Synthesis of Acetobacter xylinum Bacterial Cellulose Aerogels and Their Effect on the Selected Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Reg. No. 21-32510 M
Czech Science Foundation (GACR)
PubMed
40277708
PubMed Central
PMC12026928
DOI
10.3390/gels11040272
PII: gels11040272
Knihovny.cz E-zdroje
- Klíčová slova
- Acetobacter xylinum bacteria, bacterial cellulose aerogel, lyophilization,
- Publikační typ
- časopisecké články MeSH
Bacterial cellulose (BC) synthesized by Acetobacter xylinum has gained significant attention due to its unique structural and functional properties. This study focuses on the simple, facile, and cost-effective synthesis of bacterial cellulose films from Acetobacter xylinum and evaluates their impact on selected properties. The BC films were prepared through a series of controlled fermentation, purification, and drying processes, optimizing their porosity and structural integrity with different stabilization forms (the BC films supported by polyester nonwoven (PES NW) fabric) by a static culture method keeping with the sustainability. The selected properties like density, porosity, surface roughness, thermal conductivity, and the wetting properties of surfaces are tested. These properties were chosen because they significantly impact the performance of BC aerogels in the potential application of aerogels in biomedical, insulation, and filtration industries. The results indicated that the synthesized BC aerogels exhibit a highly porous network, lightweight structure, and excellent thermal conductivity, making them suitable for advanced material applications. This research highlights the potential of bacterial cellulose aerogels as sustainable (without any additives/chemicals) and high-performance materials, paving the way for further advancements in bio-based aerogels.
Zobrazit více v PubMed
Rebelo A.R., Archer A.J., Chen X., Liu C., Yang G., Liu Y. Dehydration of Bacterial Cellulose and the Water Content Effects on Its Viscoelastic and Electrochemical Properties. Sci. Technol. Adv. Mater. 2018;19:203–211. doi: 10.1080/14686996.2018.1430981. PubMed DOI PMC
Choi S.M., Rao K.M., Zo S.M., Shin E.J., Han S.S. Bacterial Cellulose and Its Applications. Polymers. 2022;14:1080. doi: 10.3390/polym14061080. PubMed DOI PMC
Cazón P., Velázquez G., Vázquez M. Bacterial Cellulose Films: Evaluation of the Water Interaction. Food Packag. Shelf Life. 2020;25:100526. doi: 10.1016/j.fpsl.2020.100526. DOI
Nainggolan H., Gea S., Bilotti E., Peijs T., Hutagalung S.D. Mechanical and Thermal Properties of Bacterial-Cellulose-Fibre-Reinforced Mater-Bi® Bionanocomposite. Beilstein J. Nanotechnol. 2013;4:325–329. doi: 10.3762/bjnano.4.37. PubMed DOI PMC
Revin V.V., Nazarova N.B., Tsareva E.E., Liyaskina E.V., Revin V.D., Pestov N.A. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020;8:603407. PubMed PMC
Hussain Z., Sajjad W., Khan T., Wahid F. Production of Bacterial Cellulose from Industrial Wastes: A Review. Cellulose. 2019;26:2895–2911. doi: 10.1007/s10570-019-02307-1. DOI
Abol-Fotouh D., Hassan M.A., Shokry H., Roig A., Azab M.S., Kashyout A.E.-H.B. Bacterial Nanocellulose from Agro-Industrial Wastes: Low-Cost and Enhanced Production by Komagataeibacter saccharivorans MD1. Sci. Rep. 2020;10:3491. doi: 10.1038/s41598-020-60315-9. PubMed DOI PMC
Barja F. Bacterial Nanocellulose Production and Biomedical Applications. J. Biomed. Res. 2021;35:310–317. doi: 10.7555/JBR.35.20210036. PubMed DOI PMC
Tsouko E., Pilafidis S., Kourmentza K., Gomes H.I., Sarris G., Koralli P., Papagiannopoulos A., Pispas S., Sarris D. A Sustainable Bioprocess to Produce Bacterial Cellulose (BC) Using Waste Streams from Wine Distilleries and the Biodiesel Industry: Evaluation of BC for Adsorption of Phenolic Compounds, Dyes and Metals. Biotechnol. Biofuels Bioprod. 2024;17:40. doi: 10.1186/s13068-024-02488-3. PubMed DOI PMC
Surma-Ślusarska B., Presler S., Danielewicz D. Characteristics of Bacterial Cellulose Obtained from Acetobacter Xylinum Culture for Application in Papermaking. Fibres Text. East. Eur. 2008;16:108–111.
Vasconcellos V., Farinas C. The Effect of the Drying Process on the Properties of Bacterial Cellulose Films from Gluconacetobacter Hansenii. Chem. Eng. Trans. 2018;64:145–150. doi: 10.3303/CET1864025. DOI
Illa M.P., Sharma C.S., Khandelwal M. Tuning the Physiochemical Properties of Bacterial Cellulose: Effect of Drying Conditions. J. Mater. Sci. 2019;54:12024–12035. doi: 10.1007/s10853-019-03737-9. DOI
Zhang X., Yu Y., Jiang Z., Wang H. The Effect of Freezing Speed and Hydrogel Concentration on the Microstructure and Compressive Performance of Bamboo-Based Cellulose Aerogel. J. Wood Sci. 2015;61:595–601. doi: 10.1007/s10086-015-1514-7. DOI
Ruan J.-Q., Xie K.-Y., Wan J.-N., Chen Q.-Y., Zuo X., Li X., Wu X., Fei C., Yao S. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Gels. 2024;10:141. doi: 10.3390/gels10020141. PubMed DOI PMC
Mohamad S., Abdullah L.C., Jamari S.S., Al Edrus S.S.O., Aung M.M., Mohamad S.F.S. Influence of Drying Method on the Crystal Structure and Thermal Property of Oil Palm Frond Juice-Based Bacterial Cellulose. J. Mater. Sci. 2022;57:1462–1473. doi: 10.1007/s10853-021-06685-5. DOI
Liebner F., Potthast A., Rosenau T., Haimer E., Wendland M. Cellulose Aerogels: Highly Porous, Ultra-Lightweight Materials. Holzforschung. 2008;62:129–135. doi: 10.1515/HF.2008.051. DOI
Liebner F., Haimer E., Wendland M., Neouze M.-A., Schlufter K., Miethe P., Heinze T., Potthast A., Rosenau T. Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels. Macromol. Biosci. 2010;10:349–352. doi: 10.1002/mabi.200900371. PubMed DOI
Zeng M., Laromaine A., Roig A. Bacterial Cellulose Films: Influence of Bacterial Strain and Drying Route on Film Properties. Cellulose. 2014;21:4455–4469. doi: 10.1007/s10570-014-0408-y. DOI
Al-shamary E.E., Al-Darwash A.K. Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes. TOJSAT. 2016;3:194–203.
Jiang F., Hsieh Y.-L. Super Water Absorbing and Shape Memory Nanocellulose Aerogels from TEMPO-Oxidized Cellulose Nanofibrils via Cyclic Freezing–Thawing. J. Mater. Chem. A. 2013;2:350–359. doi: 10.1039/C3TA13629A. DOI
Hamsan M.H., Halim N.A., Demon S.Z.N., Sa’aya N.S.N., Kadir M.F.Z., Abidin Z.H.Z., Poad N.A., Kasim N.F.A., Razali N.A.M., Aziz S.B., et al. SCOBY-Based Bacterial Cellulose as Free Standing Electrodes for Safer, Greener and Cleaner Energy Storage Technology. Heliyon. 2022;8:e11048. doi: 10.1016/j.heliyon.2022.e11048. PubMed DOI PMC
Maryati Y., Melanie H., Handayani W., Yasman Y. Bacterial Cellulose Production from Fermented Fruits and Vegetables Byproducts: A Comprehensive Study on Chemical and Morphological Properties. Karbala Int. J. Mod. Sci. 2024;10:7. doi: 10.33640/2405-609X.3376. DOI
Chan C.-W., Carson L., Smith G.C., Morelli A., Lee S. Enhancing the Antibacterial Performance of Orthopaedic Implant Materials by Fibre Laser Surface Engineering. Appl. Surf. Sci. 2017;404:67–81. doi: 10.1016/j.apsusc.2017.01.233. DOI
Tiainen L., Abreu P., Buciumeanu M., Silva F., Gasik M., Serna Guerrero R., Carvalho O. Novel Laser Surface Texturing for Improved Primary Stability of Titanium Implants. J. Mech. Behav. Biomed. Mater. 2019;98:26–39. doi: 10.1016/j.jmbbm.2019.04.052. PubMed DOI
Samanta A., Wang Q., Shaw S.K., Ding H. Roles of Chemistry Modification for Laser Textured Metal Alloys to Achieve Extreme Surface Wetting Behaviors. Mater. Des. 2020;192:108744. doi: 10.1016/j.matdes.2020.108744. PubMed DOI
Venkataraman M., Mishra R., Militky J., Kremenakova D., Michal P. Aerogel Based High Performance Thermal Insulation Materials. IOP Conf. Ser. Mater. Sci. Eng. 2019;553:012043. doi: 10.1088/1757-899X/553/1/012043. DOI
Riveiro A., Maçon A.L.B., del Val J., Comesaña R., Pou J. Laser Surface Texturing of Polymers for Biomedical Applications. Front. Phys. 2018;6:16. doi: 10.3389/fphy.2018.00016. DOI
Pirzada T., Ashrafi Z., Xie W., Khan S.A. Cellulose Silica Hybrid Nanofiber Aerogels: From Sol–Gel Electrospun Nanofibers to Multifunctional Aerogels. Adv. Funct. Mater. 2020;30:1907359. doi: 10.1002/adfm.201907359. DOI
Gilmour K.A., Aljannat M., Markwell C., James P., Scott J., Jiang Y., Torun H., Dade-Robertson M., Zhang M. Biofilm Inspired Fabrication of Functional Bacterial Cellulose through Ex-Situ and in-Situ Approaches. Carbohydr. Polym. 2023;304:120482. doi: 10.1016/j.carbpol.2022.120482. PubMed DOI
Galdino C.J.S., Maia A.D., Meira H.M., Souza T.C., Amorim J.D.P., Almeida F.C.G., Costa A.F.S., Sarubbo L.A. Use of a Bacterial Cellulose Filter for the Removal of Oil from Wastewater. Process Biochem. 2020;91:288–296. doi: 10.1016/j.procbio.2019.12.020. DOI
Venkataraman M., Mishra R., Kotresh T.M., Sakoi T., Militky J. Effect of Compressibility on Heat Transport Phenomena in Aerogel-Treated Nonwoven Fabrics. J. Text. Inst. 2016;107:1150–1158. doi: 10.1080/00405000.2015.1097084. DOI
Revin V.V., Pestov N.A., Shchankin M.V., Mishkin V.P., Platonov V.I., Uglanov D.A. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose. Biomacromolecules. 2019;20:1401–1411. doi: 10.1021/acs.biomac.8b01816. PubMed DOI
Sozcu S., Frajova J., Wiener J., Venkataraman M., Tomkova B., Militky J. Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel. Gels. 2024;10:474. doi: 10.3390/gels10070474. PubMed DOI PMC
Sozcu S., Venkataraman M., Wiener J., Tomkova B., Militky J., Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. Materials. 2024;17:27. doi: 10.3390/ma17010027. PubMed DOI PMC
Fan W., Zhang X., Zhang Y., Zhang Y., Liu T. Lightweight, Strong, and Super-Thermal Insulating Polyimide Composite Aerogels under High Temperature. Compos. Sci. Technol. 2019;173:47–52. doi: 10.1016/j.compscitech.2019.01.025. DOI
Zhang X., Zhao X., Xue T., Yang F., Fan W., Liu T. Bidirectional Anisotropic Polyimide/Bacterial Cellulose Aerogels by Freeze-Drying for Super-Thermal Insulation. Chem. Eng. J. 2020;385:123963. doi: 10.1016/j.cej.2019.123963. DOI
Onofrei E., Rocha A.M., Catarino A. The Influence of Knitted Fabrics’ Structure on the Thermal and Moisture Management Properties. J. Eng. Fibers Fabr. 2011;6:10–22. doi: 10.1177/155892501100600403. DOI
Gerzhova N., Côté J., Blanchet P., Dagenais C., Ménard S. A Conceptual Framework for Modelling the Thermal Conductivity of Dry Green Roof Substrates. BioResources. 2019;14:8573–8599. doi: 10.15376/biores.14.4.8573-8599. DOI
Thermal Conductivity and Resistivity. Wikipedia; San Francisco, CA, USA: 2025.
Fleury B., Abraham E., De La Cruz J.A., Chandrasekar V.S., Senyuk B., Liu Q., Cherpak V., Park S., ten Hove J.B., Smalyukh I.I. Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes. ACS Appl. Mater. Interfaces. 2020;12:34115–34121. doi: 10.1021/acsami.0c08879. PubMed DOI
Hes L. Proceedings of Congress Index. United States Senate; Washington, DC, USA: 1987. Thermal Properties of Nonwovens.
Mao N. 6—Methods for Characterisation of Nonwoven Structure, Property, and Performance. In: Kellie G., editor. Advances in Technical Nonwovens. Woodhead Publishing; Sawston, UK: 2016. pp. 155–211. (Woodhead Publishing Series in Textiles).
Dolezal I., Hes L., Bal K. A Non-Destructive Single Plate Method for Measurement of Thermal Resistance of Polymer Sheets and Fabrics. Int. J. Occup. Saf. Ergon. 2019;25:562–567. doi: 10.1080/10803548.2018.1477247. PubMed DOI