• This record comes from PubMed

Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime

. 2022 Jan 04 ; 12 (1) : 62-66. [epub] 20211130

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation. The final step to the nitrile is catalyzed by aldoxime dehydratase (Oxd). Full conversions of phenylacetic acid and hexanoic acid were achieved in a two-phase mode.

See more in PubMed

Winkler M., Glieder A. and Steiner K., in Comprehensive Chirality, ed. E. M. Carreira and H. Yamamoto, 2012, vol. 7, pp. 350–371

Vilím J. Knaus T. Mutti F. G. Angew. Chem., Int. Ed. 2018;57:14240–14244. doi: 10.1002/anie.201809411. PubMed DOI PMC

Yan G. Zhang Y. Wang J. Adv. Synth. Catal. 2017;359:4068–4105. doi: 10.1002/adsc.201700875. DOI

Gröger H. Asano Y. J. Org. Chem. 2020;85:6243–6251. doi: 10.1021/acs.joc.9b02773. PubMed DOI

Le Vaillant F. Wodrich M. D. Waser J. Chem. Sci. 2017;8:1790–1800. doi: 10.1039/C6SC04907A. PubMed DOI PMC

Reader J. S. Metzgar D. Schimmel P. de Crécy-Lagard V. J. Biol. Chem. 2004;279:6280–6285. doi: 10.1074/jbc.M310858200. PubMed DOI

Phillips G. Swairjo M. A. Gaston K. W. Bailly M. Limbach P. A. Iwata-Reuyl D. de Crécy-Lagard V. ACS Chem. Biol. 2012;7:300–305. doi: 10.1021/cb200361w. PubMed DOI PMC

Battaglia U. Long J. E. Searle M. S. Moody C. J. Org. Biomol. Chem. 2011;9:2227–2232. doi: 10.1039/C0OB01054E. PubMed DOI

McCarty R. M. Somogyi A. Lin G. Jacobsen N. E. Bandarian V. Biochemistry. 2009;48:3847–3852. doi: 10.1021/bi900400e. PubMed DOI PMC

Nelp M. T. Bandarian V. Angew. Chem., Int. Ed. 2015;54:10627–10629. doi: 10.1002/anie.201504505. PubMed DOI PMC

Winkler M. Dokulil K. Weber H. Pavkov-Keller T. Wilding B. ChemBioChem. 2015;16:2373–2378. doi: 10.1002/cbic.201500335. PubMed DOI

Kato Y. Tsuda T. Asano Y. Biochim. Biophys. Acta, Proteins Proteomics. 2007;1774:856–865. doi: 10.1016/j.bbapap.2007.04.010. PubMed DOI

Betke T. Higuchi J. Rommelmann P. Oike K. Nomura T. Kato Y. Asano Y. Gröger H. ChemBioChem. 2018;19:768–779. doi: 10.1002/cbic.201700571. PubMed DOI

Pedras M. S. C. Minic Z. Thongbam P. D. Bhaskar V. Montaut S. Phytochemistry. 2010;71:1952–1962. doi: 10.1016/j.phytochem.2010.10.002. PubMed DOI

Rädisch R. Chmátal M. Rucká L. Novotný P. Petrásková L. Halada P. Kotik M. Pátek M. Martínková L. Int. J. Biol. Macromol. 2018;115:746–753. doi: 10.1016/j.ijbiomac.2018.04.103. PubMed DOI

Domínguez de María P. Molecules. 2021;26:4466. doi: 10.3390/molecules26154466. PubMed DOI PMC

Hinzmann A. Betke T. Asano Y. Gröger H. Chem. – Eur. J. 2021;27:5313–5321. doi: 10.1002/chem.202001647. PubMed DOI PMC

Gruber-Khadjawi M., Fechter M. and Griengl H., in Enzyme Catalysis in Organic Synthesis, ed. K. Drauz, H. Gröger and H. Griengl, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2012, ch. 23, pp. 917–990

Yavuzer H. Asano Y. Gröger H. Angew. Chem., Int. Ed. 2021;60:19162–19168. doi: 10.1002/anie.202017234. PubMed DOI PMC

Betke T. Rommelmann P. Oike K. Asano Y. Gröger H. Angew. Chem., Int. Ed. 2017;56:12361–12366. doi: 10.1002/anie.201702952. PubMed DOI

Miao Y. Metzner R. Asano Y. ChemBioChem. 2017;18:451–454. doi: 10.1002/cbic.201600596. PubMed DOI

Martí S. Tuñón I. Moliner V. Bertran J. ACS Catal. 2020;10:11110–11119. doi: 10.1021/acscatal.0c02215. DOI

Hinzmann A. Glinski S. Worm M. Gröger H. J. Org. Chem. 2019;84:4867–4872. doi: 10.1021/acs.joc.9b00184. PubMed DOI

Hansen T. V. Wu P. Fokin V. V. J. Org. Chem. 2005;70:7761–7764. doi: 10.1021/jo050163b. PubMed DOI

Winkler M. Curr. Opin. Chem. Biol. 2018;43:23–29. doi: 10.1016/j.cbpa.2017.10.006. PubMed DOI

Horvat M. Winkler M. ChemCatChem. 2020;12:5076–5090. doi: 10.1002/cctc.202000895. DOI

Schwendenwein D. Fiume G. Weber H. Rudroff F. Winkler M. Adv. Synth. Catal. 2016;358:3414–3421. doi: 10.1002/adsc.201600914. PubMed DOI PMC

France S. P. Hussain S. Hill A. M. Hepworth L. J. Howard R. M. Mulholland K. R. Flitsch S. L. Turner N. J. ACS Catal. 2016;6:3753–3759. doi: 10.1021/acscatal.6b00855. DOI

Klumbys E. Zebec Z. Weise N. J. Turner N. J. Scrutton N. S. Green Chem. 2018;20:658–663. doi: 10.1039/C7GC03325G. PubMed DOI PMC

Ahsan M. Sung S. Jeon H. Patil M. Chung T. Yun H. Catalysts. 2017;8:4. doi: 10.3390/catal8010004. DOI

Citoler J. Derrington S. R. Galman J. L. Bevinakatti H. Turner N. J. Green Chem. 2019;21:4932–4935. doi: 10.1039/C9GC02260K. DOI

Hinzmann A. Stricker M. Gröger H. ACS Sustainable Chem. Eng. 2020;8:17088–17096. doi: 10.1021/acssuschemeng.0c04981. DOI

Rosenberg S. Silver S. M. Sayer J. M. Jencks W. P. J. Am. Chem. Soc. 1974;96:7986–7998. doi: 10.1021/ja00833a026. DOI

Jencks W. P. Phys. Org. Chem. 1959;81:475–481.

Nishigaya Y. Fujimoto Z. Yamazaki T. Biochem. Biophys. Res. Commun. 2016;476:127–133. doi: 10.1016/j.bbrc.2016.05.041. PubMed DOI

Jiménez R. Pequerul R. Amor A. Lorenzo J. Metwally K. Avilés F. X. Parés X. Farrés J. Chem.-Biol. Interact. 2019;306:123–130. doi: 10.1016/j.cbi.2019.04.004. PubMed DOI

Kaplan N. O. Ciotti M. M. J. Biol. Chem. 1953;201:785–794. doi: 10.1016/S0021-9258(18)66235-0. PubMed DOI

Wada M. Matsumoto T. Nakamori S. Sakamoto M. Kataoka M. Liu J.-Q. Itoh N. Yamada H. Shimizu S. FEMS Microbiol. Lett. 1999;179:147–151. PubMed

Putrament A. Baranowska H. Pachecka J. Mol. Gen. Genet. 1973;122:61–72. doi: 10.1007/BF00337974. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Aldoxime dehydratases: production, immobilization, and use in multistep processes

. 2024 Nov 15 ; 108 (1) : 518. [epub] 20241115

Organic Acid to Nitrile: A Chemoenzymatic Three-Step Route

. 2023 Jan 10 ; 365 (1) : 37-42. [epub] 20221228

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...