Negative Energy Balance Influences Nutritional Quality of Milk from Czech Fleckvieh Cows due Changes in Proportion of Fatty Acids
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QI91A061
Ministerstvo Zemědělství
specific research
Ministerstvo Školství, Mládeže a Tělovýchovy
CIGA20182002
Česká Zemědělská Univerzita v Praze
PubMed
32230933
PubMed Central
PMC7222402
DOI
10.3390/ani10040563
PII: ani10040563
Knihovny.cz E-zdroje
- Klíčová slova
- Czech Fleckvieh cows, body condition score, citric acid, lipo-mobilisation, nutritional value,
- Publikační typ
- časopisecké články MeSH
The objective of this study was to evaluate the influence of negative energy balance on fatty acids proportion in the milk of Czech Fleckvieh cows after calving. Milk quality was determined based on fatty acid group proportion. Milk quality was evaluated in relation to selected negative energy balance (NEB) traits: body condition change (DEC) and milk citric acid content (CAC) after calving. Milk samples (n = 992) were collected once per week from 248 Czech Fleckvieh cows during the first month of lactation. Fatty acid content (%) in milk samples was determined and results were grouped as saturated (SFA) (hypercholesterolemic or volatile fatty acids) or unsaturated (UFA) (monounsaturated or polyunsaturated). Our results showed that cows with a deep NEB produce milk that is healthier for human consumption. Cows with a more significant DEC or the highest level of CAC in milk had the lowest proportion of SFA and the highest proportion of UFA (p < 0.01). These cows experienced higher physiological stress after calving; however, they produced milk of higher nutritional quality. Nowadays, we can see preventive efforts to mitigate NEB periods as a result of modern breeding trends regarding vitality, robustness, or longevity.
Zobrazit více v PubMed
Singhal S., Baker R.D., Baker S.S. A comparison of the nutritional value of cow´s milk and nondairy beverages. J. Pediatr. Gastr. Nutr. 2017;64:799–805. doi: 10.1097/MPG.0000000000001380. PubMed DOI
Parodi P.W. Milk fat in human nutrition. Aust. J. Dairy Technol. 2004;59:3–59.
Samková E., Špička J., Pešek M., Pelikánová T., Hanuš O. Animal factors affecting fatty acid composition of cow milk fat: A review. S. Afr. J. Anim. Sci. 2012;42:83–100. doi: 10.4314/sajas.v42i2.1. DOI
Mele M., Macciotta N.P.P., Cecchinato A., Conte G., Schiavon S., Bittante G. Multivariate factor analysis of detailed milk fatty acid profile: Effects of dairy system, feeding, herd, parity, and stage of lactation. J. Dairy Sci. 2016;99:9820–9833. doi: 10.3168/jds.2016-11451. PubMed DOI
Staňková B., Kremmyda L.S., Tvrzická E., Žák A. Fatty Acid Composition of Commercially Available Nutrition Supplements. Czech J. Food Sci. 2013;31:241–248. doi: 10.17221/276/2012-CJFS. DOI
Marci E.V., Lifshitz F., Alsina E., Juiz N., Zaqo V., Lezón C., Rodriquez P.N., Schreier L., Boyer P.M., Friedman S.M. Monounsaturated fatty acids-rich diets in hypercholesterolemic-growing rats. Int. J. Food Sci. Nutr. 2015;66:400–408. doi: 10.3109/09637486.2015.1025719. PubMed DOI
Tripathi M.K. Effect of nutrition on production, composition, fatty acids and nutraceutical properties of milk. J. Adv. Dairy Res. 2014;2:1–11. doi: 10.4172/2329-888X.1000115. DOI
Bhagwat A.M., De Baets B., Steen A., Vlaeminck B., Fievez V. Prediction of ruminal volatile fatty acid proportion of lactating dairy cows based on milk odd- and branched-chain fatty acid profiles: New models, better predictions. J. Dairy Sci. 2012;95:3926–3937. doi: 10.3168/jds.2011-4850. PubMed DOI
Bauman D.E., Lock A.L. Milk fatty acid composition: Challenges and opportunities related to human health; Proceedings of the XXVI World Buiatrics Congress; Santiago, Chile. 14–18 November 2010; pp. 14–18.
Kus-Yamashita M.M.M., Mancini Filho J., Mcdonald B., Ravacci G., Rogero M.M., Santos R.D., Waitzberg D., Soledad Reyes M., Yehuda S., Gierke J., et al. Polyunsaturated Fatty Acids: Health Impacts. Eur. J. Nutr. Food Saf. 2016;6:111–131. doi: 10.9734/EJNFS/2016/23018. DOI
Hammad S., Pu S., Jones P.J. Current evidence supporting the link between dietary fatty acids and cardiovascular disease. Lipids. 2016;51:507–517. doi: 10.1007/s11745-015-4113-x. PubMed DOI
Zárate R., El Jaber-Vazdekis N., Tejera N., Pérez J.A., Rodríguez C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017;6:25. doi: 10.1186/s40169-017-0153-6. PubMed DOI PMC
Aldai N., de Renobales M., Barron L.J.R., Kramer J.K. What are the trans fatty acids issues in foods after discontinuation of industrially produced trans fats? Ruminant products, vegetable oils, and synthetic supplements. Eur. J. Lipid Sci. Technol. 2013;115:1378–1401. doi: 10.1002/ejlt.201300072. DOI
Rego O.A., Alves S.P., Antunes L.M.S., Rosa H.J.D., Alfaia C.F.M., Prates J.A.M., Cabrita A.R.J., Fonseca A.J.M., Bessa R.J.B. Rumen biohydrogenation-derived fatty acids in milk fat from grazing dairy cows supplemented with rapeseed, sunflower, or linseed oils. J. Dairy Sci. 2009;92:4530–4540. doi: 10.3168/jds.2009-2060. PubMed DOI
Stádník L., Ducháček J., Okrouhlá M., Ptáček M., Beran J., Stupka R., Zita L. The effect of parity on the proportion of important health fatty acids in raw milk of Holstein cows. Mljekarstvo. 2013;63:195–202.
Atasever S., Stádník L. Factors affecting daily milk yield, fat and protein percentage, and somatic cell count in primiparous Holstein cows. Indian J. Anim. Res. 2015;49:313–316. doi: 10.5958/0976-0555.2015.00048.5. DOI
Otwinowska-Mindur A., Ptak E., Grzesiak A. Factors affecting the freezing point of milk from Polish Holstein-Friesian cows. Ann. Anim. Sci. 2017;17:873–885. doi: 10.1515/aoas-2016-0088. DOI
Kadlecová V., Němečková D., Ječmínková K., Stádník L. Association of bovine DGAT1 and leptin genes polymorphism with milk production traits and energy balance indicators in primiparous Holstein cows. Mljekarstvo. 2014;64:19–26.
Fleming A., Schenkel F.S., Malchiodi F., Ali R.A., Mallard B., Sargozaei M., Jamrozik J., Johnston J., Miglior F. Genetic correlations of mid-infrared-predicted milk fatty acid groups with milk production traits. J. Dairy Sci. 2018;101:4295–4306. doi: 10.3168/jds.2017-14089. PubMed DOI
Thorup V.M., Chagunda M.G.G., Fischer A., Weisbjerg M.R., Friggens N.C. Robustness and sensitivity of a blueprint for on-farm estimation of dairy cow energy balance. J. Dairy Sci. 2018;101:6002–6018. doi: 10.3168/jds.2017-14290. PubMed DOI
Kuhla B., Metges C.C., Hammon H.M. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows. Domest. Anim. Endocrinol. 2016;56:S2–S10. doi: 10.1016/j.domaniend.2015.12.002. PubMed DOI
Colakoglu H.E., Polat I.M., Vural M.R., Kuplulu S., Pekcan M., Yazlik M.O., Baklaci C. Associations between leptin, body condition score, and energy metabolites in Holstein primiparous and multiparous cows from 2 to 8 weeks postpartum. Rev. Med. Vet. 2017;168:93–101.
Weber C., Hametner C., Tuchscherer A., Losand B., Kanitz E., Otten W., Singh S.P., Bruckmaier R.M., Becker F., Kanitz W., et al. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows. J. Dairy Sci. 2013;96:165–180. doi: 10.3168/jds.2012-5574. PubMed DOI
Mann S., Nydam D.V., Lock A.L., Overton T.R., McArt J.A.A. Short communication: Association of milk fatty acids with early lactation hyperketonemia and elevated concentration of nonesterified fatty acids. J. Dairy Sci. 2016;99:5851–5857. doi: 10.3168/jds.2016-10920. PubMed DOI
Beran J., Stádník L., Ducháček J., Okrouhlá M., Doležalová M., Kadlecová V., Ptáček M. Relationships among the cervical mucus urea and acetone, accuracy of insemination timing, and sperm survival in Holstein cows. Anim. Reprod. Sci. 2013;142:28–34. doi: 10.1016/j.anireprosci.2013.09.005. PubMed DOI
Akbar H., Grala T.M., Vailati Riboni M., Cardoso F.C., Verkerk G., McGowan J., Macdonald K., Webster J., Schutz K., Meier S., et al. Body condition score at calving affects systemic and hepatic transcriptome indicators of inflammation and nutrient metabolism in grazing dairy cows. J. Dairy Sci. 2015;98:1019–1032. doi: 10.3168/jds.2014-8584. PubMed DOI
Garnsworthy P.C., Masson L.L., Lock A.L., Mottram T.T. Variation of milk citrate with stage of lactation and de novo fatty acid synthesis in dairy cows. J. Dairy Sci. 2006;89:1604–1612. doi: 10.3168/jds.S0022-0302(06)72227-5. PubMed DOI
Larsen T., Moyes K.M. Are free glucose and glucose-6-phosphate in milk indicators of specific physiological states in the cow? Animal. 2015;9:86–93. doi: 10.1017/S1751731114002043. PubMed DOI
Xu Ch., Xia Ch., Sun Y., Xiao X., Wang G., Fan Z., Shu S., Zhang H., Xu Ch., Yang W. Metabolic profiles using 1H-nuclear magnetic resonance spectroscopy in postpartum dairy cows with ovarian inactivity. Theriogenology. 2016;86:1475–1481. doi: 10.1016/j.theriogenology.2016.05.005. PubMed DOI
Stádník L., Ducháček J., Beran J., Toušová R., Ptáček M. Relationships between milk fatty acids composition in early lactation and subsequent reproductive performance in Czech Fleckvieh cows. Anim. Reprod. Sci. 2015;155:75–79. doi: 10.1016/j.anireprosci.2015.02.002. PubMed DOI
Vukasinovic N., Bacciu N., Przybyla C.A., Boddhireddy P., DeNise S.K. Development of genetic and genomic evaluation for wellness traits in US Holstein cows. J. Dairy Sci. 2017;100:428–438. doi: 10.3168/jds.2016-11520. PubMed DOI
Gonzalez-Peña D., Vukasinovic N., Brooker J.J., Przybyla C.A., Baktula A., DeNise S.K. Genomic evaluation for wellness traits in US Jersey cattle. J. Dairy Sci. 2020;103:1735–1748. doi: 10.3168/jds.2019-16903. PubMed DOI
Haiger A. Life performance—The “Natural Selection Index”. Int. J. Biotech. Bioeng. 2018;4:102–105.
Obućinski D., Soleša D., Kučević D., Prodanović R., Tomaš Simin M., Ljubojević Pelić D., Duragić O., Puvača N. Management of blood lipid profile and oxidative status in Holstein and Simmental dairy cows during lactation. Mljekarstvo. 2019;69:116–124. doi: 10.15567/mljekarstvo.2019.0206. DOI
Fürst C., Pfeiffer C., Fürst-Waltl B. Fit, vital und leistungsstark-die neuen Zuchtziele für Fleckvieh und Braunvieh; Proceedings of the ZAR-SeminAR; Hoffterhof, Salzburg, Austria. 3 March 2016; pp. 41–48.
CRV, E-CHAPTERS. [(accessed on 18 December 2019)]; Available online: https://www.crv4all-international.com/downloads/background-information/e-chapters/
VanRaden P.M., Cole J.B., Gaddis K.P. Net Merit as a Measure of Lifetime Profit: 2014 Revision. Animal Improvement Programs Laboratory, ARS-USDA; Beltsville, MD, USA: 2018. [(accessed on 18 December 2019)]. Available online: https://www.aipl.arsusda.gov/reference/nmcalc-2018.htm.
Essl A. Longevity in dairy cattle breeding: A review. Livest. Prod. Sci. 1998;57:79–89. doi: 10.1016/S0301-6226(98)00160-2. DOI
Loor J.J., Bertoni G., Hosseini A., Roche J.R., Trevisi E. Functional welfare—Using biochemical and moleculartechnologies to understand better the welfare state ofperipartal dairy cattle. Anim. Prod. Sci. 2013;53:931–953. doi: 10.1071/AN12344. DOI
Ferguson J.D., Galligano D.T., Thomsen N. Principal descriptors of body condition score in Holstein cows. J. Dairy Sci. 1994;77:2695–2703. doi: 10.3168/jds.S0022-0302(94)77212-X. PubMed DOI
Genčurová V. PhD Thesis. Czech University of Life Sciences Prague; Prague, Czech Republic: 2008. The Study of Relationships of Direct and Indirect Analytical Methods for the Control of Basic Components and Properties of Milk.126p
ICAR (International Committee for Animal Recording) International Agreement of Recording Practices: Guidelines Approved by General Assembly. ICAR; Cork, Ireland: 2012. 580p
Kontkanen H., Rokka S., Kemppinen A., Miettinen H., Hellström J., Kruus K., Marnila P., Alatossava T., Korhonen H. Enzymatic and physical modification of milk fat: A review. Int. Dairy J. 2011;21:3–13. doi: 10.1016/j.idairyj.2010.05.003. DOI
Pešek M., Samková E., Špička J. Fatty acids and composition of their important groups in milk fat of Czech Pied cattle. Czech J. Anim. Sci. 2006;51:181–188. doi: 10.17221/3927-CJAS. DOI
SAS (Statistical Analysis System) SAS/STAT User’s Guide: Statistics. SAS Inc.; Cary, NC, USA: 2011. Version 9.3. Edition.
Samková E., Čertíková J., Špička J., Hanuš O., Pelikánová T., Kvač M. Eighteen-carbon fatty acids in milk fat of Czech Fleckvieh and Holstein cows following feeding with fresh lucerne (Medicago sativa L.) Anim. Sci. Pap. Rep. 2014;32:209–218.
Hanuš O., Frelich J., Tomášek M., Vyletělová M., Genčurová V., Kučera J., Třináctý J. The analysis of relationships between chemical composition, physical, technological and health indicators and freezing point in raw cow milk. Czech J. Anim. Sci. 2010;55:11–29. doi: 10.17221/1708-CJAS. DOI
O´Hara E.A., Omazic A., Olsson I., Båge R., Emanuelson U., Holtenius K. Effects of dry period length on milk production and energy balance in two cow breeds. Animal. 2018;12:508–514. doi: 10.1017/S1751731117001987. PubMed DOI
Bűnemann K., von Doosten D., Frahm J., Kersten S., Meyer U., Hummel J., Zeyner A., Dänicke S. Effects of body condtion and concentrate proportion of the ration on mobilization of fat depots and energy condition in dairy cows during early lactation based on ultrasonic measurements. Animals. 2019;94:131. doi: 10.3390/ani9040131. PubMed DOI PMC
Młynek K., Głowińska B., Salomończyk E., Tkaczuk J., Styś W. The effect of daily milk production on the milk composition and energy management indicators in Holstein-Friesian and Simmental cows. Turk. J. Vet. Anim. Sci. 2018;42:223–229. doi: 10.3906/vet-1711-31. DOI
Hanuš O., Křížová L., Samková E., Špička J., Kučera J., Klimešová M., Roubal P., Jedelská R. The effect of cattle breed, season and type of diet on the fatty acid profile of raw milk. Arch. Anim. Breed. 2016;59:373–380. doi: 10.5194/aab-59-373-2016. DOI
Lin Y., O´Mahony J.A., Kelly A.L., Guinee T.P. Seasonal variation in the composition and processing characteristics of herd milk with varying proportions of milk from spring-calving and autumn-calving cows. J. Dairy Res. 2017;84:1–9. doi: 10.1017/S0022029917000516. PubMed DOI
Dunshea F.R., Walker G.P., Williams R., Doyle P.T. Mineral and citrate concentrations in milk are affected by seasons, stage of lactation and management practices. Agriculture. 2019;9:25. doi: 10.3390/agriculture9020025. DOI
Bastin C., Gengler N., Soyeurt H. Phenotypic and genetic variability of production traits and milk fatty acid content across days in milk for Walloon Holstein first-parity cows. J. Dairy Sci. 2011;94:4152–4163. doi: 10.3168/jds.2010-4108. PubMed DOI
Roche J.R., Friggens N.C., Kay J.K., Fisher M.W., Stafford K.J., Berry D.P. Invited review: Body condition score and its association with dairy cow productivity, health, and welfare. J. Dairy Sci. 2009;92:5769–5801. doi: 10.3168/jds.2009-2431. PubMed DOI
Ducháček J., Stádník L., Ptáček M., Beran J., Okrouhlá M., Čítek J., Stupka R. Effect of cow energy status on the hypercholesterolaemic fatty acid proportion in raw milk. Czech J. Food Sci. 2014;32:273–279. doi: 10.17221/360/2013-CJFS. DOI
Qureshi M.S., Azeemi T.A. Dietary manipulations for enhancing cardio-protective fatty acids in the milk of dairy cows; Proceedings of the International Conference on Applied Life Sciences; Konya, Turkey. 10–12 September 2012; pp. 423–429.
Hayes B.J., Lewin H.A., Goddard M.E. The future of livestock breeding: Genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 2013;29:206–214. doi: 10.1016/j.tig.2012.11.009. PubMed DOI
Morvay Y., Bannink A., France J., Kebreab E., Dijkstra J. Evaluation of models to predict the stoichiometry of volatile fatty acid profiles in rumen fluid of lactating Holstein cows. J. Dairy Sci. 2011;94:3063–3080. doi: 10.3168/jds.2010-3995. PubMed DOI
Gross J.J., Bruckmaier R.M. Repeatability of metabolic responses to a nutrient deficiency in early and mid lactation and implications for robustness of dairy cows. J. Dairy Sci. 2015;98:8634–8643. doi: 10.3168/jds.2014-9246. PubMed DOI
Roche J.R., Berry D.P., Delaby L., Dillon P.G., Horan B., Macdonald K.A., Neal M. Review: New considerations to refine breeding objectives of dairy cows for increasing robustness and sustainability of grass-based milk production systems. Animal. 2018;12:S350–S362. doi: 10.1017/S1751731118002471. PubMed DOI
Stefani G., El Faro L., Santan Júnior M.L., Tonhati H. Association of longevity with type traits, milk yield and udder health in Holstein cows. Livest. Sci. 2018;218:1–7. doi: 10.1016/j.livsci.2018.10.007. DOI
Cole J.B., VanRaden P.M. Symposium review: Possibilities in an age of genomics: The future of selection indices. J. Dairy Sci. 2018;101:3686–3701. doi: 10.3168/jds.2017-13335. PubMed DOI
Kul E., Şahin A., Atasever S., Uğurlutepe E., Soydaner M. The effects of somatic cell count on milk yield and milk composition in Holstein cows. Vet. Arh. 2019;89:143–154. doi: 10.24099/vet.arhiv.0168. DOI