Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35126993
PubMed Central
PMC8725990
DOI
10.1039/d1cy01694f
PII: d1cy01694f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation. The final step to the nitrile is catalyzed by aldoxime dehydratase (Oxd). Full conversions of phenylacetic acid and hexanoic acid were achieved in a two-phase mode.
Acib GmbH Krenngasse 37 A 8010 Graz Austria
Institute of Applied Synthetic Chemistry TU Wien Getreidemarkt 9 OC 163 A 1060 Vienna Austria
Institute of Organic Chemistry Graz University of Technology Stremayrgasse 9 A 8010 Graz Austria
Zobrazit více v PubMed
Winkler M., Glieder A. and Steiner K., in Comprehensive Chirality, ed. E. M. Carreira and H. Yamamoto, 2012, vol. 7, pp. 350–371
Vilím J. Knaus T. Mutti F. G. Angew. Chem., Int. Ed. 2018;57:14240–14244. doi: 10.1002/anie.201809411. PubMed DOI PMC
Yan G. Zhang Y. Wang J. Adv. Synth. Catal. 2017;359:4068–4105. doi: 10.1002/adsc.201700875. DOI
Gröger H. Asano Y. J. Org. Chem. 2020;85:6243–6251. doi: 10.1021/acs.joc.9b02773. PubMed DOI
Le Vaillant F. Wodrich M. D. Waser J. Chem. Sci. 2017;8:1790–1800. doi: 10.1039/C6SC04907A. PubMed DOI PMC
Reader J. S. Metzgar D. Schimmel P. de Crécy-Lagard V. J. Biol. Chem. 2004;279:6280–6285. doi: 10.1074/jbc.M310858200. PubMed DOI
Phillips G. Swairjo M. A. Gaston K. W. Bailly M. Limbach P. A. Iwata-Reuyl D. de Crécy-Lagard V. ACS Chem. Biol. 2012;7:300–305. doi: 10.1021/cb200361w. PubMed DOI PMC
Battaglia U. Long J. E. Searle M. S. Moody C. J. Org. Biomol. Chem. 2011;9:2227–2232. doi: 10.1039/C0OB01054E. PubMed DOI
McCarty R. M. Somogyi A. Lin G. Jacobsen N. E. Bandarian V. Biochemistry. 2009;48:3847–3852. doi: 10.1021/bi900400e. PubMed DOI PMC
Nelp M. T. Bandarian V. Angew. Chem., Int. Ed. 2015;54:10627–10629. doi: 10.1002/anie.201504505. PubMed DOI PMC
Winkler M. Dokulil K. Weber H. Pavkov-Keller T. Wilding B. ChemBioChem. 2015;16:2373–2378. doi: 10.1002/cbic.201500335. PubMed DOI
Kato Y. Tsuda T. Asano Y. Biochim. Biophys. Acta, Proteins Proteomics. 2007;1774:856–865. doi: 10.1016/j.bbapap.2007.04.010. PubMed DOI
Betke T. Higuchi J. Rommelmann P. Oike K. Nomura T. Kato Y. Asano Y. Gröger H. ChemBioChem. 2018;19:768–779. doi: 10.1002/cbic.201700571. PubMed DOI
Pedras M. S. C. Minic Z. Thongbam P. D. Bhaskar V. Montaut S. Phytochemistry. 2010;71:1952–1962. doi: 10.1016/j.phytochem.2010.10.002. PubMed DOI
Rädisch R. Chmátal M. Rucká L. Novotný P. Petrásková L. Halada P. Kotik M. Pátek M. Martínková L. Int. J. Biol. Macromol. 2018;115:746–753. doi: 10.1016/j.ijbiomac.2018.04.103. PubMed DOI
Domínguez de María P. Molecules. 2021;26:4466. doi: 10.3390/molecules26154466. PubMed DOI PMC
Hinzmann A. Betke T. Asano Y. Gröger H. Chem. – Eur. J. 2021;27:5313–5321. doi: 10.1002/chem.202001647. PubMed DOI PMC
Gruber-Khadjawi M., Fechter M. and Griengl H., in Enzyme Catalysis in Organic Synthesis, ed. K. Drauz, H. Gröger and H. Griengl, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012, ch. 23, pp. 917–990
Yavuzer H. Asano Y. Gröger H. Angew. Chem., Int. Ed. 2021;60:19162–19168. doi: 10.1002/anie.202017234. PubMed DOI PMC
Betke T. Rommelmann P. Oike K. Asano Y. Gröger H. Angew. Chem., Int. Ed. 2017;56:12361–12366. doi: 10.1002/anie.201702952. PubMed DOI
Miao Y. Metzner R. Asano Y. ChemBioChem. 2017;18:451–454. doi: 10.1002/cbic.201600596. PubMed DOI
Martí S. Tuñón I. Moliner V. Bertran J. ACS Catal. 2020;10:11110–11119. doi: 10.1021/acscatal.0c02215. DOI
Hinzmann A. Glinski S. Worm M. Gröger H. J. Org. Chem. 2019;84:4867–4872. doi: 10.1021/acs.joc.9b00184. PubMed DOI
Hansen T. V. Wu P. Fokin V. V. J. Org. Chem. 2005;70:7761–7764. doi: 10.1021/jo050163b. PubMed DOI
Winkler M. Curr. Opin. Chem. Biol. 2018;43:23–29. doi: 10.1016/j.cbpa.2017.10.006. PubMed DOI
Horvat M. Winkler M. ChemCatChem. 2020;12:5076–5090. doi: 10.1002/cctc.202000895. DOI
Schwendenwein D. Fiume G. Weber H. Rudroff F. Winkler M. Adv. Synth. Catal. 2016;358:3414–3421. doi: 10.1002/adsc.201600914. PubMed DOI PMC
France S. P. Hussain S. Hill A. M. Hepworth L. J. Howard R. M. Mulholland K. R. Flitsch S. L. Turner N. J. ACS Catal. 2016;6:3753–3759. doi: 10.1021/acscatal.6b00855. DOI
Klumbys E. Zebec Z. Weise N. J. Turner N. J. Scrutton N. S. Green Chem. 2018;20:658–663. doi: 10.1039/C7GC03325G. PubMed DOI PMC
Ahsan M. Sung S. Jeon H. Patil M. Chung T. Yun H. Catalysts. 2017;8:4. doi: 10.3390/catal8010004. DOI
Citoler J. Derrington S. R. Galman J. L. Bevinakatti H. Turner N. J. Green Chem. 2019;21:4932–4935. doi: 10.1039/C9GC02260K. DOI
Hinzmann A. Stricker M. Gröger H. ACS Sustainable Chem. Eng. 2020;8:17088–17096. doi: 10.1021/acssuschemeng.0c04981. DOI
Rosenberg S. Silver S. M. Sayer J. M. Jencks W. P. J. Am. Chem. Soc. 1974;96:7986–7998. doi: 10.1021/ja00833a026. DOI
Jencks W. P. Phys. Org. Chem. 1959;81:475–481.
Nishigaya Y. Fujimoto Z. Yamazaki T. Biochem. Biophys. Res. Commun. 2016;476:127–133. doi: 10.1016/j.bbrc.2016.05.041. PubMed DOI
Jiménez R. Pequerul R. Amor A. Lorenzo J. Metwally K. Avilés F. X. Parés X. Farrés J. Chem.-Biol. Interact. 2019;306:123–130. doi: 10.1016/j.cbi.2019.04.004. PubMed DOI
Kaplan N. O. Ciotti M. M. J. Biol. Chem. 1953;201:785–794. doi: 10.1016/S0021-9258(18)66235-0. PubMed DOI
Wada M. Matsumoto T. Nakamori S. Sakamoto M. Kataoka M. Liu J.-Q. Itoh N. Yamada H. Shimizu S. FEMS Microbiol. Lett. 1999;179:147–151. PubMed
Putrament A. Baranowska H. Pachecka J. Mol. Gen. Genet. 1973;122:61–72. doi: 10.1007/BF00337974. PubMed DOI
Aldoxime dehydratases: production, immobilization, and use in multistep processes
Organic Acid to Nitrile: A Chemoenzymatic Three-Step Route