Artificial neural networks for computer-aided modelling and optimisation in micellar electrokinetic chromatography

. 1999 Jul 30 ; 850 (1-2) : 345-53.

Jazyk angličtina Země Nizozemsko Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid10457496
Odkazy

PubMed 10457496
DOI 10.1016/s0021-9673(99)00634-2
PII: S0021-9673(99)00634-2
Knihovny.cz E-zdroje

The separation process in capillary micellar electrochromatography (MEKC) can be modelled using artificial neural networks (ANNs) and optimisation of MEKC methods can be facilitated by combining ANNs with experimental design. ANNs have shown attractive possibilities for non-linear modelling of response surfaces in MEKC and it was demonstrated that by combining ANN modelling with experimental design, the number of experiments necessary to search and find optimal separation conditions can be reduced significantly. A new general approach for computer-aided optimisation in MEKC has been proposed which, because of its general validity, can also be applied in other separation techniques.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...