• This record comes from PubMed

Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel

. 2024 Jul 18 ; 10 (7) : . [epub] 20240718

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
Reg. No. 21-32510 M Czech Science Foundation

Bacterial cellulose (BC) presents significant promise as a biomaterial, boasting unique qualities such as exceptional cellulose purity, robust mechanical strength, heightened crystalline structure, and biodegradability. Several studies have highlighted specific effects, such as the impact of dehydration/rehydration on BC tensile strength, the influence of polymer treatment methods on mechanical properties, the correlation between microorganism type, drying method, and Young's modulus value, and the relationship between culture medium composition, pH, and crystallinity. Drying methods are crucial to the structure, performance, and application of BC films. Research findings indicate that the method used for drying can influence the mechanical properties of BC films, including parameters such as tensile strength, Young's modulus, and water absorption capacity, as well as the micromorphology, crystallinity, and thermal characteristics of the material. Their versatility makes them potential biomaterials applicable in various fields, including thermal and acoustic insulation, owing to their distinct thermal and mechanical attributes. This review delves into the thermal and mechanical behavior of bacterial cellulose aerogels, which are profoundly impacted by their drying mechanism.

See more in PubMed

Ummartyotin S., Manuspiya H. A critical review on cellulose: From fundamental to an approach on sensor technology. Renew. Sustain. Energy Rev. 2015;41:402–412. doi: 10.1016/j.rser.2014.08.050. DOI

Hamedi H., Moradi S., Hudson S.M., Tonelli A.E. Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydr. Polym. 2018;199:445–460. doi: 10.1016/j.carbpol.2018.06.114. PubMed DOI

Farah S., Anderson D.G., Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review. Adv. Drug Deliv. Rev. 2016;107:367–392. doi: 10.1016/j.addr.2016.06.012. PubMed DOI

Chunshom N., Chuysinuan P., Thanyacharoen T., Techasakul S., Ummartyotin S. Development of gallic acid/cyclodextrin inclusion complex in freeze-dried bacterial cellulose and poly (vinyl alcohol) hydrogel: Controlled-release characteristic and antioxidant properties. Mater. Chem. Phys. 2019;232:294–300. doi: 10.1016/j.matchemphys.2019.04.070. DOI

Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI

Ciolacu D.E., Suflet D.M. 11-Cellulose-Based Hydrogels for Medical/Pharmaceutical Applications. In: Popa V., Volf I., editors. Biomass as Renewable Raw Material to Obtain Bioproducts of High-Tech Value. Elsevier; Amsterdam, The Netherlands: 2018. pp. 401–439. DOI

Hu M.-X., Niu H.-M., Chen X.-L., Zhan H.-B. Natural cellulose microfiltration membranes for oil/water nanoemulsions separation. Colloids Surf. Physicochem. Eng. Asp. 2019;564:142–151. doi: 10.1016/j.colsurfa.2018.12.045. DOI

Li Q., Wang Y., Wu Y., He K., Li Y., Luo X., Li B., Wang C., Liu S. Flexible cellulose nanofibrils as novel pickering stabilizers: The emulsifying property and packing behavior. Food Hydrocoll. 2019;88:180–189. doi: 10.1016/j.foodhyd.2018.09.039. DOI

Moise I.V., Manea M.M., Vasilca S., Pintilie C., Virgolici M., Cutrubinis M., Stanculescu I.R., Meltzer V. The crosslinking behaviour of cellulose in gamma irradiated paper. Polym. Degrad. Stab. 2019;160:53–59. doi: 10.1016/j.polymdegradstab.2018.12.005. DOI

Mangiante G., Alcouffe P., Gaborieau M., Zeno E., Petit-Conil M., Bernard J., Charlot A., Fleury E. Biohybrid cellulose fibers: Toward paper materials with wet strength properties. Carbohydr. Polym. 2018;193:353–361. doi: 10.1016/j.carbpol.2018.04.009. PubMed DOI

Andriani D., Apriyana A.Y., Karina M. The optimization of bacterial cellulose production and its applications: A review. Cellulose. 2020;27:6747–6766. doi: 10.1007/s10570-020-03273-9. DOI

Yan M., Fu Y., Pan Y., Cheng X., Gong L., Zhou Y., Ahmed H., Zhang H. Highly elastic and fatigue resistant wood/silica composite aerogel operated at extremely low temperature. Compos. Part B Eng. 2022;230:109496. doi: 10.1016/j.compositesb.2021.109496. DOI

Hoseini A., McCague C., Andisheh-Tadbir M., Bahrami M. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis. Int. J. Heat Mass Transf. 2016;93:1124–1131. doi: 10.1016/j.ijheatmasstransfer.2015.11.030. DOI

Sambucci M., Savoni F., Valente M. Aerogel Technology for Thermal Insulation of Cryogenic Tanks—Numerical Analysis for Comparison with Traditional Insulating Materials. Gels. 2023;9:307. doi: 10.3390/gels9040307. PubMed DOI PMC

Jiang Y., Chowdhury S., Balasubramanian R. New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels. J. Colloid Interface Sci. 2019;534:574–585. doi: 10.1016/j.jcis.2018.09.064. PubMed DOI

Nguyen B.N., Meador M.A.B., Scheiman D., McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-linker. ACS Appl. Mater. Interfaces. 2017;9:27313–27321. doi: 10.1021/acsami.7b07821. PubMed DOI

Zhu F. Starch based aerogels: Production, properties and applications. Trends Food Sci. Technol. 2019;89:1–10. doi: 10.1016/j.tifs.2019.05.001. DOI

Abdul Khalil H.P.S., Adnan A.S., Yahya E.B., Olaiya N.G., Safrida S., Hossain M.S., Balakrishnan V., Gopakumar D.A., Abdullah C.K., Oyekanmi A.A., et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers. 2020;12:1759. doi: 10.3390/polym12081759. PubMed DOI PMC

Sozcu S., Venkataraman M., Wiener J., Tomkova B., Militky J., Mahmood A. Incorporation of Cellulose-Based Aerogels into Textile Structures. Materials. 2024;17:27. doi: 10.3390/ma17010027. PubMed DOI PMC

Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC

Long L.-Y., Weng Y.-X., Wang Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers. 2018;10:623. doi: 10.3390/polym10060623. PubMed DOI PMC

Yang W.-J., Yuen A.C.Y., Li A., Lin B., Chen T.B.Y., Yang W., Lu H.-D., Yeoh G.H. Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose. 2019;26:6449–6476. doi: 10.1007/s10570-019-02559-x. DOI

Jonas R., Farah L.F. Production and application of microbial cellulose. Polym. Degrad. Stab. 1998;59:101–106. doi: 10.1016/S0141-3910(97)00197-3. DOI

Pa’e N., Salehudin M.H., Hassan N.D., Marsin A.M., Muhamad I.I. Thermal Behavior of Bacterial Cellulose-Based Hydrogels with Other Composites and Related Instrumental Analysis. In: Mondal M.I.H., editor. Cellulose-Based Superabsorbent Hydrogels. Springer International Publishing; Cham, Switzerland: 2019. pp. 763–787. DOI

Pecoraro É., Manzani D., Messaddeq Y., Ribeiro S.J.L. Chapter 17-Bacterial Cellulose from Glucanacetobacter xylinus: Preparation, Properties and Applications. In: Belgacem M.N., Gandini A., editors. Monomers, Polymers and Composites from Renewable Resources. Elsevier; Amsterdam, The Netherlands: 2007. pp. 369–383. DOI

Mehrotra R., Sharma S., Shree N., Kaur K. Bacterial Cellulose: An Ecological Alternative as a Biotextile. Biosci. Biotechnol. Res. Asia. 2023;20:449–463. doi: 10.13005/bbra/3101. DOI

Stanisławska A., Staroszczyk H., Szkodo M. The effect of dehydration/rehydration of bacterial nanocellulose on its tensile strength and physicochemical properties. Carbohydr. Polym. 2020;236:116023. doi: 10.1016/j.carbpol.2020.116023. PubMed DOI

Indriyati I., Irmawati Y., Puspitasari T. Comparative Study of Bacterial Cellulose Film Dried Using Microwave and Air Convection Heating. J. Eng. Technol. Sci. 2019;51:121–132. doi: 10.5614/j.eng.technol.sci.2019.51.1.8. DOI

Illa M.P., Sharma C.S., Khandelwal M. Tuning the physiochemical properties of bacterial cellulose: Effect of drying conditions. J. Mater. Sci. 2019;54:12024–12035. doi: 10.1007/s10853-019-03737-9. DOI

Erbas Kiziltas E., Kiziltas A., Gardner D.J. Synthesis of bacterial cellulose using hot water extracted wood sugars. Carbohydr. Polym. 2015;124:131–138. doi: 10.1016/j.carbpol.2015.01.036. PubMed DOI

Dai L., Nan J., Tu X., He L., Wei B., Xu C., Xu Y., Li S., Wang H., Zhang J. Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis. Cellulose. 2019;26:6713–6724. doi: 10.1007/s10570-019-02530-w. DOI

Zhang C., Wang L., Zhao J., Zhu P. Effect of Drying Methods on Structure and Mechanical Properties of Bacterial Cellulose Films. Adv. Mater. Res. 2011;239–242:2667–2670. doi: 10.4028/www.scientific.net/AMR.239-242.2667. DOI

Vasconcellos V., Farinas C. The effect of the drying process on the properties of bacterial cellulose films from gluconacetobacter hansenii. Chem. Eng. Trans. 2018;64:145–150. doi: 10.3303/CET1864025. DOI

Choi S.M., Rao K.M., Zo S.M., Shin E.J., Han S.S. Bacterial Cellulose and Its Applications. Polymers. 2022;14:1080. doi: 10.3390/polym14061080. PubMed DOI PMC

Urbina L., Corcuera M.Á., Gabilondo N., Eceiza A., Retegi A. A review of bacterial cellulose: Sustainable production from agricultural waste and applications in various fields. Cellulose. 2021;28:8229–8253. doi: 10.1007/s10570-021-04020-4. DOI

Betlej I., Zakaria S., Krajewski K., Boruszewski P. Bacterial Cellulose-Properties and Its Potential Application. Sains Malays. 2021;50:493–505. doi: 10.17576/jsm-2021-5002-20. DOI

Zhong C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020;8:605374. doi: 10.3389/fbioe.2020.605374. PubMed DOI PMC

Lu T., Gao H., Liao B., Wu J., Zhang W., Huang J., Liu M., Huang J., Chang Z., Jin M., et al. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis. Carbohydr. Polym. 2020;232:115788. doi: 10.1016/j.carbpol.2019.115788. PubMed DOI

Fernandes I.d.A.A., Pedro A.C., Ribeiro V.R., Bortolini D.G., Ozaki M.S.C., Maciel G.M., Haminiuk C.W.I. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol. 2020;164:2598–2611. doi: 10.1016/j.ijbiomac.2020.07.255. PubMed DOI

Rahman S.S.A., Vaishnavi T., Vidyasri G.S., Sathya K., Priyanka P., Venkatachalam P., Karuppiah S. Production of bacterial cellulose using Gluconacetobacter kombuchae immobilized on Luffa aegyptiaca support. Sci. Rep. 2021;11:2912. doi: 10.1038/s41598-021-82596-4. PubMed DOI PMC

Raiszadeh-Jahromi Y., Rezazadeh-Bari M., Almasi H., Amiri S. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J. Food Sci. Technol. 2020;57:2524–2533. doi: 10.1007/s13197-020-04289-6. PubMed DOI PMC

Saleh A.K., El-Gendi H., Ray J.B., Taha T.H. A low-cost effective media from starch kitchen waste for bacterial cellulose production and its application as simultaneous absorbance for methylene blue dye removal. Biomass Convers. Biorefin. 2023;13:12437–12449. doi: 10.1007/s13399-021-01973-1. DOI

Wang J., Tavakoli J., Tang Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019;219:63–76. doi: 10.1016/j.carbpol.2019.05.008. PubMed DOI

Shoda M., Sugano Y. Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 2005;10:1–8. doi: 10.1007/BF02931175. DOI

Gururaj Bhadri S.H. Statistical Optimization of Medium Components by Response Surface Methodology for Enhanced Production of Bacterial Cellulose by Gluconacetobacter persimmonis. J. Bioprocess. Biotech. 2013;4:1000142. doi: 10.4172/2155-9821.1000142. DOI

Keshk S.M. Bacterial Cellulose Production and its Industrial Applications. J. Bioprocess. Biotech. 2014;4:1000150. doi: 10.4172/2155-9821.1000150. DOI

Muthu S.S., Rathinamoorthy R., editors. Bacterial Cel-lulose: Sustainable Material for Textiles. Springer; Singapore: 2021. Sustainability and Fashion; pp. 1–17. DOI

Hsieh J.-T., Wang M.-J., Lai J.-T., Liu H.-S. A novel static cultivation of bacterial cellulose production by intermit-tent feeding strategy. J. Taiwan Inst. Chem. Eng. C. 2016;63:46–51. doi: 10.1016/j.jtice.2016.03.020. DOI

Raghavendran V., Asare E., Roy I. Chapter Three—Bacterial cellulose: Biosynthesis, production, and applications. In: Poole R.K., editor. Advances in Microbial Physiology. Academic Press; Cambridge, MA, USA: 2020. pp. 89–138. PubMed DOI

Shi Z., Zhang Y., Phillips G.O., Yang G. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014;35:539–545. doi: 10.1016/j.foodhyd.2013.07.012. DOI

Lahiri D., Nag M., Dutta B., Dey A., Sarkar T., Pati S., Edinur H.A., Kari Z.A., Noor N.H.M., Ray R.R. Bacte-rial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int. J. Mol. Sci. 2021;22:12984. doi: 10.3390/ijms222312984. PubMed DOI PMC

Ross P., Mayer R., Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 1991;55:35–58. doi: 10.1128/mr.55.1.35-58.1991. PubMed DOI PMC

Watanabe A., Morita S., Ozaki Y. Temperature-Dependent Changes in Hydrogen Bonds in Cellulose Iα Studied by Infrared Spectroscopy in Combination with Perturbation-Correlation Moving-Window Two-Dimensional Correlation Spectroscopy:  Comparison with Cellulose Iβ. Biomacromolecules. 2007;8:2969–2975. doi: 10.1021/bm700678u. PubMed DOI

Krystynowicz A., Czaja W., Wiktorowska-Jezierska A., Gonçalves-Miśkiewicz M., Turkiewicz M., Bielecki S. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 2002;29:189–195. doi: 10.1038/sj.jim.7000303. PubMed DOI

Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose*. Biochem. J. 1954;58:345–352. doi: 10.1042/bj0580345. PubMed DOI PMC

Antal T. Comparative study of three drying methods: Freeze, hot air-assisted freeze and infrared-assisted freeze modes. Agron. Res. 2015;13:863–878.

Sakthi S. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001;49:311–319. doi: 10.1016/s0260-8774(00)00228-4. DOI

Zeng M., Laromaine A., Roig A. Bacterial cellulose films: Influence of bacterial strain and drying route on film properties. Cellulose. 2014;21:4455–4469. doi: 10.1007/s10570-014-0408-y. DOI

Tsotsas E., Mujumdar A.S. Modern Drying Technology, Volume 3: Product Quality and Formulation. John Wiley & Sons; Hoboken, NJ, USA: 2011. [(accessed on 13 June 2024)]. Available online: https://www.wiley.com/en-us/Modern+Drying+Technology%2C+Volume+3%3A+Product+Quality+and+Formulation-p-9783527643998.

Orsat V., Changrue V., Raghavan V. Microwave drying of fruits and vegetables. Stewart Postharvest Rev. 2006;2:1–7. doi: 10.2212/spr.2006.6.4. DOI

Directional Freezing, Wikipedia. 2024. [(accessed on 15 June 2024)]. Available online: https://en.wikipedia.org/w/index.php?title=Directional_freezing&oldid=1202284259.

Bai H., Chen Y., Delattre B., Tomsia A., Ritchie R. Bioinspired Large-Scale Aligned Porous Materials Assembled with Dual Temperature Gradients. Sci. Adv. 2015;1:e1500849. doi: 10.1126/sciadv.1500849. PubMed DOI PMC

Zhu L., Zou B., Bing N., Xie H., Yu W. Bidirectional anisotropic bacterial cellulose/polyvinyl alcohol/MXene aerogel phase change composites for photothermal conversion enhancement. Sol. Energy Mater. Sol. Cells. 2024;271:112818. doi: 10.1016/j.solmat.2024.112818. DOI

Mettler Toledo Moisture Content Determination. [(accessed on 15 June 2024)]. Available online: https://www.mt.com/in/en/home/applications/Laboratory_weighing/moisture-content-determination.html.

Sederavičiūtė F., Domskienė J., Baltina I. Influence of Drying Temperature on Tensile and Bursting Strength of Bacterial Cellulose Biofilm. Mater. Sci. 2019;25:316–321. doi: 10.5755/j01.ms.25.3.20764. DOI

Fan W., Zhang X., Zhang Y., Zhang Y., Liu T. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 2019;173:47–52. doi: 10.1016/j.compscitech.2019.01.025. DOI

Zhang X., Zhao X., Xue T., Yang F., Fan W., Liu T. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem. Eng. J. 2020;385:123963. doi: 10.1016/j.cej.2019.123963. DOI

Albu M.G., Vuluga Z., Panaitescu D.M., Vuluga D.M., Căşărică A., Ghiurea M. Morphology and thermal stability of bacterial cellulose/collagen composites. Cent. Eur. J. Chem. 2014;12:968–975. doi: 10.2478/s11532-014-0545-z. DOI

Liebner F., Pircher N., Rosenau T. Chapter 5—Bacterial NanoCellulose Aerogels. In: Gama M., Dourado F., Bielecki S., editors. Bacterial Nanocellulose. Elsevier; Amsterdam, The Netherlands: 2016. pp. 73–108. DOI

Demilecamps A. Ph.D. Thesis. Ecole Nationale Supérieure des Mines de Paris; Paris, France: 2015. [(accessed on 5 February 2022)]. Synthesis and Characterization of Polysaccharide-Silica Composite Aerogels for Thermal Superin-Sulation. Available online: https://pastel.archives-ouvertes.fr/tel-01279456.

Fleury B., Abraham E., De La Cruz J.A., Chandrasekar V.S., Senyuk B., Liu Q., Cherpak V., Park S., Ten Hove J.B., Smalyukh I.I. Aerogel from Sustainably Grown Bacterial Cellulose Pellicles as a Thermally Insulative Film for Building Envelopes. ACS Appl. Mater. Interfaces. 2020;12:34115–34121. doi: 10.1021/acsami.0c08879. PubMed DOI

Han Y., Zhang X., Wu X., Lu C. Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustain. Chem. Eng. 2015;3:1853–1859. doi: 10.1021/acssuschemeng.5b00438. DOI

Viggiano R.P., Williams J.C., Schiraldi D.A., Meador M.A.B. Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels. ACS Appl. Mater. Interfaces. 2017;9:8287–8296. doi: 10.1021/acsami.6b15440. PubMed DOI

Pan Y., Liu L., Wang X., Song L., Hu Y. Hypophosphorous acid cross-linked layer-by-layer assembly of green poly-electrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment. Carbohydr. Polym. 2018;201:1–8. doi: 10.1016/j.carbpol.2018.08.044. PubMed DOI

Bober P., Liu J., Mikkonen K.S., Ihalainen P., Pesonen M., Plumed-Ferrer C., von Wright A., Lindfors T., Xu C., Latonen R.-M. Biocomposites of nanofibrillated cellulose, polypyrrole, and silver nanoparticles with electroconductive and antimicrobial properties. Biomacromolecules. 2014;15:3655–3663. doi: 10.1021/bm500939x. PubMed DOI

Wang Z., E Y., Li J., Du T., Wang K., Yao X., Jiang J., Wang M., Yuan S. Sustainable bacterial cellulose-based composite aerogels with excellent flame retardant and heat insulation. Cellulose. 2023;30:9563–9574. doi: 10.1007/s10570-023-05461-9. DOI

Sai H., Fu R., Xing L., Xiang J., Li Z., Li F., Zhang T. Surface Modification of Bacterial Cellulose Aerogels’ Web-like Skeleton for Oil/Water Separation. ACS Appl. Mater. Interfaces. 2015;7:7373–7381. doi: 10.1021/acsami.5b00846. PubMed DOI

Hu X., Zhang S., Yang B., Hao M., Chen Z., Liu Y., Wang X., Yao J. Preparation of ambient-dried multifunctional cellulose aerogel by freeze-linking technique. Chem. Eng. J. 2023;477:147044. doi: 10.1016/j.cej.2023.147044. DOI

Huang Z., Li H., Miao H., Guo Y., Teng L. Modified supercritical CO2 extraction of amine template from hexagonal mesoporous silica (HMS) materials: Effects of template identity and matrix Al/Si molar ratio. Chem. Eng. Res. Des. 2014;92:1371–1380. doi: 10.1016/j.cherd.2013.10.023. DOI

Revin V.V., Pestov N.A., Shchankin M.V., Mishkin V.P., Platonov V.I., Uglanov D.A. A Study of the Physical and Mechanical Properties of Aerogels Obtained from Bacterial Cellulose. Biomacromolecules. 2019;20:1401–1411. doi: 10.1021/acs.biomac.8b01816. PubMed DOI

Revin V.V., Nazarova N.B., Tsareva E.E., Liyaskina E.V., Revin V.D., Pestov N.A. Production of Bacterial Cellulose Aerogels With Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020;8:1392. doi: 10.3389/fbioe.2020.603407. PubMed DOI PMC

Hu W., Chen S., Yang J., Li Z., Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 2014;101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102. PubMed DOI

Li H., Ye M., Zhang X., Zhang H., Wang G., Zhang Y. Hierarchical Porous Iron Metal–Organic Gel/Bacterial Cellulose Aerogel: Ultrafast, Scalable, Room-Temperature Aqueous Synthesis, and Efficient Arsenate Removal. ACS Appl. Mater. Interfaces. 2021;13:47684–47695. doi: 10.1021/acsami.1c14938. PubMed DOI

Yin S., Zhang X., Hu G., Huang T., Yu H., Yu B., Zhu M. In situ crosslinking of mechanically robust waterproof and moisture permeable cellulose diacetate nanofiber aerogels for warm clothing. Chem. Eng. J. 2022;444:136528. doi: 10.1016/j.cej.2022.136528. DOI

Liao D., Wang Y., Xie P., Zhang C., Li M., Liu H., Zhou L., Wei C., Yu C., Chen Y. A resilient and lightweight cellu-lose/graphene oxide/polymer-derived multifunctional carbon aerogel generated from Pickering emulsion toward a wearable pressure sensor. J. Colloid Interface Sci. 2022;628:574–587. doi: 10.1016/j.jcis.2022.07.188. PubMed DOI

Rahmanian V., Pirzada T., Wang S., Khan S.A. Cellulose-Based Hybrid Aerogels: Strategies toward Design and Functionality. Adv. Mater. 2021;33:2102892. doi: 10.1002/adma.202102892. PubMed DOI

Meti P., Mahadik D.B., Lee K.-Y., Wang Q., Kanamori K., Gong Y.-D., Park H.-H. Overview of organic–inorganic hybrid silica aerogels: Progress and perspectives. Mater. Des. 2022;222:111091. doi: 10.1016/j.matdes.2022.111091. DOI

Hu X., Yang B., Hao M., Chen Z., Liu Y., Ramakrishna S., Wang X., Yao J. Preparation of high elastic bacterial cellulose aerogel through thermochemical vapor deposition catalyzed by solid acid for oil-water separation. Carbohydr. Polym. 2023;305:120538. doi: 10.1016/j.carbpol.2023.120538. PubMed DOI

Hu X., Zhang S., Yang B., Hao M., Chen Z., Liu Y., Ramakrishna S., Wang X., Yao J. Bacterial cellulose composite aerogel with high elasticity and adjustable wettability for dye absorption and oil–water separation. Appl. Surf. Sci. 2023;640:158299. doi: 10.1016/j.apsusc.2023.158299. DOI

Sai H., Wang M., Miao C., Song Q., Wang Y., Fu R., Wang Y., Ma L., Hao Y. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile. Gels. 2021;7:145. doi: 10.3390/gels7030145. PubMed DOI PMC

Clasen C., Sultanova B., Wilhelms T., Heisig P., Kulicke W.-M. Effects of Different Drying Processes on the Material Properties of Bacterial Cellulose Membranes. Macromol. Symp. 2006;244:48–58. doi: 10.1002/masy.200651204. DOI

Bueno F., Spivak D.A., Sathivel S. Evaluation of the properties of dry bacterial cellulose synthesized from coffee kombucha fermentation dried with different drying methods. Dry. Technol. 2023;42:142–154. doi: 10.1080/07373937.2023.2274402. DOI

Dey B., Jayaraman S., Balasubramanian P. Investigating the effects of drying on the physical properties of Kombucha Bacterial Cellulose: Kinetic study and modeling approach. J. Clean. Prod. 2024;452:142204. doi: 10.1016/j.jclepro.2024.142204. DOI

Mohamad S., Abdullah L.C., Jamari S.S., Al Edrus S.S.O., Aung M.M., Mohamad S.F.S. Influence of drying method on the crystal structure and thermal property of oil palm frond juice-based bacterial cellulose. J. Mater. Sci. 2022;57:1462–1473. doi: 10.1007/s10853-021-06685-5. DOI

Huang Y., Yang H., Yu Y., Li H., Li H., Bai J., Shi F., Liu J. Bacterial cellulose biomass aerogels for oil-water separation and thermal insulation. J. Environ. Chem. Eng. 2023;11:110403. doi: 10.1016/j.jece.2023.110403. DOI

Zhang X., Yu Y., Jiang Z., Wang H. The effect of freezing speed and hydrogel concentration on the microstructure and compressive performance of bamboo-based cellulose aerogel. J. Wood Sci. 2015;61:595–601. doi: 10.1007/s10086-015-1514-7. DOI

Ruan J.-Q., Xie K.-Y., Wan J.-N., Chen Q.-Y., Zuo X., Li X., Wu X., Fei C., Yao S. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Gels. 2024;10:141. doi: 10.3390/gels10020141. PubMed DOI PMC

Jin H., Nishiyama Y., Wada M., Kuga S. Nanofibrillar cellulose aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2004;240:63–67. doi: 10.1016/j.colsurfa.2004.03.007. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...