Blue rings in trees and shrubs as indicators of early and late summer cooling events at the northern treeline

. 2024 ; 15 () : 1487099. [epub] 20250122

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39911657

The high temperature sensitivity of pine trees in northern Fennoscandia has led to some of the most reliable tree-ring climate reconstructions in the world for the past millennia. However, wood anatomical anomalies that likely reflect temperature-induced reductions in cell wall lignification, the so-called Blue Rings (BRs), have not yet been systematically investigated in trees and shrubs in northern Europe. Here, we present frontier research on the occurrence of BRs in Pinus sylvestris trees and Juniperus communis (L) s.l. shrubs from the upper treeline in northern Norway (69°N) in relation to instrumental temperature data covering the last ca. 150 years. The highest number of BRs was found in 1902, with 96% of Pinus trees and 68% of Juniperus shrubs showing BRs. These corresponded on average to a 42% vs. 27% proportion of the growth ring in 1902 which was less-lignified in Pinus trees and Juniperus shrubs, respectively. Another peak in BRs recorded for 1877 was more pronounced in Pinus trees (88%) than in Juniperus shrubs (36%), with a lower proportion of less lignified rings. We found the lowest monthly sums of growing degree days in June 1902 and August 1877, resulting in more uniform non-lignified BRs in 1902 than in 1877. Prolonged early growing season cooling shortened the growing season in 1902 and resulted in much thinner cell walls in trees and shrubs than in 1877, which was characterized by extended cooling at the end of the growing season. Also, after 1902 BR, Pinus trees exclusively showed no recovery in the mean cell wall thickness in the following year. Our study provides the first evidence for different impacts of early versus late growing season cooling on cell wall lignification in trees and shrubs at the northern treeline. Using the anatomy of BRs, we demonstrated the potential to refine summer cooling event reconstructions at an intra-annual resolution in northern Fennoscandia and beyond.

Zobrazit více v PubMed

Antonova G. F., Stasova V. V. (1993). Effects of environmental factors on wood formation in Scots pine stems. Trees 7, 214–219. doi: 10.1007/BF00202076 DOI

Biondi F., Qeadan F. (2008). Inequality in paleorecords. Ecology 89, 1056–1067. doi: 10.1890/07-0783.1 PubMed DOI

Björklund J., Fonti M. V., Fonti P., Van den Bulcke J., von Arx G. (2021). Cell wall dimensions reign supreme: Cell wall composition is irrelevant for the temperature signal of latewood density/blue intensity in Scots pine. Dendrochronologia 65, 125785. doi: 10.1016/j.dendro.2020.125785 DOI

Björklund J., Seftigen K., Stoffel M., Fonti M. V., Kottlow S., Frank D. C., et al. . (2023). Fennoscandian tree-ring anatomy shows a warmer modern than medieval climate. Nature 620, 97–103. doi: 10.1038/s41586-023-06176-4 PubMed DOI

Briffa K. R., Jones P. D., Pilcher J. R., Hughes M. K. (1988). Reconstructing summer temperatures in northern fennoscandinavia back to A.D. 1700 using tree-ring data from scots pine. Arctic Alpine Res. 20, 385–394. doi: 10.2307/1551336 DOI

Brunstein F. C. (1996). Climatic significance of the bristlecone pine latewood frost-ring record at almagre mountain, Colorado, U.S.A. Arctic Alpine Res. 28, 65–76. doi: 10.2307/1552087 DOI

Bunn A., Korpela M., Biondi F., Campelo F., Mérian P., Oeadan F., et al. . (2021). dplR: dendrochronology program library in R.

Büntgen U., Crivellaro A., Arseneault D., Baillie M., Barclay D., Bernabei M., et al. . (2022). Global wood anatomical perspective on the onset of the Late Antique Little Ice Age (LALIA) in the mid-6th century CE. Sci. Bull. 67, 2336–2344. doi: 10.1016/j.scib.2022.10.019 PubMed DOI

Büntgen U., Raible C. C., Frank D., Helama S., Cunningham L., Hofer D., et al. . (2011). Causes and consequences of past and projected scandinavian summer temperatures, 500–2100 AD. PloS One 6, e25133. doi: 10.1371/journal.pone.0025133 PubMed DOI PMC

Buras A. (2017). A comment on the expressed population signal. Dendrochronologia 44, 130–132. doi: 10.1016/j.dendro.2017.03.005 DOI

Carrer M., Dibona R., Prendin A. L., Brunetti M. (2023). Recent waning snowpack in the Alps is unprecedented in the last six centuries. Nat. Climate Change 13, 155–160. doi: 10.1038/s41558-022-01575-3 DOI

Cook E. R., Kairiukstis L. A. (1990). Methods of Dendrochronology (Dordrecht: Kluwer Academic Publishers). ISBN-13: 978-0-7923-0586-6. doi: 10.1007/978-94-015-7879-0 DOI

Cornes R. C., van der Schrier G., van den Besselaar E. J. M., Jones P. D. (2018). An Ensemble version of the E-OBS temperature and precipitation data sets. J. Geophysical Research: Atmospheres 123, 9391–9409. doi: 10.1029/2017JD028200 DOI

Crivellaro A., Reverenna M., Ruffinatto F., Urbinati C., Piermattei A. (2018). The anatomy of »blue ring« in the wood of Pinus nigra: Anatomija »modre branike« v lesu črnega bora Pinus nigra. Les/Wood 67, 21–28. doi: 10.26614/les-wood.2018.v67n02a02 DOI

Cuny H. E., Fonti P., Rathgeber C. B. K., von Arx G., Peters R. L., Frank D. C. (2019). Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant Cell Environ. 42, 1222–1232. doi: 10.1111/pce.13464 PubMed DOI

Esper J., Frank D. C., Timonen M., Zorita E., Wilson R. J. S., Luterbacher J., et al. . (2012). Orbital forcing of tree-ring data. Nat. Climate Change 2, 862–866. doi: 10.1038/nclimate1589 DOI

Filion L., Payette S., Gauthier L., Boutin Y. (1986). Light rings in subarctic conifers as a dendrochronological tool. Quaternary Res. 26, 272–279. doi: 10.1016/0033-5894(86)90111-0 DOI

Fritts H. C. (1976). Tree Rings and Climate. 1st edition (London: Academic Press; ).

Gärtner H., Schweingruber F. H. (2013). Microscopic preparation techniques for plant stem analysis (Verlag Dr. Kessel; ). Available at: https://www.dora.lib4ri.ch/wsl/islandora/object/wsl%3A9994/.

Gindl W. (1999). Climatic significance of light rings in timberline spruce, picea abies, Austrian alps. Arctic Antarctic Alpine Res. 31, 242–246. doi: 10.2307/1552252 DOI

Grace J., Norton D. A. (1990). Climate and growth of pinus sylvestris at its upper altitudinal limit in scotland: evidence from tree growth-rings. J. Ecol. 78, 601–610. doi: 10.2307/2260887 DOI

Greaves C., Crivellaro A., Piermattei A., Krusic P. J., Oppenheimer C., Potapov A., et al. . (2023). Remarkably high blue ring occurrence in Estonian Scots pines in 1976 reveals wood anatomical evidence of extreme autumnal cooling. Trees 37, 511–522. doi: 10.1007/s00468-022-02366-1 DOI

Gricar J., Cufar K., Oven P., Schmitt U. (2005). Differentiation of terminal latewood tracheids in silver fir trees during autumn. Ann. Bot. 95, 959–965. doi: 10.1093/aob/mci112 PubMed DOI PMC

Grissino-Mayer H. D. (2001). Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57, 205–221.

Grudd H. (2008). Torneträsk tree-ring width and density ad 500–2004: A test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Climate Dynamics 31, 843–857. doi: 10.1007/s00382-007-0358-2 DOI

Grudd H., Briffa K. R., Karlén W., Bartholin T. S., Jones P. D., Kromer B. (2002). A 7400-year tree-ring chronology in northern Swedish Lapland: Natural climatic variability expressed on annual to millennial timescales. Holocene 12, 657–665. doi: 10.1191/0959683602hl578rp DOI

Guijarro J. A. (2006). Climatol: Climate Tools (Series Homogenization and Derived Products) (R package version 4.1.0; ). Available online at: https://cran.r-project.org/web/packages/climatol (Accessed 17 Oct. 2024).

Gurskaya M. A. (2019). Effect of summer monthly temperatures on light tree ring formation in three larch species (Larix) in the northern forest–tundra of siberia. Russian J. Ecol. 50, 343–351. doi: 10.1134/S1067413619040088 DOI

Gurskaya M. A. (2021). Formation of frost damage in larch growing in the northern and southern forest–tundra subzones of siberia: A comparative analysis. Russian J. Ecol. 52, 556–566. doi: 10.1134/S1067413622010064 DOI

Hallinger M., Manthey M., Wilmking M. (2010). Establishing a missing link: Warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol. 186, 890–899. doi: 10.1111/j.1469-8137.2010.03223.x PubMed DOI

Hantemirov R., Gorlanova L. A., Shiyatov S. (2000). Pathological tree-ring structures in Siberian juniper (juniperus sibirica burgsd.) and their use for reconstructing extreme climatic events. Russian J. Ecol. 31, 185–192. doi: 10.1007/BF02762816 DOI

Hantemirov R. M., Gorlanova L. A., Shiyatov S. G. (2004). Extreme temperature events in summer in northwest Siberia since AD 742 inferred from tree rings. Palaeogeography Palaeoclimatology Palaeoecol. 209, 155–164. doi: 10.1016/j.palaeo.2003.12.023 DOI

Hantemirov R., Shiyatov S., Gorlanova L. (2011). Dendroclimatic study of Siberian juniper. Dendrochronologia 29, 119–122. doi: 10.1016/j.dendro.2010.05.001 DOI

Harris I., Jones P., Osborn T. J. (2023). CRU TS4.07: Climatic Research Unit (CRU) Time-Series (TS) version 4.07 of high-resolution gridded data of month-by-month variation in climate (Jan. 1901- Dec. 2022). NERC EDS Centre Environ. Data Anal. 7, 109.

Holmes R. L. (1983). Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78.

Kirdyanov A., Hughes M., Vaganov E., Schweingruber F., Silkin P. (2003). The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic. Trees 17, 61–69. doi: 10.1007/s00468-002-0209-z DOI

Kolishchuk V. (1990). “Dendroclimatological study of prostrate woody plant,” in Methods of dendrochronology applications in the environmental sciences. Eds. Cook E. R., Kairiukstis L. A. (Dordrecht: Kluwer Academic Publishers; ), 51–55).

Körner C. (2012). “Growth and development,” in Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits. Ed. Körner C. (Basel: Springer; ), 85–104. doi: 10.1007/978-3-0348-0396-0_7 DOI

LaMarche V. C., Hirschboeck K. K. (1984). Frost rings in trees as records of major volcanic eruptions. Nature 307, 121–126. doi: 10.1038/307121a0 DOI

Lehejček J., Roman M., Lexa M., Aspholm P. E., Mašek J. (2024). Old Juniper Troll stand—The oldest shrub population from Scandinavia. J. For. Sci. 70, 176–184. doi: 10.17221/118/2023-JFS DOI

Lenz A., Hoch G., Körner C. (2013). Early season temperature controls cambial activity and total tree ring width at the alpine treeline. Plant Ecol. Diversity 6, 365–375. doi: 10.1080/17550874.2012.711864 DOI

Liang E., Lu X., Ren P., Li X., Zhu L., Eckstein D. (2012). Annual increments of juniper dwarf shrubs above the tree line on the central Tibetan Plateau: A useful climatic proxy. Ann. Bot. 109, 721–728. doi: 10.1093/aob/mcr315 PubMed DOI PMC

Linderholm H. W., Björklund J. A., Seftigen K., Gunnarson B. E., Grudd H., Jeong J.-H., et al. . (2010). Dendroclimatology in Fennoscandia – from past accomplishments to future potential. Climate Past 6, 93–114. doi: 10.5194/cp-6-93-2010 DOI

Matisons R., Gärtner H., Elferts D., Kārkliņa A., Adamovičs A., Jansons Ā. (2020). Occurrence of ‘blue’ and ‘frost’ rings reveal frost sensitivity of eastern Baltic provenances of Scots pine. For. Ecol. Manage. 457, 117729. doi: 10.1016/j.foreco.2019.117729 DOI

Matulewski P., Buchwal A., Gärtner H., Jagodziński A. M., Čufar K. (2022). Altered growth with blue rings: Comparison of radial growth and wood anatomy between trampled and non-trampled Scots pine roots. Dendrochronologia 72, 125922. doi: 10.1016/j.dendro.2022.125922 DOI

Montwé D., Isaac-Renton M., Hamann A., Spiecker H. (2018). Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Commun. 9, 1574. doi: 10.1038/s41467-018-04039-5 PubMed DOI PMC

Panayotov M. P., Zafirov N., Cherubini P. (2013). Fingerprints of extreme climate events in Pinus sylvestris tree rings from Bulgaria. Trees 27, 211–227. doi: 10.1007/s00468-012-0789-1 DOI

Payette S., Delwaide A., Simard M. (2010). Frost-ring chronologies as dendroclimatic proxies of boreal environments. Geophysical Res. Lett. 37, L02711. doi: 10.1029/2009GL041849 DOI

Piermattei A., Crivellaro A., Carrer M., Urbinati C. (2015). The “blue ring”: Anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees 29, 613–620. doi: 10.1007/s00468-014-1107-x DOI

Piermattei A., Crivellaro A., Krusic P. J., Esper J., Vítek P., Oppenheimer C., et al. . (2020). A millennium-long ‘ Blue Ring’ chronology from the Spanish Pyrenees reveals severe ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 15, 124016. doi: 10.1088/1748-9326/abc120 DOI

Rossi S., Deslauriers A., Anfodillo T., Carraro V. (2007). Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12. doi: 10.1007/s00442-006-0625-7 PubMed DOI

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., et al. . (2012). Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Schmitt U., Jalkanen R., Eckstein D. (2004). “Cambium dynamics of Pinus sylvestris and Betula spp,” in In the northern boreal forest in Finland (Silva Fennica; ), vol. 38, no. 2 article id 426. Available at: https://www.silvafennica.fi/article/426.

Semeniuc A. I., Sidor C., Popa I. (2016). Scots pine tree ring structure modifications and relation with climate. Eurasian J. For. Sci. 4 (2), 459–466. doi: 10.31195/ejejfs.283536 DOI

Seo J.-W., Eckstein D., Jalkanen R., Schmitt U. (2011). Climatic control of intra- and inter-annual wood-formation dynamics of Scots pine in northern Finland. Environ. Exp. Bot. 72, 422–431. doi: 10.1016/j.envexpbot.2011.01.003 DOI

Siekacz L., Pearson C., Salzer M., Soja-Kukieła N., Koprowski M. (2024). Blue rings in Bristlecone pine as a high resolution indicator of past cooling events. Climatic Change 177, 123. doi: 10.1007/s10584-024-03773-8 DOI

Tardif J. C., Salzer M. W., Conciatori F., Bunn A. G., Hughes M. K. (2020). Formation, structure and climatic significance of blue rings and frost rings in high elevation bristlecone pine (Pinus longaeva D.K. Bailey). Quaternary Sci. Rev. 244, 106516. doi: 10.1016/j.quascirev.2020.106516 DOI

Treml V., Hejda T., Kašpar J. (2019). Differences in growth between shrubs and trees: How does the stature of woody plants influence their ability to thrive in cold regions? Agric. For. Meteorology 271, 54–63. doi: 10.1016/j.agrformet.2019.02.036 DOI

Tuovinen M. (2005). Response of tree-ring width and density of Pinus sylvestris to climate beyond the continuous northern forest line in Finland. Dendrochronologia 22, 83–91. doi: 10.1016/j.dendro.2005.02.001 DOI

Vaganov E. A., Hughes M. K., Kirdyanov A. V., Schweingruber F. H., Silkin P. P. (1999). Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400 (6740), 149–151. doi: 10.1038/22087 DOI

Vaganov E. A., Hughes M. K., Shashkin A. V. (Eds.) (2006). “Cell Wall Thickening,” in Growth Dynamics of Conifer Tree Rings: Images of Past and Future Environments (Berlin Heidelberg: Springer; ), 135–149). doi: 10.1007/3-540-31298-6_5 DOI

Wang L., Payette S., Bégin Y. (2000). A Quantitative Definition of Light Rings in Black Spruce (Picea mariana) at the Arctic Treeline in Northern Québec, Canada. Arctic Antarctic Alpine Res. 32, 324–330. doi: 10.2307/1552531 DOI

Wigley T., Briffa K. R., Jones P. D. (1984). On the average value of correlated time-series, with applications in dendroclimatology and hydrometeorology. J. Climate Appl. Meteorology 23, 201–213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 DOI

Wodzicki T. J. (1971). ). Mechanism of xylem differentiation in pinus silvestris L. J. Exp. Bot. 22, 670–687. doi: 10.1093/jxb/22.3.670 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace