Lietard A.; Tozer D. J.; Verlet J. R. R. Low Energy Electron Impact Resonances of Anthracene Probed by 2D Photoelectron Imaging of Its Radical Anion. J. Chem. Phys. 2020, 152 (17), 174303.10.1063/5.0007470. PubMed DOI

Lietard A.; Verlet J. R. R.; Slimak S.; Jordan K. D. Temporary Anion Resonances of Pyrene: A 2D Photoelectron Imaging and Computational Study. J. Phys. Chem. A 2021, 125 (32), 7004–7013. 10.1021/acs.jpca.1c05586. PubMed DOI

Eppink A. T. J. B.; Parker D. H. Velocity Map Imaging of Ions and Electrons Using Electrostatic Lenses: Application in Photoelectron and Photofragment Ion Imaging of Molecular Oxygen. Rev. Sci. Instrum. 1997, 68 (9), 3477–3484. 10.1063/1.1148310. DOI

Reid K. L. Photoelectron Angular Distributions. Annu. Rev. Phys. Chem. 2003, 54 (1), 397–424. 10.1146/annurev.physchem.54.011002.103814. PubMed DOI

Sanov A. Laboratory-Frame Photoelectron Angular Distributions in Anion photodetachment: Insight into Electronic Structure and Intermolecular Interactions. Annu. Rev. Phys. Chem. 2014, 65 (1), 341–363. 10.1146/annurev-physchem-040513-103656. PubMed DOI

Jagau T.-C. Theory of Electronic Resonances: Fundamental Aspects and Recent Advances. Chem. Commun. 2022, 58 (34), 5205–5224. 10.1039/D1CC07090H. PubMed DOI

Stanton J. F.; Gauss J. Analytic Energy Derivatives for Ionized States Described by the Equation-of-motion Coupled Cluster Method. J. Chem. Phys. 1994, 101 (10), 8938–8944. 10.1063/1.468022. DOI

Nooijen M.; Bartlett R. J. Equation of Motion Coupled Cluster Method for Electron Attachment. J. Chem. Phys. 1995, 102 (9), 3629–3647. 10.1063/1.468592. DOI

Hazi A. U.; Taylor H. S. Stabilization Method of Calculating Resonance Energies: Model Problem. Phys. Rev. A 1970, 1 (4), 1109–1120. 10.1103/PhysRevA.1.1109. DOI

Falcetta M. F.; DiFalco L. A.; Ackerman D. S.; Barlow J. C.; Jordan K. D. Assessment of Various Electronic Structure Methods for Characterizing Temporary Anion States: Application to the Ground State Anions of N2, C2H2, C2H4, and C6H6. J. Phys. Chem. A 2014, 118 (35), 7489–7497. 10.1021/jp5003287. PubMed DOI

Buschow K. H. J.; Hoijtink G. J. Electronic Transitions of Some Polyacene Mononegative and Dinegative Ions. J. Chem. Phys. 1964, 40 (9), 2501–2504. 10.1063/1.1725554. DOI

Shida T.; Iwata S. Absorption Spectra of Dianthracene Anion Radical and Anthracene Dimer Anion. J. Chem. Phys. 1972, 56 (6), 2858–2864. 10.1063/1.1677618. DOI

Shida T.; Iwata S. Electronic Spectra of Ion Radicals and Their Molecular Orbital Interpretation. III. Aromatic Hydrocarbons. J. Am. Chem. Soc. 1973, 95 (11), 3473–3483. 10.1021/ja00792a005. DOI

Burrow P. D.; Michejda J. A.; Jordan K. D. Electron Transmission Study of the Temporary Negative Ion States of Selected Benzenoid and Conjugated Aromatic Hydrocarbons. J. Chem. Phys. 1987, 86 (1), 9–24. 10.1063/1.452598. DOI

Song J. K.; Lee N. K.; Kim J. H.; Han S. Y.; Kim S. K. Anion Clusters of Anthracene, Ann– (N = 1–16). J. Chem. Phys. 2003, 119 (6), 3071–3077. 10.1063/1.1589743. DOI

Jalehdoost A.; von Issendorff B. Photon Energy Dependence of the Photoelectron Spectra of the Anthracene Anion: On the Influence of Autodetaching States. J. Chem. Phys. 2023, 158 (19), 194302.10.1063/5.0145038. PubMed DOI

Kokubo S.; Ando N.; Koyasu K.; Mitsui M.; Nakajima A. Negative Ion Photoelectron Spectroscopy of acridine Molecular Anion and Its Monohydrate. J. Chem. Phys. 2004, 121 (22), 11112–11117. 10.1063/1.1818132. PubMed DOI

Castro K. P.; Clikeman T. T.; DeWeerd N. J.; Bukovsky E. V.; Rippy K. C.; Kuvychko I. V.; Hou G.-L.; Chen Y.-S.; Wang X.-B.; Strauss S. H.; Boltalina O. V. Incremental Tuning Up of Fluorous Phenazine Acceptors. Chem. – Eur. J. 2016, 22 (12), 3930–3936. 10.1002/chem.201504122. PubMed DOI

Lietard A.; Mensa-Bonsu G.; Verlet J. R. R. The Effect of Solvation on Electron Capture Revealed Using Anion Two-Dimensional Photoelectron Spectroscopy. Nat. Chem. 2021, 13, 737–742. 10.1038/s41557-021-00687-1. PubMed DOI

Rogers J. P.; Anstöter C. S.; Bull J. N.; Curchod B. F. E.; Verlet J. R. R. Photoelectron Spectroscopy of the Hexafluorobenzene Cluster Anions: (C6F6)n– (n = 1–5) and I–(C6F6). J. Phys. Chem. A 2019, 123 (8), 1602–1612. 10.1021/acs.jpca.8b11627. PubMed DOI

Even U. The Even-Lavie Valve as a Source for High Intensity Supersonic Beam. EPJ. Technol. Instrum. 2015, 2 (1), 1–22. 10.1140/epjti/s40485-015-0027-5. DOI

Wiley W. C.; McLaren I. H. Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955, 26 (12), 1150–1157. 10.1063/1.1715212. DOI

Roberts G. M.; Nixon J. L.; Lecointre J.; Wrede E.; Verlet J. R. R. Toward Real-Time Charged-Particle Image Reconstruction Using Polar Onion-Peeling. Rev. Sci. Instrum. 2009, 80 (5), 05310410.1063/1.3126527. PubMed DOI

Dunning T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90 (2), 1007–1023. 10.1063/1.456153. DOI

Jordan K. D. Construction of Potential Energy Curves in Avoided Crossing Situations. Chem. Phys. 1975, 9 (1), 199–204. 10.1016/0301-0104(75)80130-3. DOI

Isaacson A. D.; Truhlar D. G. Single-Root, Real-Basis-Function Method with Correct Branch-Point Structure for Complex Resonances Energies. Chem. Phys. Lett. 1984, 110 (2), 130–134. 10.1016/0009-2614(84)80161-X. DOI

Becke A. D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98 (7), 5648–5652. 10.1063/1.464913. DOI

Lee C.; Yang W.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37 (2), 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Vosko S. H.; Wilk L.; Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980, 58 (8), 1200–1211. 10.1139/p80-159. DOI

Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Jagau T.-C.; Dao D. B.; Holtgrewe N. S.; Krylov A. I.; Mabbs R. Same but Different: Dipole-Stabilized Shape Resonances in CuF– and AgF–. J. Phys. Chem. Lett. 2015, 6 (14), 2786–2793. 10.1021/acs.jpclett.5b01174. PubMed DOI

Bull J. N.; West C. W.; Verlet J. R. R. On the Formation of Anions: Frequency-, Angle-, and Time-Resolved Photoelectron Imaging of the Menadione Radical Anion. Chem. Sci. 2015, 6 (2), 1578–1589. 10.1039/C4SC03491K. PubMed DOI PMC

Hart C. A.; Schlimgen A. W.; Dao D. B.; Head-Marsden K.; Mabbs R. The Overlooked Role of Excited Anion States in NiO2–photodetachment. J. Chem. Phys. 2024, 160 (4), 04430410.1063/5.0188066. PubMed DOI

Sagan C. R.; Anstöter C. S.; Thodika M.; Wilson K. D.; Matsika S.; Garand E. Spectroscopy and Theoretical Modeling of Tetracene Anion Resonances. J. Phys. Chem. Lett. 2022, 13 (44), 10245–10252. 10.1021/acs.jpclett.2c02931. PubMed DOI

Lietard A.; Verlet J. R. R. Effect of Microhydration on the Temporary Anion States of Pyrene. J. Phys. Chem. Lett. 2022, 13 (16), 3529–3533. 10.1021/acs.jpclett.2c00523. PubMed DOI PMC

Cooper G. A.; Clarke C. J.; Verlet J. R. R. Low-Energy Shape Resonances of a Nucleobase in Water. J. Am. Chem. Soc. 2023, 145 (2), 1319–1326. 10.1021/jacs.2c11440. PubMed DOI PMC

Andersen J. U.; Bonderup E.; Hansen K. Thermionic Emission from Clusters. J. Phys. B: At. Mol. Opt. Phys. 2002, 35 (5), R1.10.1088/0953-4075/35/5/201. DOI

Adams C. L.; Hansen K.; Weber J. M. Vibrational Autodetachment from Anionic Nitroalkane Chains: From Molecular Signatures to Thermionic Emission. J. Phys. Chem. A 2019, 123 (40), 8562–8570. 10.1021/acs.jpca.9b07780. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace