Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
Reg. No. 21-32510 M
Czech Science Foundation
PubMed
39057497
PubMed Central
PMC11276278
DOI
10.3390/gels10070474
PII: gels10070474
Knihovny.cz E-resources
- Keywords
- bacterial cellulose hydrogel, drying methods, lyophilization, structure, thermal and mechanical behavior,
- Publication type
- Journal Article MeSH
- Review MeSH
Bacterial cellulose (BC) presents significant promise as a biomaterial, boasting unique qualities such as exceptional cellulose purity, robust mechanical strength, heightened crystalline structure, and biodegradability. Several studies have highlighted specific effects, such as the impact of dehydration/rehydration on BC tensile strength, the influence of polymer treatment methods on mechanical properties, the correlation between microorganism type, drying method, and Young's modulus value, and the relationship between culture medium composition, pH, and crystallinity. Drying methods are crucial to the structure, performance, and application of BC films. Research findings indicate that the method used for drying can influence the mechanical properties of BC films, including parameters such as tensile strength, Young's modulus, and water absorption capacity, as well as the micromorphology, crystallinity, and thermal characteristics of the material. Their versatility makes them potential biomaterials applicable in various fields, including thermal and acoustic insulation, owing to their distinct thermal and mechanical attributes. This review delves into the thermal and mechanical behavior of bacterial cellulose aerogels, which are profoundly impacted by their drying mechanism.
See more in PubMed
Ummartyotin S., Manuspiya H. A critical review on cellulose: From fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 2015;41:402–412. doi: 10.1016/j.rser.2014.08.050. DOI
Hamedi H., Moradi S., Hudson S.M., Tonelli A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018;199:445–460. doi: 10.1016/j.carbpol.2018.06.114. PubMed DOI
Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI
Chunshom N., Chuysinuan P., Thanyacharoen T., Techasakul S., Ummartyotin S. Development of gallic acid/cyclodextrin inclusion complex in freeze-dried bacterial cellulose and poly (vinyl alcohol) hydrogel: Controlled-release characteristic and antioxidant properties. Mater. Chem. Phys. 2019;232:294–300. doi: 10.1016/j.matchemphys.2019.04.070. DOI
Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI
Ciolacu D.E., Suflet D.M. 11-Cellulose-Based Hydrogels for Medical/Pharmaceutical Applications. In: Popa V., Volf I., editors. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. Elsevier; Amsterdam, The Netherlands: 2018. pp. 401–439. DOI
Hu M.-X., Niu H.-M., Chen X.-L., Zhan H.-B. Natural cellulose microfiltration membranes for oil/water nanoemulsions separation. Colloids Surf. Physicochem. Eng. Asp. 2019;564:142–151. doi: 10.1016/j.colsurfa.2018.12.045. DOI
Li Q., Wang Y., Wu Y., He K., Li Y., Luo X., Li B., Wang C., Liu S. Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocoll. 2019;88:180–189. doi: 10.1016/j.foodhyd.2018.09.039. DOI
Moise I.V., Manea M.M., Vasilca S., Pintilie C., Virgolici M., Cutrubinis M., Stanculescu I.R., Meltzer V. The crosslinking behaviour of cellulose in gamma irradiated paper. Polym. Degrad. Stab. 2019;160:53–59. doi: 10.1016/j.polymdegradstab.2018.12.005. DOI
Mangiante G., Alcouffe P., Gaborieau M., Zeno E., Petit-Conil M., Bernard J., Charlot A., Fleury E. Biohybrid cellulose fibers: Toward paper materials with wet strength properties. Carbohydr. Polym. 2018;193:353–361. doi: 10.1016/j.carbpol.2018.04.009. PubMed DOI
Andriani D., Apriyana A.Y., Karina M. The optimization of bacterial cellulose production and its applications: A review. Cellulose. 2020;27:6747–6766. doi: 10.1007/s10570-020-03273-9. DOI
Yan M., Fu Y., Pan Y., Cheng X., Gong L., Zhou Y., Ahmed H., Zhang H. Highly elastic and fatigue resistant wood/silica composite aerogel operated at extremely low temperature. Compos. Part B Eng. 2022;230:109496. doi: 10.1016/j.compositesb.2021.109496. DOI
Hoseini A., McCague C., Andisheh-Tadbir M., Bahrami M. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis. Int. J. Heat Mass Transf. 2016;93:1124–1131. doi: 10.1016/j.ijheatmasstransfer.2015.11.030. DOI
Sambucci M., Savoni F., Valente M. Aerogel Technology for Thermal Insulation of Cryogenic Tanks—Numerical Analysis for Comparison with Traditional Insulating Materials. Gels. 2023;9:307. doi: 10.3390/gels9040307. PubMed DOI PMC
Jiang Y., Chowdhury S., Balasubramanian R. New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels. J. Colloid Interface Sci. 2019;534:574–585. doi: 10.1016/j.jcis.2018.09.064. PubMed DOI
Nguyen B.N., Meador M.A.B., Scheiman D., McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces. 2017;9:27313–27321. doi: 10.1021/acsami.7b07821. PubMed DOI
Zhu F. Starch based aerogels: Production, properties and applications. Trends Food Sci. Technol. 2019;89:1–10. doi: 10.1016/j.tifs.2019.05.001. DOI
Abdul Khalil H.P.S., Adnan A.S., Yahya E.B., Olaiya N.G., Safrida S., Hossain M.S., Balakrishnan V., Gopakumar D.A., Abdullah C.K., Oyekanmi A.A., et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers. 2020;12:1759. doi: 10.3390/polym12081759. PubMed DOI PMC
Sozcu S., Venkataraman M., Wiener J., Tomkova B., Militky J., Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. Materials. 2024;17:27. doi: 10.3390/ma17010027. PubMed DOI PMC
Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC
Long L.-Y., Weng Y.-X., Wang Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers. 2018;10:623. doi: 10.3390/polym10060623. PubMed DOI PMC
Yang W.-J., Yuen A.C.Y., Li A., Lin B., Chen T.B.Y., Yang W., Lu H.-D., Yeoh G.H. Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose. 2019;26:6449–6476. doi: 10.1007/s10570-019-02559-x. DOI
Jonas R., Farah L.F. Production and application of microbial cellulose. Polym. Degrad. Stab. 1998;59:101–106. doi: 10.1016/S0141-3910(97)00197-3. DOI
Pa’e N., Salehudin M.H., Hassan N.D., Marsin A.M., Muhamad I.I. Thermal Behavior of Bacterial Cellulose-Based Hydrogels with Other Composites and Related Instrumental Analysis. In: Mondal M.I.H., editor. Cellulose-Based Superabsorbent Hydrogels. Springer International Publishing; Cham, Switzerland: 2019. pp. 763–787. DOI
Pecoraro É., Manzani D., Messaddeq Y., Ribeiro S.J.L. Chapter 17-Bacterial Cellulose from Glucanacetobacter xylinus: Preparation, Properties and Applications. In: Belgacem M.N., Gandini A., editors. Monomers, Polymers and Composites from Renewable Resources. Elsevier; Amsterdam, The Netherlands: 2007. pp. 369–383. DOI
Mehrotra R., Sharma S., Shree N., Kaur K. Bacterial Cellulose: An Ecological Alternative as a Biotextile. Biosci. Biotechnol. Res. Asia. 2023;20:449–463. doi: 10.13005/bbra/3101. DOI
Stanisławska A., Staroszczyk H., Szkodo M. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydr. Polym. 2020;236:116023. doi: 10.1016/j.carbpol.2020.116023. PubMed DOI
Indriyati I., Irmawati Y., Puspitasari T. Comparative Study of Bacterial Cellulose Film Dried Using Microwave and Air Convection Heating. J. Eng. Technol. Sci. 2019;51:121–132. doi: 10.5614/j.eng.technol.sci.2019.51.1.8. DOI
Illa M.P., Sharma C.S., Khandelwal M. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions. J. Mater. Sci. 2019;54:12024–12035. doi: 10.1007/s10853-019-03737-9. DOI
Erbas Kiziltas E., Kiziltas A., Gardner D.J. Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 2015;124:131–138. doi: 10.1016/j.carbpol.2015.01.036. PubMed DOI
Dai L., Nan J., Tu X., He L., Wei B., Xu C., Xu Y., Li S., Wang H., Zhang J. Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose. 2019;26:6713–6724. doi: 10.1007/s10570-019-02530-w. DOI
Zhang C., Wang L., Zhao J., Zhu P. Effect of Drying Methods on Structure and Mechanical Properties of Bacterial Cellulose Films. Adv. Mater. Res. 2011;239–242:2667–2670. doi: 10.4028/www.scientific.net/AMR.239-242.2667. DOI
Vasconcellos V., Farinas C. The effect of the drying process on the properties of bacterial cellulose films from gluconacetobacter hansenii. Chem. Eng. Trans. 2018;64:145–150. doi: 10.3303/CET1864025. DOI
Choi S.M., Rao K.M., Zo S.M., Shin E.J., Han S.S. Bacterial Cellulose and Its Applications. Polymers. 2022;14:1080. doi: 10.3390/polym14061080. PubMed DOI PMC
Urbina L., Corcuera M.Á., Gabilondo N., Eceiza A., Retegi A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose. 2021;28:8229–8253. doi: 10.1007/s10570-021-04020-4. DOI
Betlej I., Zakaria S., Krajewski K., Boruszewski P. Bacterial Cellulose-Properties and Its Potential Application. Sains Malays. 2021;50:493–505. doi: 10.17576/jsm-2021-5002-20. DOI
Zhong C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020;8:605374. doi: 10.3389/fbioe.2020.605374. PubMed DOI PMC
Lu T., Gao H., Liao B., Wu J., Zhang W., Huang J., Liu M., Huang J., Chang Z., Jin M., et al. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydr. Polym. 2020;232:115788. doi: 10.1016/j.carbpol.2019.115788. PubMed DOI
Fernandes I.d.A.A., Pedro A.C., Ribeiro V.R., Bortolini D.G., Ozaki M.S.C., Maciel G.M., Haminiuk C.W.I. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol. 2020;164:2598–2611. doi: 10.1016/j.ijbiomac.2020.07.255. PubMed DOI
Rahman S.S.A., Vaishnavi T., Vidyasri G.S., Sathya K., Priyanka P., Venkatachalam P., Karuppiah S. Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Sci. Rep. 2021;11:2912. doi: 10.1038/s41598-021-82596-4. PubMed DOI PMC
Raiszadeh-Jahromi Y., Rezazadeh-Bari M., Almasi H., Amiri S. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J. Food Sci. Technol. 2020;57:2524–2533. doi: 10.1007/s13197-020-04289-6. PubMed DOI PMC
Saleh A.K., El-Gendi H., Ray J.B., Taha T.H. A low-cost effective media from starch kitchen waste for bacterial cellulose production and its application as simultaneous absorbance for methylene blue dye removal. Biomass Convers. Biorefin. 2023;13:12437–12449. doi: 10.1007/s13399-021-01973-1. DOI
Wang J., Tavakoli J., Tang Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019;219:63–76. doi: 10.1016/j.carbpol.2019.05.008. PubMed DOI
Shoda M., Sugano Y. Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 2005;10:1–8. doi: 10.1007/BF02931175. DOI
Gururaj Bhadri S.H. Statistical Optimization of Medium Components by Response Surface Methodology for Enhanced Production of Bacterial Cellulose by Gluconacetobacter persimmonis. J. Bioprocess. Biotech. 2013;4:1000142. doi: 10.4172/2155-9821.1000142. DOI
Keshk S.M. Bacterial Cellulose Production and its Industrial Applications. J. Bioprocess. Biotech. 2014;4:1000150. doi: 10.4172/2155-9821.1000150. DOI
Muthu S.S., Rathinamoorthy R., editors. Bacterial Cel-lulose: Sustainable Material for Textiles. Springer; Singapore: 2021. Sustainability and Fashion; pp. 1–17. DOI
Hsieh J.-T., Wang M.-J., Lai J.-T., Liu H.-S. A novel static cultivation of bacterial cellulose production by intermit-tent feeding strategy. J. Taiwan Inst. Chem. Eng. C. 2016;63:46–51. doi: 10.1016/j.jtice.2016.03.020. DOI
Raghavendran V., Asare E., Roy I. Chapter Three—Bacterial cellulose: Biosynthesis, production, and applications. In: Poole R.K., editor. Advances in Microbial Physiology. Academic Press; Cambridge, MA, USA: 2020. pp. 89–138. PubMed DOI
Shi Z., Zhang Y., Phillips G.O., Yang G. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014;35:539–545. doi: 10.1016/j.foodhyd.2013.07.012. DOI
Lahiri D., Nag M., Dutta B., Dey A., Sarkar T., Pati S., Edinur H.A., Kari Z.A., Noor N.H.M., Ray R.R. Bacte-rial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021;22:12984. doi: 10.3390/ijms222312984. PubMed DOI PMC
Ross P., Mayer R., Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 1991;55:35–58. doi: 10.1128/mr.55.1.35-58.1991. PubMed DOI PMC
Watanabe A., Morita S., Ozaki Y. Temperature-Dependent Changes in Hydrogen Bonds in Cellulose Iα Studied by Infrared Spectroscopy in Combination with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy: Comparison with Cellulose Iβ. Biomacromolecules. 2007;8:2969–2975. doi: 10.1021/bm700678u. PubMed DOI
Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., Gonçalves-Miśkiewicz M., Turkiewicz M., Bielecki S. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 2002;29:189–195. doi: 10.1038/sj.jim.7000303. PubMed DOI
Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose*. Biochem. J. 1954;58:345–352. doi: 10.1042/bj0580345. PubMed DOI PMC
Antal T. Comparative study of three drying methods: Freeze, hot air-assisted freeze and infrared-assisted freeze modes. Agron. Res. 2015;13:863–878.
Sakthi S. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001;49:311–319. doi: 10.1016/s0260-8774(00)00228-4. DOI
Zeng M., Laromaine A., Roig A. Bacterial cellulose films: Influence of bacterial strain and drying route on film properties. Cellulose. 2014;21:4455–4469. doi: 10.1007/s10570-014-0408-y. DOI
Tsotsas E., Mujumdar A.S. Modern Drying Technology, Volume 3: Product Quality and Formulation. John Wiley & Sons; Hoboken, NJ, USA: 2011. [(accessed on 13 June 2024)]. Available online: https://www.wiley.com/en-us/Modern+Drying+Technology%2C+Volume+3%3A+Product+Quality+and+Formulation-p-9783527643998.
Orsat V., Changrue V., Raghavan V. Microwave drying of fruits and vegetables. Stewart Postharvest Rev. 2006;2:1–7. doi: 10.2212/spr.2006.6.4. DOI
Directional Freezing, Wikipedia. 2024. [(accessed on 15 June 2024)]. Available online: https://en.wikipedia.org/w/index.php?title=Directional_freezing&oldid=1202284259.
Bai H., Chen Y., Delattre B., Tomsia A., Ritchie R. Bioinspired Large-Scale Aligned Porous Materials Assembled with Dual Temperature Gradients. Sci. Adv. 2015;1:e1500849. doi: 10.1126/sciadv.1500849. PubMed DOI PMC
Zhu L., Zou B., Bing N., Xie H., Yu W. Bidirectional anisotropic bacterial cellulose/polyvinyl alcohol/MXene aerogel phase change composites for photothermal conversion enhancement. Sol. Energy Mater. Sol. Cells. 2024;271:112818. doi: 10.1016/j.solmat.2024.112818. DOI
Mettler Toledo Moisture Content Determination. [(accessed on 15 June 2024)]. Available online: https://www.mt.com/in/en/home/applications/Laboratory_weighing/moisture-content-determination.html.
Sederavičiūtė F., Domskienė J., Baltina I. Influence of Drying Temperature on Tensile and Bursting Strength of Bacterial Cellulose Biofilm. Mater. Sci. 2019;25:316–321. doi: 10.5755/j01.ms.25.3.20764. DOI
Fan W., Zhang X., Zhang Y., Zhang Y., Liu T. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 2019;173:47–52. doi: 10.1016/j.compscitech.2019.01.025. DOI
Zhang X., Zhao X., Xue T., Yang F., Fan W., Liu T. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 2020;385:123963. doi: 10.1016/j.cej.2019.123963. DOI
Albu M.G., Vuluga Z., Panaitescu D.M., Vuluga D.M., Căşărică A., Ghiurea M. Morphology and thermal stability of bacterial cellulose/collagen composites. Cent. Eur. J. Chem. 2014;12:968–975. doi: 10.2478/s11532-014-0545-z. DOI
Liebner F., Pircher N., Rosenau T. Chapter 5—Bacterial NanoCellulose Aerogels. In: Gama M., Dourado F., Bielecki S., editors. Bacterial Nanocellulose. Elsevier; Amsterdam, The Netherlands: 2016. pp. 73–108. DOI
Demilecamps A. Ph.D. Thesis. Ecole Nationale Supérieure des Mines de Paris; Paris, France: 2015. [(accessed on 5 February 2022)]. Synthesis and Characterization of Polysaccharide-Silica Composite Aerogels for Thermal Superin-Sulation. Available online: https://pastel.archives-ouvertes.fr/tel-01279456.
Fleury B., Abraham E., De La Cruz J.A., Chandrasekar V.S., Senyuk B., Liu Q., Cherpak V., Park S., Ten Hove J.B., Smalyukh I.I. Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes. ACS Appl. Mater. Interfaces. 2020;12:34115–34121. doi: 10.1021/acsami.0c08879. PubMed DOI
Han Y., Zhang X., Wu X., Lu C. Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustain. Chem. Eng. 2015;3:1853–1859. doi: 10.1021/acssuschemeng.5b00438. DOI
Viggiano R.P., Williams J.C., Schiraldi D.A., Meador M.A.B. Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels. ACS Appl. Mater. Interfaces. 2017;9:8287–8296. doi: 10.1021/acsami.6b15440. PubMed DOI
Pan Y., Liu L., Wang X., Song L., Hu Y. Hypophosphorous acid cross-linked layer-by-layer assembly of green poly-electrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment. Carbohydr. Polym. 2018;201:1–8. doi: 10.1016/j.carbpol.2018.08.044. PubMed DOI
Bober P., Liu J., Mikkonen K.S., Ihalainen P., Pesonen M., Plumed-Ferrer C., von Wright A., Lindfors T., Xu C., Latonen R.-M. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromolecules. 2014;15:3655–3663. doi: 10.1021/bm500939x. PubMed DOI
Wang Z., E Y., Li J., Du T., Wang K., Yao X., Jiang J., Wang M., Yuan S. Sustainable bacterial cellulose-based composite aerogels with excellent flame retardant and heat insulation. Cellulose. 2023;30:9563–9574. doi: 10.1007/s10570-023-05461-9. DOI
Sai H., Fu R., Xing L., Xiang J., Li Z., Li F., Zhang T. Surface Modification of Bacterial Cellulose Aerogels’ Web-like Skeleton for Oil/Water Separation. ACS Appl. Mater. Interfaces. 2015;7:7373–7381. doi: 10.1021/acsami.5b00846. PubMed DOI
Hu X., Zhang S., Yang B., Hao M., Chen Z., Liu Y., Wang X., Yao J. Preparation of ambient-dried multifunctional cellulose aerogel by freeze-linking technique. Chem. Eng. J. 2023;477:147044. doi: 10.1016/j.cej.2023.147044. DOI
Huang Z., Li H., Miao H., Guo Y., Teng L. Modified supercritical CO2 extraction of amine template from hexagonal mesoporous silica (HMS) materials: Effects of template identity and matrix Al/Si molar ratio. Chem. Eng. Res. Des. 2014;92:1371–1380. doi: 10.1016/j.cherd.2013.10.023. DOI
Revin V.V., Pestov N.A., Shchankin M.V., Mishkin V.P., Platonov V.I., Uglanov D.A. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose. Biomacromolecules. 2019;20:1401–1411. doi: 10.1021/acs.biomac.8b01816. PubMed DOI
Revin V.V., Nazarova N.B., Tsareva E.E., Liyaskina E.V., Revin V.D., Pestov N.A. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020;8:1392. doi: 10.3389/fbioe.2020.603407. PubMed DOI PMC
Hu W., Chen S., Yang J., Li Z., Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 2014;101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102. PubMed DOI
Li H., Ye M., Zhang X., Zhang H., Wang G., Zhang Y. Hierarchical Porous Iron Metal–Organic Gel/Bacterial Cellulose Aerogel: Ultrafast, Scalable, Room-Temperature Aqueous Synthesis, and Efficient Arsenate Removal. ACS Appl. Mater. Interfaces. 2021;13:47684–47695. doi: 10.1021/acsami.1c14938. PubMed DOI
Yin S., Zhang X., Hu G., Huang T., Yu H., Yu B., Zhu M. In situ crosslinking of mechanically robust waterproof and moisture permeable cellulose diacetate nanofiber aerogels for warm clothing. Chem. Eng. J. 2022;444:136528. doi: 10.1016/j.cej.2022.136528. DOI
Liao D., Wang Y., Xie P., Zhang C., Li M., Liu H., Zhou L., Wei C., Yu C., Chen Y. A resilient and lightweight cellu-lose/graphene oxide/polymer-derived multifunctional carbon aerogel generated from Pickering emulsion toward a wearable pressure sensor. J. Colloid Interface Sci. 2022;628:574–587. doi: 10.1016/j.jcis.2022.07.188. PubMed DOI
Rahmanian V., Pirzada T., Wang S., Khan S.A. Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality. Adv. Mater. 2021;33:2102892. doi: 10.1002/adma.202102892. PubMed DOI
Meti P., Mahadik D.B., Lee K.-Y., Wang Q., Kanamori K., Gong Y.-D., Park H.-H. Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives. Mater. Des. 2022;222:111091. doi: 10.1016/j.matdes.2022.111091. DOI
Hu X., Yang B., Hao M., Chen Z., Liu Y., Ramakrishna S., Wang X., Yao J. Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation. Carbohydr. Polym. 2023;305:120538. doi: 10.1016/j.carbpol.2023.120538. PubMed DOI
Hu X., Zhang S., Yang B., Hao M., Chen Z., Liu Y., Ramakrishna S., Wang X., Yao J. Bacterial cellulose composite aerogel with high elasticity and adjustable wettability for dye absorption and oil–water separation. Appl. Surf. Sci. 2023;640:158299. doi: 10.1016/j.apsusc.2023.158299. DOI
Sai H., Wang M., Miao C., Song Q., Wang Y., Fu R., Wang Y., Ma L., Hao Y. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile. Gels. 2021;7:145. doi: 10.3390/gels7030145. PubMed DOI PMC
Clasen C., Sultanova B., Wilhelms T., Heisig P., Kulicke W.-M. Effects of Different Drying Processes on the Material Properties of Bacterial Cellulose Membranes. Macromol. Symp. 2006;244:48–58. doi: 10.1002/masy.200651204. DOI
Bueno F., Spivak D.A., Sathivel S. Evaluation of the properties of dry bacterial cellulose synthesized from coffee kombucha fermentation dried with different drying methods. Dry. Technol. 2023;42:142–154. doi: 10.1080/07373937.2023.2274402. DOI
Dey B., Jayaraman S., Balasubramanian P. Investigating the effects of drying on the physical properties of Kombucha Bacterial Cellulose: Kinetic study and modeling approach. J. Clean. Prod. 2024;452:142204. doi: 10.1016/j.jclepro.2024.142204. DOI
Mohamad S., Abdullah L.C., Jamari S.S., Al Edrus S.S.O., Aung M.M., Mohamad S.F.S. Influence of drying method on the crystal structure and thermal property of oil palm frond juice-based bacterial cellulose. J. Mater. Sci. 2022;57:1462–1473. doi: 10.1007/s10853-021-06685-5. DOI
Huang Y., Yang H., Yu Y., Li H., Li H., Bai J., Shi F., Liu J. Bacterial cellulose biomass aerogels for oil-water separation and thermal insulation. J. Environ. Chem. Eng. 2023;11:110403. doi: 10.1016/j.jece.2023.110403. DOI
Zhang X., Yu Y., Jiang Z., Wang H. The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel. J. Wood Sci. 2015;61:595–601. doi: 10.1007/s10086-015-1514-7. DOI
Ruan J.-Q., Xie K.-Y., Wan J.-N., Chen Q.-Y., Zuo X., Li X., Wu X., Fei C., Yao S. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Gels. 2024;10:141. doi: 10.3390/gels10020141. PubMed DOI PMC
Jin H., Nishiyama Y., Wada M., Kuga S. Nanofibrillar cellulose aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2004;240:63–67. doi: 10.1016/j.colsurfa.2004.03.007. DOI