Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
29367633
PubMed Central
PMC5783935
DOI
10.1038/s41467-017-02780-x
PII: 10.1038/s41467-017-02780-x
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Using antiferromagnets as active elements in spintronics requires the ability to manipulate and read-out the Néel vector orientation. Here we demonstrate for Mn2Au, a good conductor with a high ordering temperature suitable for applications, reproducible switching using current pulse generated bulk spin-orbit torques and read-out by magnetoresistance measurements. Reversible and consistent changes of the longitudinal resistance and planar Hall voltage of star-patterned epitaxial Mn2Au(001) thin films were generated by pulse current densities of ≃107 A/cm2. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6% is reproduced by ab initio transport calculations.
Institut für Physik Johannes Gutenberg Universität Staudinger Weg 7 55128 Mainz Germany
School of Physics and Astronomy University of Nottingham University Park Nottingham NG7 2RD UK
See more in PubMed
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotech. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI
Kampfrath T, et al. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics. 2011;5:31–34. doi: 10.1038/nphoton.2010.259. DOI
Železný J, et al. Relativistic Neel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI
Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI
Park BG, et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. Mater. 2011;10:347–351. doi: 10.1038/nmat2983. PubMed DOI
Fina I, et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun. 2014;5:4671. doi: 10.1038/ncomms5671. PubMed DOI
Marti X, et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 2014;13:367–374. doi: 10.1038/nmat3861. PubMed DOI
Gambardella P, Miron IM. Current-induced spin-orbit torques. Philos. Trans. R. Soc. A. 2011;369:3175–3197. doi: 10.1098/rsta.2010.0336. PubMed DOI
Brataas A, Hals KMD. Spin-orbit torques in action. Nat. Nanotech. 2014;9:86–88. doi: 10.1038/nnano.2014.8. PubMed DOI
Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI
Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI
Barthem VMTS, Colin CV, Mayaffre H, Julien MH, Givord D. Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nat. Commun. 2013;4:2892. doi: 10.1038/ncomms3892. PubMed DOI
Shick AB, Khmelevskyi S, Mryasov ON, Wunderlich J, Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Phys. Rev. B. 2010;81:212409. doi: 10.1103/PhysRevB.81.212409. DOI
Barthem VMTS, et al. Easy moment direction and antiferromagnetic domain wall motion in Mn2Au. J. Magn. Magn. Mater. 2016;406:289–292. doi: 10.1016/j.jmmm.2015.07.101. DOI
Han-Chun W, et al. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy. Adv. Mat. 2012;24:6374–6379. doi: 10.1002/adma.201202273. PubMed DOI
Han-Chun W, et al. Anomalous anisotropic magnetoresistance of antiferromagnetic epitaxial bimetallic films: Mn2Au and Mn2Au/Fe bilayers. Adv. Funct. Mat. 2016;26:5884–5892. doi: 10.1002/adfm.201601348. DOI
Jourdan M, et al. Epitaxial Mn2Au thin films for antiferromagnetic spintronics. J. Phys. D. 2015;48:385001. doi: 10.1088/0022-3727/48/38/385001. DOI
Thompson DA, Romankiw LT, Mayadas AF. Thin film magnetoresistors in memory, storage, and related applications. IEEE Trans. Magn. 1975;11:1039–1050. doi: 10.1109/TMAG.1975.1058786. DOI
Seemann KM, et al. Origin of the planar Hall effect in nanocrystalline Co60Fe20B20. Phys. Rev. Lett. 2011;107:086603. doi: 10.1103/PhysRevLett.107.086603. PubMed DOI
Železný J, et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets. Phys. Rev. B. 2017;95:014403. doi: 10.1103/PhysRevB.95.014403. DOI
Roy PE, Otxoa RM, Wunderlich J. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields. Phys. Rev. B. 2016;94:014439. doi: 10.1103/PhysRevB.94.014439. DOI
Šmejkal L, Železný J, Sinova J, Jungwirth T. Electric control of dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017;118:106402. doi: 10.1103/PhysRevLett.118.106402. PubMed DOI
De Ranieri E, et al. Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As. New. J. Phys. 2008;10:065003. doi: 10.1088/1367-2630/10/6/065003. DOI
Turek I, Kudrnovsky J, Drchal V. Ab initio theory of galvanomagnetic phenomena in ferromagnetic metals and disordered alloys. Phys. Rev. B. 2012;86:014405. doi: 10.1103/PhysRevB.86.014405. DOI
Turek I, Kudrnovsky J, Drchal V. Fermi sea term in the relativistic linear muffn-tin-orbital transport theory for random alloys. Phys. Rev. B. 2014;89:064405. doi: 10.1103/PhysRevB.89.064405. DOI
Turek I, Kudrnovsky J, Drchal V, Szunyogh L, Weinberger P. Interatomic electron transport by semiempirical and ab initio tight-binding approaches. Phys. Rev. B. 2002;65:125101. doi: 10.1103/PhysRevB.65.125101. DOI
Carva K, Turek I, Kudrnovský J, Bengone O. Disordered magnetic multilayers: Electron transport within the coherent potential approximation. Phys. Rev. B. 2006;73:144421. doi: 10.1103/PhysRevB.73.144421. DOI
FLEUR: The Jülich FLAPW code family. Available at: www.flapw.de (2017).
Shick AB, Khmelevskyi S, Mryasov ON, Wunderlich J, Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Phys. Rev. B. 2010;81:212409. doi: 10.1103/PhysRevB.81.212409. DOI
Vosko SH, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Khmelevskyi S, Mohn P. Layered antiferromagnetism with high Neel temperature in the intermetallic compound Mn2Au. Appl. Phys. Lett. 2008;93:162503. doi: 10.1063/1.3003878. DOI
Anisotropic magnetoresistance: materials, models and applications
Ultrashort spin-orbit torque generated by femtosecond laser pulses
Electrically induced and detected Néel vector reversal in a collinear antiferromagnet
Terahertz electrical writing speed in an antiferromagnetic memory