Genetic and Functional Diversity of Nitrilases in Agaricomycotina
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00184S
Grantová Agentura České Republiky
PubMed
31795104
PubMed Central
PMC6928751
DOI
10.3390/ijms20235990
PII: ijms20235990
Knihovny.cz E-zdroje
- Klíčová slova
- Agaricomycotina, Basidiomycota, cyanide hydratase, homology modeling, nitrilase, nitrile, overproduction, phylogenetic distribution, substrate docking, substrate specificity,
- MeSH
- aminohydrolasy chemie genetika metabolismus MeSH
- Basidiomycota klasifikace enzymologie genetika MeSH
- fumaráty metabolismus MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- fylogeneze MeSH
- kyanovodík metabolismus MeSH
- pyridiny metabolismus MeSH
- simulace molekulového dockingu MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminohydrolasy MeSH
- fumaráty MeSH
- fumaronitrile MeSH Prohlížeč
- fungální proteiny MeSH
- kyanovodík MeSH
- nitrilase MeSH Prohlížeč
- pyridiny MeSH
Nitrilases participate in the nitrile metabolism in microbes and plants. They are widely used to produce carboxylic acids from nitriles. Nitrilases were described in bacteria, Ascomycota and plants. However, they remain unexplored in Basidiomycota. Yet more than 200 putative nitrilases are found in this division via GenBank. The majority of them occur in the subdivision Agaricomycotina. In this work, we analyzed their sequences and classified them into phylogenetic clades. Members of clade 1 (61 proteins) and 2 (25 proteins) are similar to plant nitrilases and nitrilases from Ascomycota, respectively, with sequence identities of around 50%. The searches also identified five putative cyanide hydratases (CynHs). Representatives of clade 1 and 2 (NitTv1 from Trametes versicolor and NitAg from Armillaria gallica, respectively) and a putative CynH (NitSh from Stereum hirsutum) were overproduced in Escherichia coli. The substrates of NitTv1 were fumaronitrile, 3-phenylpropionitrile, β-cyano-l-alanine and 4-cyanopyridine, and those of NitSh were hydrogen cyanide (HCN), 2-cyanopyridine, fumaronitrile and benzonitrile. NitAg only exhibited activities for HCN and fumaronitrile. The substrate specificities of these nitrilases were largely in accordance with substrate docking in their homology models. The phylogenetic distribution of each type of nitrilase was determined for the first time.
Zobrazit více v PubMed
Pace H.C., Brenner C. The nitrilase superfamily: Classification, structure and function. Genome Biol. 2001;2:reviews0001-1. doi: 10.1186/gb-2001-2-1-reviews0001. PubMed DOI PMC
Gong J.-S., Lu Z.-M., Li H., Shi J.-S., Zhou Z.-M., Xu Z.-H. Nitrilases in nitrile biocatalysis: Recent progress and forthcoming research. Microb. Cell Fact. 2012;11:142. doi: 10.1186/1475-2859-11-142. PubMed DOI PMC
Martínková L., Rucká L., Nešvera J., Pátek M. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J. Microbiol. Biotechnol. 2017;33:8. doi: 10.1007/s11274-016-2173-6. PubMed DOI
Bhalla T.C., Kumar V., Kumar V., Thakur N., Savitri Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl. Biochem. Biotechnol. 2018;185:925–946. doi: 10.1007/s12010-018-2705-7. PubMed DOI
Martínková L., Veselá A.B., Rinágelová A., Chmátal M. Cyanide hydratases and cyanide dihydratases: Emerging tools in the biodegradation and biodetection of cyanide. Appl. Microbiol. Biotechnol. 2015;99:8875–8882. doi: 10.1007/s00253-015-6899-0. PubMed DOI
Howden A.J.M., Preston G.M. Nitrilase enzymes and their role in plant-microbe interactions. Microb. Biotechnol. 2009;2:441–451. doi: 10.1111/j.1751-7915.2009.00111.x. PubMed DOI PMC
Thuku R.N., Brady D., Benedik M.J., Sewell B.T. Microbial nitrilases: Versatile, spiral forming, industrial enzymes. J. Appl. Microbiol. 2009;106:703–727. doi: 10.1111/j.1365-2672.2008.03941.x. PubMed DOI
Thimann K.V., Mahadevan S., Nitrilase I. Occurrence, preparation and general properties of enzyme. Arch. Biochem. Biophys. 1964;105:133–141. doi: 10.1016/0003-9861(64)90244-9. PubMed DOI
Harper D.B. Fungal degradation of aromatic nitriles. Enzymology of C–N cleavage by Fusarium solani. Biochem. J. 1977;167:685–692. doi: 10.1042/bj1670685. PubMed DOI PMC
Goldlust A., Bohak Z. Induction, purification, and characterization of the nitrilase Fusarium oxysporum f. sp. melonis. Biotechnol. Appl. Biochem. 1989;11:581–601.
Brunner S., Eppinger E., Fischer S., Gröning J., Stolz A. Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. World J. Microbiol. Biotechnol. 2018;34:91. doi: 10.1007/s11274-018-2477-9. PubMed DOI
Vorwerk S., Biernacki S., Hillebrand H., Janzik I., Müller A., Weiler E.W., Piotrowski M. Enzymatic characterization of the recombinant Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. Planta. 2001;212:508–516. doi: 10.1007/s004250000420. PubMed DOI
Piotrowski M., Schönfelder S., Weiler E.W. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-L-alanine hydratase/nitrilase. J. Biol. Chem. 2001;276:2616–2621. doi: 10.1074/jbc.M007890200. PubMed DOI
Gong J.-S., Li H., Zhu X.-Y., Lu Z.-M., Wu Y., Shi J.-S., Xu Z.-H. Fungal His-tagged nitrilase from Gibberella intermedia: Gene cloning, heterologous expression and biochemical properties. PLoS ONE. 2012;7:e50622. doi: 10.1371/journal.pone.0050622. PubMed DOI PMC
Kaplan O., Veselá A.B., Petříčková A., Pasquarelli F., Pičmanová M., Rinágelová A., Bhalla T.C., Pátek M., Martínková L. A comparative study of nitrilases identified by genome mining. Mol. Biotechnol. 2013;54:996–1003. doi: 10.1007/s12033-013-9656-6. PubMed DOI
Veselá A.B., Rucká L., Kaplan O., Pelantová H., Nešvera J., Pátek M., Martínková L. Bringing nitrilase sequences from databases to life: The search for novel substrate specificities with a focus on dinitriles. Appl. Microbiol. Biotechnol. 2016;100:2193–2202. doi: 10.1007/s00253-015-7023-1. PubMed DOI
Shoresh M., Harman G.E., Mastouri F. Induced systemic resistance and plant responses to fungal biocontrol agents. Ann. Rev. Phytopathol. 2010;48:21–43. doi: 10.1146/annurev-phyto-073009-114450. PubMed DOI
Kameshwar A.K.S., Qin W. Comparative study of genome-wide plant biomass-degrading CAZymes in white rot, brown rot and soft rot fungi. Mycology. 2018;9:93–105. doi: 10.1080/21501203.2017.1419296. PubMed DOI PMC
Hiscox J., O´Leary J., Boddy L. Fungus wars: Basidiomycete battles in wood decay. Stud. Mycol. 2018;89:117–124. doi: 10.1016/j.simyco.2018.02.003. PubMed DOI PMC
Legras J.L., Chuzel G., Arnaud A., Galzy P. Natural nitriles and their metabolism. World J. Microbiol. Biotechnol. 1990;6:83–108. doi: 10.1007/BF01200927. PubMed DOI
Strobel G.A. The fixation of hydrocyanic acid by a psychrophilic basidiomycete. J. Biol. Chem. 1966;241:2618–2621. PubMed
Strobel G.A. 4-Amino-4-cyanobutyric acid as an intermediate in glutamate biosynthesis. J. Biol. Chem. 1967;242:3265–3269. PubMed
Cabuk A., Unal A.T., Kolankaya N. Biodegradation of cyanide by a white rot fungus, Trametes versicolor. Biotechnol. Lett. 2006;28:1313–1317. doi: 10.1007/s10529-006-9090-y. PubMed DOI
Luo H., Fan L., Chang Y., Ma J., Yu H., Shen Z. Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli. Appl. Biochem. Biotechnol. 2010;160:393–400. doi: 10.1007/s12010-008-8324-y. PubMed DOI
Rinágelová A., Kaplan O., Veselá A.B., Chmátal M., Křenková A., Plíhal O., Pasquarelli F., Cantarella M., Martínková L. Cyanide hydratase from Aspergillus niger K10: Overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation. Proc. Biochem. 2014;49:445–450. doi: 10.1016/j.procbio.2013.12.008. DOI
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Nei M., Kumar S. Molecular Evolution and Phylogenetics. Oxford University Press; New York, NY, USA: 2000. p. 126.
Zhang L., Yin B., Wang C., Jiang S., Wang H., Yuan Y.A., Wei D. Structural insights into enzymatic activity and substrate specificity determination by a single amino acid in nitrilase from Synechocystis sp. PCC6803. J. Struct. Biol. 2014;188:93–101. doi: 10.1016/j.jsb.2014.10.003. PubMed DOI
Raczynska J., Vorgias C., Antranikian G., Rypniewski W. Crystallographic analysis of a thermoactive nitrilase. J. Struct. Biol. 2010;173:294–302. doi: 10.1016/j.jsb.2010.11.017. PubMed DOI
Liu H., Gao Y., Zhang M., Qiu X., Cooper A.J., Niu L., Teng M. Structures of enzyme-intermediate complexes of yeast Nit2: Insights into its catalytic mechanism and different substrate specificity compared with mammalian Nit2. Acta Crystallogr. D. 2013;69:1470–1481. doi: 10.1107/S0907444913009347. PubMed DOI
Thuku R.N., Weber B.W., Varsani A., Sewell B.T. Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J. 2007;274:2099–2108. doi: 10.1111/j.1742-4658.2007.05752.x. PubMed DOI
Fernandes B.C.M., Mateo C., Kiziak C., Chmura A., Wacker J., van Rantwijk F., Stolz A., Sheldon R.A. Nitrile hydratase activity of a recombinant nitrilase. Adv. Synth. Catal. 2006;348:2597–2603. doi: 10.1002/adsc.200600269. DOI
Yeom S.J., Kim H.J., Lee J.K., Kim D.E., Oh D.K. An amino acid at position 142 in nitrilase from Rhodococcus rhodochrous ATCC 33278 determines the substrate specificity for aliphatic and aromatic nitriles. Biochem. J. 2008;415:401–407. doi: 10.1042/BJ20080440. PubMed DOI PMC
Martínková L. Nitrile metabolism in fungi: A review of its key enzymes nitrilases with focus on their biotechnological impact. Fung. Biol. Rev. 2019;33:149–157. doi: 10.1016/j.fbr.2018.11.002. DOI
Hibbett D.S. Agaricomycotina. Jelly Fungi, Yeasts, and Mushrooms. Version 20 April 2007. [(accessed on 22 October 2019)]; Available online: http://tolweb.org/Agaricomycotina/20531/2007.04.20.
Ghosh S., Gupta S.K., Jha G. Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani. Curr. Genet. 2014;60:327–341. doi: 10.1007/s00294-014-0438-x. PubMed DOI
Abdullah A.S., Moffat C.S., Lopez-Ruiz F.J., Gibberd M.R., Hamblin J., Zerihun A. Host-multi-pathogen warfare: Pathogen interactions in co-infected plants. Front. Plant Sci. 2017;8:1806. doi: 10.3389/fpls.2017.01806. PubMed DOI PMC
Wang P., Van Etten H.D. Cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. Biochem. Biophys. Res. Commun. 1992;187:1048–1054. doi: 10.1016/0006-291X(92)91303-8. PubMed DOI
Basile L.J., Willson R.C., Sewell B.T., Benedik M.J. Genome mining of cyanide degrading nitrilases from filamentous fungi. Appl. Microbiol. Biotechnol. 2008;80:427–435. doi: 10.1007/s00253-008-1559-2. PubMed DOI
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Notredame C., Higgins D.G., Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Clamp M., Cuff J., Searle S.M., Barton G.J. The Jalview Java alignment editor. Bioinformatics. 2004;20:426–427. doi: 10.1093/bioinformatics/btg430. PubMed DOI
Krieger E., Koraimann G., Vriend G. Increasing the precision of comparative models with YASARA NOVA a self-parameterizing force field. Proteins. 2002;47:393–402. doi: 10.1002/prot.10104. PubMed DOI
Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234:779–815. doi: 10.1006/jmbi.1993.1626. PubMed DOI
Davis I.W., Leaver-Fay A., Chen V.B., Block J.N., Kapral G.J., Wang X., Murray L.W., Arendall W.B., III, Snoeyink J., Richardson J.S., et al. MolProbity: Allatom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35:375–383. doi: 10.1093/nar/gkm216. PubMed DOI PMC
Schrödinger Release 2017-1: Canvas. Schrödinger LLC; New York, NY, USA: 2017.
Cluness M.J., Turner P.D., Clements E., Brown D.T., O´Reilly C. Purification and properties of cyanide hydratase from Fusarium lateritium and analysis of the corresponding chy1 gene. J. Gen. Biol. 1993;139:1807–1815. doi: 10.1099/00221287-139-8-1807. PubMed DOI
Black G.W., Brown N.L., Perry J.J.B., Randall D., Turnbull G., Zhang M. A high-throughput screening method for determining the substrate scope of nitrilases. Chem. Commun. 2015;51:2660–2662. doi: 10.1039/C4CC06021K. PubMed DOI
Olsen B.A. Hydrophilic interaction chromatography using amino and silica columns for the determination of polar pharmaceuticals and impurities. J. Chromatogr. A. 2001;913:113–122. doi: 10.1016/S0021-9673(00)01063-3. PubMed DOI
Biocatalysis: "A Jack of all Trades..."