Synthesis of Acetobacter xylinum Bacterial Cellulose Aerogels and Their Effect on the Selected Properties

. 2025 Apr 05 ; 11 (4) : . [epub] 20250405

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40277708

Grantová podpora
Reg. No. 21-32510 M Czech Science Foundation (GACR)

Bacterial cellulose (BC) synthesized by Acetobacter xylinum has gained significant attention due to its unique structural and functional properties. This study focuses on the simple, facile, and cost-effective synthesis of bacterial cellulose films from Acetobacter xylinum and evaluates their impact on selected properties. The BC films were prepared through a series of controlled fermentation, purification, and drying processes, optimizing their porosity and structural integrity with different stabilization forms (the BC films supported by polyester nonwoven (PES NW) fabric) by a static culture method keeping with the sustainability. The selected properties like density, porosity, surface roughness, thermal conductivity, and the wetting properties of surfaces are tested. These properties were chosen because they significantly impact the performance of BC aerogels in the potential application of aerogels in biomedical, insulation, and filtration industries. The results indicated that the synthesized BC aerogels exhibit a highly porous network, lightweight structure, and excellent thermal conductivity, making them suitable for advanced material applications. This research highlights the potential of bacterial cellulose aerogels as sustainable (without any additives/chemicals) and high-performance materials, paving the way for further advancements in bio-based aerogels.

Zobrazit více v PubMed

Rebelo A.R., Archer A.J., Chen X., Liu C., Yang G., Liu Y. Dehydration of Bacterial Cellulose and the Water Content Effects on Its Viscoelastic and Electrochemical Properties. Sci. Technol. Adv. Mater. 2018;19:203–211. doi: 10.1080/14686996.2018.1430981. PubMed DOI PMC

Choi S.M., Rao K.M., Zo S.M., Shin E.J., Han S.S. Bacterial Cellulose and Its Applications. Polymers. 2022;14:1080. doi: 10.3390/polym14061080. PubMed DOI PMC

Cazón P., Velázquez G., Vázquez M. Bacterial Cellulose Films: Evaluation of the Water Interaction. Food Packag. Shelf Life. 2020;25:100526. doi: 10.1016/j.fpsl.2020.100526. DOI

Nainggolan H., Gea S., Bilotti E., Peijs T., Hutagalung S.D. Mechanical and Thermal Properties of Bacterial-Cellulose-Fibre-Reinforced Mater-Bi® Bionanocomposite. Beilstein J. Nanotechnol. 2013;4:325–329. doi: 10.3762/bjnano.4.37. PubMed DOI PMC

Revin V.V., Nazarova N.B., Tsareva E.E., Liyaskina E.V., Revin V.D., Pestov N.A. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020;8:603407. PubMed PMC

Hussain Z., Sajjad W., Khan T., Wahid F. Production of Bacterial Cellulose from Industrial Wastes: A Review. Cellulose. 2019;26:2895–2911. doi: 10.1007/s10570-019-02307-1. DOI

Abol-Fotouh D., Hassan M.A., Shokry H., Roig A., Azab M.S., Kashyout A.E.-H.B. Bacterial Nanocellulose from Agro-Industrial Wastes: Low-Cost and Enhanced Production by Komagataeibacter saccharivorans MD1. Sci. Rep. 2020;10:3491. doi: 10.1038/s41598-020-60315-9. PubMed DOI PMC

Barja F. Bacterial Nanocellulose Production and Biomedical Applications. J. Biomed. Res. 2021;35:310–317. doi: 10.7555/JBR.35.20210036. PubMed DOI PMC

Tsouko E., Pilafidis S., Kourmentza K., Gomes H.I., Sarris G., Koralli P., Papagiannopoulos A., Pispas S., Sarris D. A Sustainable Bioprocess to Produce Bacterial Cellulose (BC) Using Waste Streams from Wine Distilleries and the Biodiesel Industry: Evaluation of BC for Adsorption of Phenolic Compounds, Dyes and Metals. Biotechnol. Biofuels Bioprod. 2024;17:40. doi: 10.1186/s13068-024-02488-3. PubMed DOI PMC

Surma-Ślusarska B., Presler S., Danielewicz D. Characteristics of Bacterial Cellulose Obtained from Acetobacter Xylinum Culture for Application in Papermaking. Fibres Text. East. Eur. 2008;16:108–111.

Vasconcellos V., Farinas C. The Effect of the Drying Process on the Properties of Bacterial Cellulose Films from Gluconacetobacter Hansenii. Chem. Eng. Trans. 2018;64:145–150. doi: 10.3303/CET1864025. DOI

Illa M.P., Sharma C.S., Khandelwal M. Tuning the Physiochemical Properties of Bacterial Cellulose: Effect of Drying Conditions. J. Mater. Sci. 2019;54:12024–12035. doi: 10.1007/s10853-019-03737-9. DOI

Zhang X., Yu Y., Jiang Z., Wang H. The Effect of Freezing Speed and Hydrogel Concentration on the Microstructure and Compressive Performance of Bamboo-Based Cellulose Aerogel. J. Wood Sci. 2015;61:595–601. doi: 10.1007/s10086-015-1514-7. DOI

Ruan J.-Q., Xie K.-Y., Wan J.-N., Chen Q.-Y., Zuo X., Li X., Wu X., Fei C., Yao S. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Gels. 2024;10:141. doi: 10.3390/gels10020141. PubMed DOI PMC

Mohamad S., Abdullah L.C., Jamari S.S., Al Edrus S.S.O., Aung M.M., Mohamad S.F.S. Influence of Drying Method on the Crystal Structure and Thermal Property of Oil Palm Frond Juice-Based Bacterial Cellulose. J. Mater. Sci. 2022;57:1462–1473. doi: 10.1007/s10853-021-06685-5. DOI

Liebner F., Potthast A., Rosenau T., Haimer E., Wendland M. Cellulose Aerogels: Highly Porous, Ultra-Lightweight Materials. Holzforschung. 2008;62:129–135. doi: 10.1515/HF.2008.051. DOI

Liebner F., Haimer E., Wendland M., Neouze M.-A., Schlufter K., Miethe P., Heinze T., Potthast A., Rosenau T. Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels. Macromol. Biosci. 2010;10:349–352. doi: 10.1002/mabi.200900371. PubMed DOI

Zeng M., Laromaine A., Roig A. Bacterial Cellulose Films: Influence of Bacterial Strain and Drying Route on Film Properties. Cellulose. 2014;21:4455–4469. doi: 10.1007/s10570-014-0408-y. DOI

Al-shamary E.E., Al-Darwash A.K. Influence of Fermentation Condition and Alkali Treatment on the Porosity and Thickness of Bacterial Cellulose Membranes. TOJSAT. 2016;3:194–203.

Jiang F., Hsieh Y.-L. Super Water Absorbing and Shape Memory Nanocellulose Aerogels from TEMPO-Oxidized Cellulose Nanofibrils via Cyclic Freezing–Thawing. J. Mater. Chem. A. 2013;2:350–359. doi: 10.1039/C3TA13629A. DOI

Hamsan M.H., Halim N.A., Demon S.Z.N., Sa’aya N.S.N., Kadir M.F.Z., Abidin Z.H.Z., Poad N.A., Kasim N.F.A., Razali N.A.M., Aziz S.B., et al. SCOBY-Based Bacterial Cellulose as Free Standing Electrodes for Safer, Greener and Cleaner Energy Storage Technology. Heliyon. 2022;8:e11048. doi: 10.1016/j.heliyon.2022.e11048. PubMed DOI PMC

Maryati Y., Melanie H., Handayani W., Yasman Y. Bacterial Cellulose Production from Fermented Fruits and Vegetables Byproducts: A Comprehensive Study on Chemical and Morphological Properties. Karbala Int. J. Mod. Sci. 2024;10:7. doi: 10.33640/2405-609X.3376. DOI

Chan C.-W., Carson L., Smith G.C., Morelli A., Lee S. Enhancing the Antibacterial Performance of Orthopaedic Implant Materials by Fibre Laser Surface Engineering. Appl. Surf. Sci. 2017;404:67–81. doi: 10.1016/j.apsusc.2017.01.233. DOI

Tiainen L., Abreu P., Buciumeanu M., Silva F., Gasik M., Serna Guerrero R., Carvalho O. Novel Laser Surface Texturing for Improved Primary Stability of Titanium Implants. J. Mech. Behav. Biomed. Mater. 2019;98:26–39. doi: 10.1016/j.jmbbm.2019.04.052. PubMed DOI

Samanta A., Wang Q., Shaw S.K., Ding H. Roles of Chemistry Modification for Laser Textured Metal Alloys to Achieve Extreme Surface Wetting Behaviors. Mater. Des. 2020;192:108744. doi: 10.1016/j.matdes.2020.108744. PubMed DOI

Venkataraman M., Mishra R., Militky J., Kremenakova D., Michal P. Aerogel Based High Performance Thermal Insulation Materials. IOP Conf. Ser. Mater. Sci. Eng. 2019;553:012043. doi: 10.1088/1757-899X/553/1/012043. DOI

Riveiro A., Maçon A.L.B., del Val J., Comesaña R., Pou J. Laser Surface Texturing of Polymers for Biomedical Applications. Front. Phys. 2018;6:16. doi: 10.3389/fphy.2018.00016. DOI

Pirzada T., Ashrafi Z., Xie W., Khan S.A. Cellulose Silica Hybrid Nanofiber Aerogels: From Sol–Gel Electrospun Nanofibers to Multifunctional Aerogels. Adv. Funct. Mater. 2020;30:1907359. doi: 10.1002/adfm.201907359. DOI

Gilmour K.A., Aljannat M., Markwell C., James P., Scott J., Jiang Y., Torun H., Dade-Robertson M., Zhang M. Biofilm Inspired Fabrication of Functional Bacterial Cellulose through Ex-Situ and in-Situ Approaches. Carbohydr. Polym. 2023;304:120482. doi: 10.1016/j.carbpol.2022.120482. PubMed DOI

Galdino C.J.S., Maia A.D., Meira H.M., Souza T.C., Amorim J.D.P., Almeida F.C.G., Costa A.F.S., Sarubbo L.A. Use of a Bacterial Cellulose Filter for the Removal of Oil from Wastewater. Process Biochem. 2020;91:288–296. doi: 10.1016/j.procbio.2019.12.020. DOI

Venkataraman M., Mishra R., Kotresh T.M., Sakoi T., Militky J. Effect of Compressibility on Heat Transport Phenomena in Aerogel-Treated Nonwoven Fabrics. J. Text. Inst. 2016;107:1150–1158. doi: 10.1080/00405000.2015.1097084. DOI

Revin V.V., Pestov N.A., Shchankin M.V., Mishkin V.P., Platonov V.I., Uglanov D.A. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose. Biomacromolecules. 2019;20:1401–1411. doi: 10.1021/acs.biomac.8b01816. PubMed DOI

Sozcu S., Frajova J., Wiener J., Venkataraman M., Tomkova B., Militky J. Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel. Gels. 2024;10:474. doi: 10.3390/gels10070474. PubMed DOI PMC

Sozcu S., Venkataraman M., Wiener J., Tomkova B., Militky J., Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. Materials. 2024;17:27. doi: 10.3390/ma17010027. PubMed DOI PMC

Fan W., Zhang X., Zhang Y., Zhang Y., Liu T. Lightweight, Strong, and Super-Thermal Insulating Polyimide Composite Aerogels under High Temperature. Compos. Sci. Technol. 2019;173:47–52. doi: 10.1016/j.compscitech.2019.01.025. DOI

Zhang X., Zhao X., Xue T., Yang F., Fan W., Liu T. Bidirectional Anisotropic Polyimide/Bacterial Cellulose Aerogels by Freeze-Drying for Super-Thermal Insulation. Chem. Eng. J. 2020;385:123963. doi: 10.1016/j.cej.2019.123963. DOI

Onofrei E., Rocha A.M., Catarino A. The Influence of Knitted Fabrics’ Structure on the Thermal and Moisture Management Properties. J. Eng. Fibers Fabr. 2011;6:10–22. doi: 10.1177/155892501100600403. DOI

Gerzhova N., Côté J., Blanchet P., Dagenais C., Ménard S. A Conceptual Framework for Modelling the Thermal Conductivity of Dry Green Roof Substrates. BioResources. 2019;14:8573–8599. doi: 10.15376/biores.14.4.8573-8599. DOI

Thermal Conductivity and Resistivity. Wikipedia; San Francisco, CA, USA: 2025.

Fleury B., Abraham E., De La Cruz J.A., Chandrasekar V.S., Senyuk B., Liu Q., Cherpak V., Park S., ten Hove J.B., Smalyukh I.I. Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes. ACS Appl. Mater. Interfaces. 2020;12:34115–34121. doi: 10.1021/acsami.0c08879. PubMed DOI

Hes L. Proceedings of Congress Index. United States Senate; Washington, DC, USA: 1987. Thermal Properties of Nonwovens.

Mao N. 6—Methods for Characterisation of Nonwoven Structure, Property, and Performance. In: Kellie G., editor. Advances in Technical Nonwovens. Woodhead Publishing; Sawston, UK: 2016. pp. 155–211. (Woodhead Publishing Series in Textiles).

Dolezal I., Hes L., Bal K. A Non-Destructive Single Plate Method for Measurement of Thermal Resistance of Polymer Sheets and Fabrics. Int. J. Occup. Saf. Ergon. 2019;25:562–567. doi: 10.1080/10803548.2018.1477247. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...