Incorporation of Cellulose-Based Aerogels into Textile Structures

. 2023 Dec 20 ; 17 (1) : . [epub] 20231220

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38203881

Grantová podpora
21-32510 M Czech Science Foundation (GACR)

Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.

Zobrazit více v PubMed

Barrios E., Fox D., Li Sip Y.Y., Catarata R., Calderon J.E., Azim N., Afrin S., Zhang Z., Zhai L. Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers. 2019;11:726. doi: 10.3390/polym11040726. PubMed DOI PMC

Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC

Kistler S.S. Coherent Expanded Aerogels and Jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI

Revin V.V., Nazarova N.B., Tsareva E.E., Liyaskina E.V., Revin V.D., Pestov N.A. Production of Bacterial Cellulose Aerogels with Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020;8:1392. doi: 10.3389/fbioe.2020.603407. PubMed DOI PMC

Maleki H. Recent Advances in Aerogels for Environmental Remediation Applications: A Review. Chem. Eng. J. 2016;300:98–118. doi: 10.1016/j.cej.2016.04.098. DOI

Hrubesh L.W. Aerogel Applications. J. Non-Cryst. Solids. 1998;225:335–342. doi: 10.1016/S0022-3093(98)00135-5. DOI

Bheekhun N., Abu Talib A.R., Hassan M.R. Aerogels in Aerospace: An Overview. Adv. Mater. Sci. Eng. 2013;2013:e406065. doi: 10.1155/2013/406065. DOI

Vareda J.P., Valente A.J.M., Durães L. Heavy Metals in Iberian Soils: Removal by Current Adsorbents/Amendments and Prospective for Aerogels. Adv. Colloid Interface Sci. 2016;237:28–42. doi: 10.1016/j.cis.2016.08.009. PubMed DOI

Stergar J., Maver U. Review of Aerogel-Based Materials in Biomedical Applications. J. Sol-Gel Sci. Technol. 2016;77:738–752. doi: 10.1007/s10971-016-3968-5. DOI

Maleki H., Durães L., Portugal A. An Overview on Silica Aerogels Synthesis and Different Mechanical Reinforcing Strategies. J. Non-Cryst. Solids. 2014;385:55–74. doi: 10.1016/j.jnoncrysol.2013.10.017. DOI

Long L.-Y., Weng Y.-X., Wang Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers. 2018;10:623. doi: 10.3390/polym10060623. PubMed DOI PMC

Jiang Y., Chowdhury S., Balasubramanian R. New Insights into the Role of Nitrogen-Bonding Configurations in Enhancing the Photocatalytic Activity of Nitrogen-Doped Graphene Aerogels. J. Colloid Interface Sci. 2019;534:574–585. doi: 10.1016/j.jcis.2018.09.064. PubMed DOI

Nguyen B.N., Meador M.A.B., Scheiman D., McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-Linker. ACS Appl. Mater. Interfaces. 2017;9:27313–27321. doi: 10.1021/acsami.7b07821. PubMed DOI

Zhu F. Starch Based Aerogels: Production, Properties and Applications. Trends Food Sci. Technol. 2019;89:1–10. doi: 10.1016/j.tifs.2019.05.001. DOI

García-González C.A., Uy J.J., Alnaief M., Smirnova I. Preparation of Tailor-Made Starch-Based Aerogel Microspheres by the Emulsion-Gelation Method. Carbohydr. Polym. 2012;88:1378–1386. doi: 10.1016/j.carbpol.2012.02.023. DOI

Li Z., Zhong L., Zhang T., Qiu F., Yue X., Yang D. Sustainable, Flexible, and Superhydrophobic Functionalized Cellulose Aerogel for Selective and Versatile Oil/Water Separation. ACS Sustain. Chem. Eng. 2019;7:9984–9994. doi: 10.1021/acssuschemeng.9b01122. DOI

Abdul Khalil H.P.S., Adnan A.S., Yahya E.B., Olaiya N.G., Safrida S., Hossain M.S., Balakrishnan V., Gopakumar D.A., Abdullah C.K., Oyekanmi A.A., et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers. 2020;12:1759. doi: 10.3390/polym12081759. PubMed DOI PMC

Novak B.M., Auerbach D., Verrier C. Low-Density, Mutually Interpenetrating Organic-Inorganic Composite Materials via Supercritical Drying Techniques. Chem. Mater. 1994;6:282–286. doi: 10.1021/cm00039a006. DOI

Wei C., Zhang Q., Wang Z., Yang W., Lu H., Huang Z., Yang W., Zhu J. Recent Advances in MXene-Based Aerogels: Fabrication, Performance and Application. Adv. Funct. Mater. 2023;33:2211889. doi: 10.1002/adfm.202211889. DOI

Yang W.-J., Yuen A.C.Y., Li A., Lin B., Chen T.B.Y., Yang W., Lu H.-D., Yeoh G.H. Recent Progress in Bio-Based Aerogel Absorbents for Oil/Water Separation. Cellulose. 2019;26:6449–6476. doi: 10.1007/s10570-019-02559-x. DOI

Fernandes E.M., Pires R.A., Mano J.F., Reis R.L. Bionanocomposites from Lignocellulosic Resources: Properties, Applications and Future Trends for Their Use in the Biomedical Field. Prog. Polym. Sci. 2013;38:1415–1441. doi: 10.1016/j.progpolymsci.2013.05.013. DOI

Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011;40:3941–3994. doi: 10.1039/c0cs00108b. PubMed DOI

Eichhorn S.J., Dufresne A., Aranguren M., Marcovich N.E., Capadona J.R., Rowan S.J., Weder C., Thielemans W., Roman M., Renneckar S. Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010;45:1–33. doi: 10.1007/s10853-009-3874-0. DOI

Jianan C., Shaoqiong Y., Jinyue R. A Study on the Preparation, Structure, and Properties of Microcrystalline Cellulose. J. Macromol. Sci. Part A Pure Appl. Chem. 2006;33:1851–1862. doi: 10.1080/10601329608011011. DOI

Virtanen T., Svedström K., Andersson S., Tervala L., Torkkeli M., Knaapila M., Kotelnikova N., Maunu S.L., Serimaa R. A Physico-Chemical Characterisation of New Raw Materials for Microcrystalline Cellulose Manufacturing. Cellulose. 2012;19:219–235. doi: 10.1007/s10570-011-9636-6. DOI

Reddy N., Yang Y. Properties and Potential Applications of Natural Cellulose Fibers from the Bark of Cotton Stalks. Bioresour. Technol. 2009;100:3563–3569. doi: 10.1016/j.biortech.2009.02.047. PubMed DOI

Mai T., Luu T., Le P., Le P., Hoang Nguyen Do N., Chau N.D.Q. Fabrication of Cotton Aerogels and Its Application in Water Treatment; Proceedings of the 12th Regional Conference on Chemical Engineering (RCChE 2019); Ho Chi Minh City, Vietnam. 15–16 October 2019.

Wang X., Li H., Cao Y., Tang Q. Cellulose Extraction from Wood Chip in an Ionic Liquid 1-Allyl-3-Methylimidazolium Chloride (AmimCl) Bioresour. Technol. 2011;102:7959–7965. doi: 10.1016/j.biortech.2011.05.064. PubMed DOI

Cara C., Ruiz E., Ballesteros I., Negro M.J., Castro E. Enhanced Enzymatic Hydrolysis of Olive Tree Wood by Steam Explosion and Alkaline Peroxide Delignification. Process Biochem. 2006;41:423–429. doi: 10.1016/j.procbio.2005.07.007. DOI

Abe K., Yano H. Comparison of the Characteristics of Cellulose Microfibril Aggregates of Wood, Rice Straw and Potato Tuber. Cellulose. 2009;16:1017–1023. doi: 10.1007/s10570-009-9334-9. DOI

Hoang Nguyen Do N., Tran V., Tran Q., Le K., Nguyen P., Duong H., Thai Q.B., Le P. Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-Insulating and Flexible Cellulose Aerogel Composites. J. Environ. Polym. Degrad. 2021;29:1112–1121. doi: 10.1007/s10924-020-01955-w. DOI

Sun J.X., Sun X.F., Zhao H., Sun R.C. Isolation and Characterization of Cellulose from Sugarcane Bagasse. Polym. Degrad. Stab. 2004;84:331–339. doi: 10.1016/j.polymdegradstab.2004.02.008. DOI

Trache D., Hussin M.H., Chuin C.T.H., Sabar S., Fazita M.N., Taiwo O.F., Hassan T.M., Haafiz M.M. Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application—A Review. Int. J. Biol. Macromol. 2016;93:789–804. doi: 10.1016/j.ijbiomac.2016.09.056. PubMed DOI

Siqueira G., Bras J., Dufresne A. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers. 2010;2:728–765. doi: 10.3390/polym2040728. DOI

Hinterstoisser B., Salmén L. Application of Dynamic 2D FTIR to Cellulose. Vib. Spectrosc. 2000;22:111–118. doi: 10.1016/S0924-2031(99)00063-6. DOI

Bochek A.M. Effect of Hydrogen Bonding on Cellulose Solubility in Aqueous and Nonaqueous Solvents. Russ. J. Appl. Chem. 2003;76:1711–1719. doi: 10.1023/B:RJAC.0000018669.88546.56. DOI

Lavanya D., Kulkarni P., Dixit M., Raavi P.K., Krishna L.N.V. Sources of Cellulose and Their Applications—A Review. Int. J. Drug Formul. Res. 2011;2:19–38.

Myasoedova V.V. Physical Chemistry of Non-Aqueous Solutions of Cellulose and Its Derivatives. Wiley; Chichester, UK: 2000.

Orts W.J., Sojka R.E., Glenn G.M., Gross R.A. Biopolymers from Polysaccharides and Agroproteins. Volume 786. American Chemical Society; Washington, DC, USA: 2001. Biopolymers from Polysaccharides and Agroproteins, Copyright, Foreword; pp. i–v. (ACS Symposium Series).

Hon D.N.-S., Shiraishi N. Wood and Cellulosic Chemistry, Second Edition, Revised, and Expanded. CRC Press; New York, NY, USA: 2000.

Surapolchai W., Schiraldi D.A. The Effects of Physical and Chemical Interactions in the Formation of Cellulose Aerogels. Polym. Bull. 2010;65:951–960. doi: 10.1007/s00289-010-0306-x. DOI

Ahmadi M., Madadlou A., Saboury A.A. Whey Protein Aerogel as Blended with Cellulose Crystalline Particles or Loaded with Fish Oil. Food Chem. 2016;196:1016–1022. doi: 10.1016/j.foodchem.2015.10.031. PubMed DOI

Seantier B., Bendahou D., Bendahou A., Grohens Y., Kaddami H. Multi-Scale Cellulose Based New Bio-Aerogel Composites with Thermal Super-Insulating and Tunable Mechanical Properties. Carbohydr. Polym. 2016;138:335–348. doi: 10.1016/j.carbpol.2015.11.032. PubMed DOI

Nguyen B.N., Cudjoe E., Douglas A., Scheiman D., McCorkle L., Meador M.A.B., Rowan S.J. Polyimide Cellulose Nanocrystal Composite Aerogels. Macromolecules. 2016;49:1692–1703. doi: 10.1021/acs.macromol.5b01573. DOI

Liebner F., Potthast A., Rosenau T., Haimer E., Wendland M. Cellulose Aerogels: Highly Porous, Ultra-Lightweight Materials. Holzforschung. 2008;62:129–135. doi: 10.1515/HF.2008.051. DOI

Ratke L. Monoliths and Fibrous Cellulose Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 173–190. Advances in Sol-Gel Derived Materials and Technologies.

Innerlohinger J., Weber H.K., Kraft G. Aerocellulose: Aerogels and Aerogel-like Materials Made from Cellulose. Macromol. Symp. 2006;244:126–135. doi: 10.1002/masy.200651212. DOI

Hoepfner S., Ratke L., Milow B. Synthesis and Characterisation of Nanofibrillar Cellulose Aerogels. Cellulose. 2008;15:121–129. doi: 10.1007/s10570-007-9146-8. DOI

Sescousse R., Gavillon R., Budtova T. Aerocellulose from Cellulose–Ionic Liquid Solutions: Preparation, Properties and Comparison with Cellulose–NaOH and Cellulose–NMMO Routes. Carbohydr. Polym. 2011;83:1766–1774. doi: 10.1016/j.carbpol.2010.10.043. DOI

Tan C., Fung B., Newman J., Vu C. Organic Aerogels with Very High Impact Strength. Adv. Mater. 2001;13:644–646. doi: 10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#. DOI

Jin H., Nishiyama Y., Wada M., Kuga S. Nanofibrillar Cellulose Aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2004;240:63–67. doi: 10.1016/j.colsurfa.2004.03.007. DOI

Fischer F., Rigacci A., Pirard R., Berthon-Fabry S., Achard P. Cellulose-Based Aerogels. Polymer. 2006;47:7636–7645. doi: 10.1016/j.polymer.2006.09.004. DOI

Sözcü S., Venkataraman M., Tomkova B., Militky J. Selected Topics in Fibrous Materials Science. TUL FT Liberec: Technicka Univerzita v Liberci; Liberec, Czech Republic: 2022. Cellulose-Based Aerogels Understading Their Origin, Preparation and Multifunctional Effect for Potential Application; p. 93.

Fischer S. Master’s Thesis. Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek “Georgius Agricola”; Freiberg, Germany: 2009. Anorganische Salzhydratschmelzen.

Fischer S., Leipner H., Thümmler K., Brendler E., Peters J. Inorganic Molten Salts as Solvents for Cellulose. Cellulose. 2003;10:227–236. doi: 10.1023/A:1025128028462. DOI

Frey M.W., Theil M.H. Calculated Phase Diagrams for Cellulose/Ammonia/Ammonium Thiocyanate Solutions in Comparison to Experimental Results. Cellulose. 2004;11:53–63. doi: 10.1023/B:CELL.0000014771.69377.3d. DOI

Cuce E., Cuce P.M., Wood C.J., Riffat S.B. Toward Aerogel Based Thermal Superinsulation in Buildings: A Comprehensive Review. Renew. Sustain. Energy Rev. 2014;34:273–299. doi: 10.1016/j.rser.2014.03.017. DOI

Sadineni S.B., Madala S., Boehm R.F. Passive Building Energy Savings: A Review of Building Envelope Components. Renew. Sustain. Energy Rev. 2011;15:3617–3631. doi: 10.1016/j.rser.2011.07.014. DOI

Rahbar Shamskar K., Heidari H., Rashidi A. Preparation and Evaluation of Nanocrystalline Cellulose Aerogels from Raw Cotton and Cotton Stalk. Ind. Crops Prod. 2016;93:203–211. doi: 10.1016/j.indcrop.2016.01.044. DOI

Pääkkö M., Vapaavuori J., Silvennoinen R., Kosonen H., Ankerfors M., Lindström T., Berglund L.A., Ikkala O. Long and Entangled Native Cellulose I Nanofibers Allow Flexible Aerogels and Hierarchically Porous Templates for Functionalities. Soft Matter. 2008;4:2492–2499. doi: 10.1039/b810371b. DOI

Nguyen V., Quoc Lam H., Nguyen T., Ly P., Nguyen D.M., Hoang D. Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment. ACS Omega. 2022;7:1003–1013. doi: 10.1021/acsomega.1c05586. PubMed DOI PMC

Wu Z.-Y., Li C., Liang H.-W., Chen J.-F., Yu S.-H. Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem. Int. Ed. 2013;52:2925–2929. doi: 10.1002/anie.201209676. PubMed DOI

Négrier M., Ahmar E.E., Sescousse R., Sauceau M., Budtova T. Upcycling of Textile Waste into High Added Value Cellulose Porous Materials, Aerogels and Cryogels. RSC Sustain. 2023;1:335–345. doi: 10.1039/D2SU00084A. DOI

Yang X., Fei B., Ma J., Liu X., Yang S., Tian G., Jiang Z. Porous Nanoplatelets Wrapped Carbon Aerogels by Pyrolysis of Regenerated Bamboo Cellulose Aerogels as Supercapacitor Electrodes. Carbohydr. Polym. 2018;180:385–392. doi: 10.1016/j.carbpol.2017.10.013. PubMed DOI

Zhou X., Luo G., Wang H., Xu D., Zeng K., Wu X., Ren D. Development of a Novel Bamboo Cellulose Nanofibrils Hybrid Aerogel with High Thermal-Insulating Performance for Fresh Strawberry Cold-Chain Logistics. Int. J. Biol. Macromol. 2023;229:452–462. doi: 10.1016/j.ijbiomac.2022.12.316. PubMed DOI

Yang H., Sheikhi A., van de Ven T.G.M. Reusable Green Aerogels from Cross-Linked Hairy Nanocrystalline Cellulose and Modified Chitosan for Dye Removal. Langmuir. 2016;32:11771–11779. doi: 10.1021/acs.langmuir.6b03084. PubMed DOI

Nemoto J., Saito T., Isogai A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces. 2015;7:19809–19815. doi: 10.1021/acsami.5b05841. PubMed DOI

Du A., Zhou B., Zhang Z., Shen J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials. 2013;6:941–968. doi: 10.3390/ma6030941. PubMed DOI PMC

Soleimani Dorcheh A., Abbasi M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process. Technol. 2008;199:10–26. doi: 10.1016/j.jmatprotec.2007.10.060. DOI

Dervin S., Pillai S. Sol-Gel Materials for Energy, Environment and Electronic Applications. Springer; Cham, Switzerland: 2017. An Introduction to Sol-Gel Processing for Aerogels; pp. 1–22.

Neacşu I.A., Nicoară A.I., Vasile O.R., Vasile B.Ş. Chapter 9—Inorganic Micro- and Nanostructured Implants for Tissue Engineering. In: Grumezescu A.M., editor. Nanobiomaterials in Hard Tissue Engineering. William Andrew Publishing; Norwich, NY, USA: 2016. pp. 271–295.

Carraher C.E. General Topics. Polym. News. 2005;30:386–388. doi: 10.1080/00323910500402961. DOI

Do N.H.N., Luu T.P., Thai Q.B., Le D.K., Chau N.D.Q., Nguyen S.T., Le P.K., Phan-Thien N., Duong H.M. Heat and Sound Insulation Applications of Pineapple Aerogels from Pineapple Waste. Mater. Chem. Phys. 2020;242:122267. doi: 10.1016/j.matchemphys.2019.122267. DOI

Duong H., Xie Z., Wei K., Nian N., Tan K., Lim H., Li A., Chung K.-S., Lim W. Thermal Jacket Design Using Cellulose Aerogels for Heat Insulation Application of Water Bottles. Fluids. 2017;2:64. doi: 10.3390/fluids2040064. DOI

Karadagli I., Milow B., Ratke L., Schulz B., Seide G., Gries T. Synthesis and Characterization of Highly Porous Cellulose Aerogels for Textiles Applications; Proceedings of the Cellular Materials: CELLMAT 2012; Dresden, Germany. 7–9 November 2012.

Han Y., Zhang X., Wu X., Lu C. Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustain. Chem. Eng. 2015;3:1853–1859. doi: 10.1021/acssuschemeng.5b00438. DOI

Bao M.X., Xu S., Wang X., Sun R. Porous Cellulose Aerogels with High Mechanical Performance and Their Absorption Behaviors. Bioresources. 2016;11:8–20. doi: 10.15376/biores.11.1.8-20. DOI

Hüsing N., Schubert U. Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998;37:22–45. doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I. PubMed DOI

Buchtová N., Budtova T. Cellulose Aero-, Cryo- and Xerogels: Towards Understanding of Morphology Control. Cellulose. 2016;23:2585–2595. doi: 10.1007/s10570-016-0960-8. DOI

Quiño J., Ruehl M., Klima T., Ruiz F., Will S., Braeuer A. Supercritical Drying of Aerogel: In Situ Analysis of Concentration Profiles inside the Gel and Derivation of the Effective Binary Diffusion Coefficient Using Raman Spectroscopy. J. Supercrit. Fluids. 2016;108:1–12. doi: 10.1016/j.supflu.2015.10.011. DOI

Özbakır Y., Erkey C. Experimental and Theoretical Investigation of Supercritical Drying of Silica Alcogels. J. Supercrit. Fluids. 2015;98:153–166. doi: 10.1016/j.supflu.2014.12.001. DOI

Sanz-Moral L.M., Rueda M., Mato R., Martín Á. View Cell Investigation of Silica Aerogels during Supercritical Drying: Analysis of Size Variation and Mass Transfer Mechanisms. J. Supercrit. Fluids. 2014;92:24–30. doi: 10.1016/j.supflu.2014.05.004. DOI

Griffin J.S., Mills D.H., Cleary M., Nelson R., Manno V.P., Hodes M. Continuous Extraction Rate Measurements during Supercritical CO2 Drying of Silica Alcogel. J. Supercrit. Fluids. 2014;94:38–47. doi: 10.1016/j.supflu.2014.05.020. DOI

García-González C.A., Alnaief M., Smirnova I. Polysaccharide-Based Aerogels—Promising Biodegradable Carriers for Drug Delivery Systems. Carbohydr. Polym. 2011;86:1425–1438. doi: 10.1016/j.carbpol.2011.06.066. DOI

Liebner F., Haimer E., Wendland M., Neouze M.-A., Schlufter K., Miethe P., Heinze T., Potthast A., Rosenau T. Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels. Macromol. Biosci. 2010;10:349–352. doi: 10.1002/mabi.200900371. PubMed DOI

Lu Y., Qingfeng S., Yang D., She X., Yao X., Zhu G., Liu Y., Zhao H., Li J. Fabrication of Mesoporous Lignocellulose Aerogels from Wood via Cyclic Liquid Nitrogen Freezing–Thawing in Ionic Liquid Solution. J. Mater. Chem. 2012;22:13548–13557. doi: 10.1039/c2jm31310c. DOI

Pircher N., Carbajal L., Schimper C., Bacher M., Rennhofer H., Nedelec J.-M., Lichtenegger H.C., Rosenau T., Liebner F. Impact of Selected Solvent Systems on the Pore and Solid Structure of Cellulose Aerogels. Cellulose. 2016;23:1949–1966. doi: 10.1007/s10570-016-0896-z. PubMed DOI PMC

Wang X., Zhang Y., Jiang H., Song Y., Zhou Z., Zhao H. Fabrication and Characterization of Nano-Cellulose Aerogels via Supercritical CO2 Drying Technology. Mater. Lett. 2016;183:179–182. doi: 10.1016/j.matlet.2016.07.081. DOI

Heath L., Thielemans W. Cellulose Nanowhisker Aerogels. Green Chem. 2010;12:1448–1453. doi: 10.1039/c0gc00035c. DOI

Schestakow M., Karadagli I., Ratke L. Cellulose Aerogels Prepared from an Aqueous Zinc Chloride Salt Hydrate Melt. Carbohydr. Polym. 2016;137:642–649. doi: 10.1016/j.carbpol.2015.10.097. PubMed DOI

Tajiri K., Igarashi K., Nishio T. Effects of Supercritical Drying Media on Structure and Properties of Silica Aerogel. J. Non-Cryst. Solids. 1995;186:83–87. doi: 10.1016/0022-3093(95)00038-0. DOI

Laudise R.A., Johnson D.W. Supercritical Drying of Gels. J. Non-Cryst. Solids. 1986;79:155–164. doi: 10.1016/0022-3093(86)90043-8. DOI

Kocon L., Despetis F., Phalippou J. Ultralow Density Silica Aerogels by Alcohol Supercritical Drying. J. Non-Cryst. Solids. 1998;225:96–100. doi: 10.1016/S0022-3093(98)00322-6. DOI

Stolarski M., Walendziewski J., Steininger M., Pniak B. Synthesis and Characteristic of Silica Aerogels. Appl. Catal. A Gen. 1999;177:139–148. doi: 10.1016/S0926-860X(98)00296-8. DOI

Mahadik D.B., Lee Y.K., Chavan N.K., Mahadik S.A., Park H.-H. Monolithic and Shrinkage-Free Hydrophobic Silica Aerogels via New Rapid Supercritical Extraction Process. J. Supercrit. Fluids. 2016;107:84–91. doi: 10.1016/j.supflu.2015.08.020. DOI

Kong Y., Shen X.-D., Cui S. Direct Synthesis of Anatase TiO2 Aerogel Resistant to High Temperature under Supercritical Ethanol. Mater. Lett. 2014;117:192–194. doi: 10.1016/j.matlet.2013.12.004. DOI

Kirkbir F., Murata H., Meyers D., Chaudhuri S.R. Drying of Large Monolithic Aerogels between Atmospheric and Supercritical Pressures. J. Sol-Gel Sci. Technol. 1998;13:311–316. doi: 10.1023/A:1008668009340. DOI

Kirkbir F., Murata H., Meyers D., Chaudhuri S.R. Drying of Aerogels in Different Solvents between Atmospheric and Supercritical Pressures. J. Non-Cryst. Solids. 1998;225:14–18. doi: 10.1016/S0022-3093(98)00003-9. DOI

Dowson M., Grogan M., Birks T., Harrison D., Craig S. Streamlined Life Cycle Assessment of Transparent Silica Aerogel Made by Supercritical Drying. Appl. Energy. 2012;97:396–404. doi: 10.1016/j.apenergy.2011.11.047. DOI

van Bommel M.J., de Haan A.B. Drying of Silica Aerogel with Supercritical Carbon Dioxide. J. Non-Cryst. Solids. 1995;186:78–82. doi: 10.1016/0022-3093(95)00072-0. DOI

Sanz-Moral L.M., Rueda M., Nieto A., Novak Z., Knez Ž., Martín Á. Gradual Hydrophobic Surface Functionalization of Dry Silica Aerogels by Reaction with Silane Precursors Dissolved in Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2013;84:74–79. doi: 10.1016/j.supflu.2013.09.010. DOI

Pajonk G.M., Venkateswara Rao A., Sawant B.M., Parvathy N.N. Dependence of Monolithicity and Physical Properties of TMOS Silica Aerogels on Gel Aging and Drying conditions. J. Non-Cryst. Solids. 1997;209:40–50. doi: 10.1016/S0022-3093(96)00560-1. DOI

Masmoudi Y., Rigacci A., Ilbizian P., Cauneau F., Achard P. Diffusion During the Supercritical Drying of Silica Gels. Dry. Technol. 2006;24:1121–1125. doi: 10.1080/07373930600778270. DOI

García-González C.A., Camino-Rey M.C., Alnaief M., Zetzl C., Smirnova I. Supercritical Drying of Aerogels Using CO2: Effect of Extraction Time on the End Material Textural Properties. J. Supercrit. Fluids. 2012;66:297–306. doi: 10.1016/j.supflu.2012.02.026. DOI

Wang Y.-Y., Gao Y.-B., Sun Y.-H., Chen S.-Y. Effect of Preparation Parameters on the Texture of SiO2 Aerogels. Catal. Today. 1996;30:171–175. doi: 10.1016/0920-5861(96)00010-7. DOI

Lu Y., Gao R., Xiao S., Yin Y., Liu Q., Li J. Biobased Aerogels: Polysaccharide and Protein-Based Materials. The Royal Society of Chemistry; London, UK: 2018. Cellulose Based Aerogels: Processing and Morphology; pp. 25–41. RSC Green Chemistry.

Wang X., Zhang Y., Jiang H., Song Y., Zhou Z., Zhao H. Tert-Butyl Alcohol Used to Fabricate Nano-Cellulose Aerogels via Freeze-Drying Technology. Mater. Res. Express. 2017;4:065006. doi: 10.1088/2053-1591/aa72bc. DOI

Pons A., Casas L., Estop E., Molins E., Harris K.D.M., Xu M. A New Route to Aerogels: Monolithic Silica Cryogels. J. Non-Cryst. Solids. 2012;358:461–469. doi: 10.1016/j.jnoncrysol.2011.10.031. DOI

Jiang F., Hsieh Y.-L. Super Water Absorbing and Shape Memory Nanocellulose Aerogels from TEMPO-Oxidized Cellulose Nanofibrils via Cyclic Freezing–Thawing. J. Mater. Chem. A. 2013;2:350–359. doi: 10.1039/C3TA13629A. DOI

Zhang X., Yu Y., Jiang Z., Wang H. The Effect of Freezing Speed and Hydrogel Concentration on the Microstructure and Compressive Performance of Bamboo-Based Cellulose Aerogel. J. Wood Sci. 2015;61:595–601. doi: 10.1007/s10086-015-1514-7. DOI

Nakagaito A., Kondo H., Takagi H. Cellulose Nanofiber Aerogel Production and Applications. J. Reinf. Plast. Compos. 2013;32:1547–1552. doi: 10.1177/0731684413494110. DOI

Jiménez-Saelices C., Seantier B., Cathala B., Grohens Y. Spray Freeze-Dried Nanofibrillated Cellulose Aerogels with Thermal Superinsulating Properties. Carbohydr. Polym. 2017;157:105–113. doi: 10.1016/j.carbpol.2016.09.068. PubMed DOI

Cai H., Sharma S., Liu W., Mu W., Liu W., Zhang X., Deng Y. Aerogel Microspheres from Natural Cellulose Nanofibrils and Their Application as Cell Culture Scaffold. Biomacromolecules. 2014;15:2540–2547. doi: 10.1021/bm5003976. PubMed DOI

Cai J., Kimura S., Wada M., Kuga S., Zhang L. Cellulose Aerogels from Aqueous Alkali Hydroxide–Urea Solution. ChemSusChem. 2008;1:149–154. doi: 10.1002/cssc.200700039. PubMed DOI

Beaumont M., Kondor A., Plappert S., Mitterer C., Opietnik M., Potthast A., Rosenau T. Surface Properties and Porosity of Highly Porous, Nanostructured Cellulose II Particles. Cellulose. 2017;24:435–440. doi: 10.1007/s10570-016-1091-y. DOI

Reichenauer G. Structural Characterization of Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 449–498. Advances in Sol-Gel Derived Materials and Technologies.

Luo Y., Wang S., Fu X., Du X., Wang H., Zhou M., Cheng X., Du Z. Fabrication of a Bio-Based Superhydrophobic and Flame-Retardant Cotton Fabric for Oil–Water Separation. Macromol. Mater. Eng. 2021;306:2000624. doi: 10.1002/mame.202000624. DOI

Walenta E. Small Angle X-ray Scattering. Von O. GLATTER Und O. KRATKY. London: Academic Press Inc. Ltd. 1982. ISBN 0-12-286280-5. X, 515 Seiten, Geb. £ 43,60; US $ 81.00. Acta Polym. 1985;36:296. doi: 10.1002/actp.1985.010360520. DOI

Hunt A.J. Light Scattering for Aerogel Characterization. J. Non-Cryst. Solids. 1998;225:303–306. doi: 10.1016/S0022-3093(98)00048-9. DOI

Fauziyah M., Widiyastuti W., Balgis R., Setyawan H. Production of Cellulose Aerogels from Coir Fibers via an Alkali–Urea Method for Sorption Applications. Cellulose. 2019;26:9583–9598. doi: 10.1007/s10570-019-02753-x. DOI

Qiu J., Guo X., Lei W., Ding R., Zhang Y., Yang H. Facile Preparation of Cellulose Aerogels with Controllable Pore Structure. Nanomaterials. 2023;13:613. doi: 10.3390/nano13030613. PubMed DOI PMC

Horvat G., Pantić M., Knez Ž., Novak Z. A Brief Evaluation of Pore Structure Determination for Bioaerogels. Gels. 2022;8:438. doi: 10.3390/gels8070438. PubMed DOI PMC

Thomson W. 4. On the Equilibrium of Vapour at a Curved Surface of Liquid. Proc. R. Soc. Edinb. 1872;7:63–68. doi: 10.1017/S0370164600041729. DOI

Gibbs J.W. The Collected Works of J. Willard Gibbs: Thermodynamics. Yale University Press; New Haven, CT, USA: 1948.

Maloney T.C. Thermoporosimetry of Hard (Silica) and Soft (Cellulosic) Materials by Isothermal Step Melting. J. Therm. Anal. Calorim. 2015;121:7–17. doi: 10.1007/s10973-015-4592-2. DOI

Riikonen J., Salonen J., Lehto V.-P. Utilising Thermoporometry to Obtain New Insights into Nanostructured Materials. J. Therm. Anal. Calorim. 2011;105:811–821. doi: 10.1007/s10973-010-1167-0. DOI

Kaviany M. Principles of Heat Transfer in Porous Media. Springer Science & Business Media; New York, NY, USA: 2012.

Tanikawa W., Shimamoto T. Klinkenberg Effect for Gas Permeability and Its Comparison to Water Permeability for Porous Sedimentary Rocks. Hydrol. Earth Syst. Sci. Discuss. 2006;3:1315–1338. doi: 10.5194/hessd-3-1315-2006. DOI

Scheidegger A.E. The Physics of Flow through Porous Media. 3rd ed. University of Toronto Press; Toronto, ON, Canada: 2020.

Giesche H. Mercury Porosimetry: A General (Practical) Overview. Part. Part. Syst. Charact. 2006;23:9–19. doi: 10.1002/ppsc.200601009. DOI

Pirard R., Alie C., Pirard J.-P. Characterization of Porous Texture of Hyperporous Materials by Mercury Porosimetry Using Densification Equation. Powder Technol. 2002;128:242–247. doi: 10.1016/S0032-5910(02)00185-7. DOI

Job N., Pirard R., Pirard J.-P., Alié C. Non Intrusive Mercury Porosimetry: Pyrolysis of Resorcinol-Formaldehyde Xerogels. Part. Part. Syst. Charact. 2006;23:72–81. doi: 10.1002/ppsc.200601011. DOI

Hossen M., Talbot M., Kennard R., Bousfield D., Mason M. A Comparative Study of Methods for Porosity Determination of Cellulose Based Porous Materials. Cellulose. 2020;27:6849–6860. doi: 10.1007/s10570-020-03257-9. DOI

Lu H., Luo H., Leventis N. Mechanical Characterization of Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 499–535. Advances in Sol-Gel Derived Materials and Technologies.

Wingfield C., Baski A., Bertino M.F., Leventis N., Mohite D.P., Lu H. Fabrication of Sol−Gel Materials with Anisotropic Physical Properties by Photo-Cross-Linking. Chem. Mater. 2009;21:2108–2114. doi: 10.1021/cm803374b. DOI

Dieter G.E., Bacon D. Mechanical Metallurgy. Volume 3 McGraw-Hill; New York, NY, USA: 1976.

Ahmad H., Anguilano L., Fan M. Microstructural Architecture and Mechanical Properties of Empowered Cellulose-Based Aerogel Composites via TEMPO-Free Oxidation. Carbohydr. Polym. 2022;298:120117. doi: 10.1016/j.carbpol.2022.120117. PubMed DOI

Gross J., Fricke J. Ultrasonic Velocity Measurements in Silica, Carbon and Organic Aerogels. J. Non-Cryst. Solids. 1992;145:217–222. doi: 10.1016/S0022-3093(05)80459-4. DOI

Calemczuk R., de Goer A.M., Salce B., Maynard R., Zarembowitch A. Low-Temperature Properties of Silica Aerogels. EPL. 1987;3:1205. doi: 10.1209/0295-5075/3/11/009. PubMed DOI

Gross J., Reichenauer G., Fricke J. Mechanical Properties of SiO2 Aerogels. J. Phys. D Appl. Phys. 1988;21:1447. doi: 10.1088/0022-3727/21/9/020. DOI

Lemay J.D., Tillotson T.M., Hrubesh L.W., Pekala R.W. Microstructural Dependence of Aerogel Mechanical Properties. MRS Online Proc. Libr. 1990;180:321. doi: 10.1557/PROC-180-321. DOI

Woignier T., Phalippou J., Hdach H., Larnac G., Pernot F., Scherer G.W. Evolution of Mechanical Properties during the Alcogel-Aerogel-Glass Process. J. Non-Cryst. Solids. 1992;147–148:672–680. doi: 10.1016/S0022-3093(05)80697-0. DOI

Scherer G.W. Crack-Tip Stress in Gels. J. Non-Cryst. Solids. 1992;144:210–216. doi: 10.1016/S0022-3093(05)80402-8. DOI

Zarzycki J. Critical Stress Intensity Factors of Wet Gels. J. Non-Cryst. Solids. 1988;100:359–363. doi: 10.1016/0022-3093(88)90046-4. DOI

Evans A.G. Slow Crack Growth in Brittle Materials under Dynamic Loading Conditions. Int. J. Fract. 1974;10:251–259. doi: 10.1007/BF00113930. DOI

Hafidi Alaoui A., Woignier T., Pernot F., Phalippou J., Hihi A. Stress Intensity Factor in Silica Alcogels and Aerogels. J. Non-Cryst. Solids. 2000;265:29–35. doi: 10.1016/S0022-3093(99)00887-X. DOI

Zhang Y., Wang S., Xu G., Wang G., Zhao M. Effect of Microstructure on Fatigue-Crack Propagation of 18CrNiMo7-6 High-Strength Steel. Int. J. Fatigue. 2022;163:107027. doi: 10.1016/j.ijfatigue.2022.107027. DOI

Buchtová N., Pradille C., Bouvard J.-L., Budtova T. Mechanical Properties of Cellulose Aerogels and Cryogels. Soft Matter. 2019;15:7901–7908. doi: 10.1039/C9SM01028A. PubMed DOI

American Society for Testing and Materials; West Conshohocken, PA, USA: 2022. Standard Test Method for Tensile Properties of Plastics.

American Society for Testing and Materials; West Conshohocken, PA, USA: 2023. Standard Test Method for Compressive Properties of Rigid Plastics.

American Society for Testing and Materials; West Conshohocken, PA, USA: 2017. Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams.

Xu Y., Xu T., Liu H., Cai H., Wang C. Gain Regulation of the Microchannel Plate System. Int. J. Mass. Spectrom. 2017;421:234–237. doi: 10.1016/j.ijms.2017.07.017. DOI

Cao L., Fu Q., Si Y., Ding B., Yu J. Porous Materials for Sound Absorption. Compos. Commun. 2018;10:25–35. doi: 10.1016/j.coco.2018.05.001. DOI

Wang G., Yuan P., Ma B., Yuan W., Luo J. Hierarchically Structured M13 Phage Aerogel for Enhanced Sound-Absorption. Macromol. Mater. Eng. 2020;305:2000452. doi: 10.1002/mame.202000452. DOI

Begum H., Horoshenkov K.V., Conte M., Malfait W.J., Zhao S., Koebel M.M., Bonfiglio P., Venegas R. The Acoustical Properties of Tetraethyl Orthosilicate Based Granular Silica Aerogels. J. Acoust. Soc. Am. 2021;149:4149–4158. doi: 10.1121/10.0005200. PubMed DOI

American Society for Testing and Materials; West Conshohocken, PA, USA: 2019. Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System.

Kueh A., Razali A., Lee Y., Hamdan S., Yakub I., Suhaili N. Acoustical and Mechanical Characteristics of Mortars with Pineapple Leaf Fiber and Silica Aerogel Infills—Measurement and Modeling. Mater. Today Commun. 2023;35:105540. doi: 10.1016/j.mtcomm.2023.105540. DOI

Wang G., Ma B., Yuan W., Luo J. Acoustic and Mechanical Characterization of a Novel Polypropylene Fibers Based Composite Aerogel. Mater. Lett. 2023;334:133696. doi: 10.1016/j.matlet.2022.133696. DOI

Wang Y., Zhu H., Tu W., Su Y., Jiang F., Riffat S. Sound Absorption, Structure and Mechanical Behavior of Konjac Glucomannan-Based Aerogels with Addition of Gelatin and Wheat Straw. Constr. Build. Mater. 2022;352:129052. doi: 10.1016/j.conbuildmat.2022.129052. DOI

Feng J., Le D., Nguyen S.T., Tan Chin Nien V., Jewell D., Duong H.M. Silica⿿cellulose Hybrid Aerogels for Thermal and Acoustic Insulation Applications. Colloids Surf. A Physicochem. Eng. Asp. 2016;506:298–305. doi: 10.1016/j.colsurfa.2016.06.052. DOI

Huang J., Wang X., Guo W., Niu H., Song L., Hu Y. Eco-Friendly Thermally Insulating Cellulose Aerogels with Exceptional Flame Retardancy, Mechanical Property and Thermal Stability. J. Taiwan Inst. Chem. Eng. 2022;131:104159. doi: 10.1016/j.jtice.2021.104159. DOI

Ebert H.-P. Aerogels Handbook. Springer; New York, NY, USA: 2011. Thermal Properties of Aerogels; pp. 537–564.

Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. 2011th ed. Springer; New York, NY, USA: 2011. Advances in Sol-Gel Derived Materials and Technologies.

Guo W., Chen S., Liang F., Jin L., Ji C., Zhang P., Fei B. Ultra-Light-Weight, Anti-Flammable and Water-Proof Cellulosic Aerogels for Thermal Insulation Applications. Int. J. Biol. Macromol. 2023;246:125343. doi: 10.1016/j.ijbiomac.2023.125343. PubMed DOI

Yan M., Pan Y., Cheng X., Zhang Z., Deng Y., Lun Z., Gong L., Gao M., Zhang H. “Robust–Soft” Anisotropic Nanofibrillated Cellulose Aerogels with Superior Mechanical, Flame-Retardant, and Thermal Insulating Properties. ACS Appl. Mater. Interfaces. 2021;13:27458–27470. doi: 10.1021/acsami.1c05334. PubMed DOI

Wang D., Peng H., Yu B., Zhou K., Pan H., Zhang L., Li M., Liu M., Tian A., Fu S. Biomimetic Structural Cellulose Nanofiber Aerogels with Exceptional Mechanical, Flame-Retardant and Thermal-Insulating Properties. Chem. Eng. J. 2020;389:124449. doi: 10.1016/j.cej.2020.124449. DOI

Underwriters Laboratories of the United States; Northbrook, IL, USA: 2013. The Standard Tests for Flammability—Vertical Burning Tests.

Qin Z., Chen X., Lv Y., Zhao B., Fang X., Pan K. Wearable and High-Performance Piezoresistive Sensor Based on Nanofiber/Sodium Alginate Synergistically Enhanced MXene Composite Aerogel. Chem. Eng. J. 2023;451:138586. doi: 10.1016/j.cej.2022.138586. DOI

Chen Y., Zhang C., Tao S., Chai H., Xu D., Li X., Qi H. High-Performance Smart Cellulose Nanohybrid Aerogel Fibers as a Platform toward Multifunctional Textiles. Chem. Eng. J. 2023;466:143153. doi: 10.1016/j.cej.2023.143153. DOI

Jiang F., Hsieh Y.-L. Amphiphilic Superabsorbent Cellulose Nanofibril Aerogels. J. Mater. Chem. A. 2014;2:6337–6342. doi: 10.1039/C4TA00743C. DOI

Nguyen H.S.H., Phan H.H., Huynh H.K.P., Nguyen S.T., Nguyen V.T.T., Phan A.N. Understanding the Effects of Cellulose Fibers from Various Pre-Treated Barley Straw on Properties of Aerogels. Fuel Process. Technol. 2022;236:107425. doi: 10.1016/j.fuproc.2022.107425. DOI

Sun J., Wu Z., An B., Ma C., Xu L., Zhang Z., Luo S., Li W., Liu S. Thermal-Insulating, Flame-Retardant and Mechanically Resistant Aerogel Based on Bio-Inspired Tubular Cellulose. Compos. Part B Eng. 2021;220:108997. doi: 10.1016/j.compositesb.2021.108997. DOI

He H., Wang Y., Yu Z., Liu J., Zhao Y., Ke Y. Ecofriendly Flame-Retardant Composite Aerogel Derived from Polysaccharide: Preparation, Flammability, Thermal Kinetics, and Mechanism. Carbohydr. Polym. 2021;269:118291. doi: 10.1016/j.carbpol.2021.118291. PubMed DOI

Athamneh T., Hajnal A., Al-Najjar M.A.A., Alshweiat A., Obaidat R., Awad A.A., Al-Alwany R., Keitel J., Wu D., Kieserling H., et al. In Vivo Tests of a Novel Wound Dressing Based on Agar Aerogel. Int. J. Biol. Macromol. 2023;239:124238. doi: 10.1016/j.ijbiomac.2023.124238. PubMed DOI

Batista M.P., Gonçalves V.S.S., Gaspar F.B., Nogueira I.D., Matias A.A., Gurikov P. Novel Alginate-Chitosan Aerogel Fibres for Potential Wound Healing Applications. Int. J. Biol. Macromol. 2020;156:773–782. doi: 10.1016/j.ijbiomac.2020.04.089. PubMed DOI

Tripathi G., Park M., Lim H., Lee B.-T. Natural TEMPO Oxidized Cellulose Nano Fiber/Alginate/dSECM Hybrid Aerogel with Improved Wound Healing and Hemostatic Ability. Int. J. Biol. Macromol. 2023;243:125226. doi: 10.1016/j.ijbiomac.2023.125226. PubMed DOI

Han X., Ding S., Zhu L., Wang S. Preparation and Characterization of Flame-Retardant and Thermal Insulating Bio-Based Composite Aerogels. Energy Build. 2023;278:112656. doi: 10.1016/j.enbuild.2022.112656. DOI

Xu Y., Yan C., Du C., Xu K., Li Y., Xu M., Bourbigot S., Fontaine G., Li B., Liu L. High-Strength, Thermal-Insulating, Fire-Safe Bio-Based Organic Lightweight Aerogel Based on 3D Network Construction of Natural Tubular Fibers. Compos. Part B Eng. 2023;261:110809. doi: 10.1016/j.compositesb.2023.110809. DOI

López-Iglesias C., Barros J., Ardao I., Monteiro F.J., Alvarez-Lorenzo C., Gómez-Amoza J.L., García-González C.A. Vancomycin-Loaded Chitosan Aerogel Particles for Chronic Wound Applications. Carbohydr. Polym. 2019;204:223–231. doi: 10.1016/j.carbpol.2018.10.012. PubMed DOI

Mirmoeini S.S., Moradi M., Tajik H., Almasi H., Gama F.M. Cellulose/Salep-Based Intelligent Aerogel with Red Grape Anthocyanins: Preparation, Characterization and Application in Beef Packaging. Food Chem. 2023;425:136493. doi: 10.1016/j.foodchem.2023.136493. PubMed DOI

Mirmoeini S.S., Hosseini S.H., Lotfi Javid A., Esmaeili Koutamehr M., Sharafi H., Molaei R., Moradi M. Essential Oil-Loaded Starch/Cellulose Aerogel: Preparation, Characterization and Application in Cheese Packaging. Int. J. Biol. Macromol. 2023;244:125356. doi: 10.1016/j.ijbiomac.2023.125356. PubMed DOI

Ye R., Li H., Long J., Wang Y., Peng D. Bio-Aerogels Derived from Corn Stalk and Premna Microphylla Leaves as Eco-Friendly Sorbents for Oily Water Treatment: The Role of Microstructure in Adsorption Performance. J. Clean. Prod. 2023;403:136720. doi: 10.1016/j.jclepro.2023.136720. DOI

Wang Q., Zuo W., Tian Y., Kong L., Cai G., Zhang H., Li L., Zhang J. An Ultralight and Flexible Nanofibrillated Cellulose/Chitosan Aerogel for Efficient Chromium Removal: Adsorption-Reduction Process and Mechanism. Chemosphere. 2023;329:138622. doi: 10.1016/j.chemosphere.2023.138622. PubMed DOI

Erfanian E., Moaref R., Ajdary R., Tam K.C., Rojas O.J., Kamkar M., Sundararaj U. Electrochemically Synthesized Graphene/TEMPO-Oxidized Cellulose Nanofibrils Hydrogels: Highly Conductive Green Inks for 3D Printing of Robust Structured EMI Shielding Aerogels. Carbon. 2023;210:118037. doi: 10.1016/j.carbon.2023.118037. DOI

Peng Q., Lu Y., Li Z., Zhang J., Zong L. Biomimetic, Hierarchical-Ordered Cellulose Nanoclaw Hybrid Aerogel with High Strength and Thermal Insulation. Carbohydr. Polym. 2022;297:119990. doi: 10.1016/j.carbpol.2022.119990. PubMed DOI

Karadagli I., Schulz B., Schestakow M., Milow B., Gries T., Ratke L. Production of Porous Cellulose Aerogel Fibers by an Extrusion Process. J. Supercrit. Fluids. 2015;106:105–114. doi: 10.1016/j.supflu.2015.06.011. DOI

Zhang X., Kwek L.P., Duyen K.L., Tan M.S., Duong H.M. Fabrication and Properties of Hybrid Coffee-Cellulose Aerogels from Spent Coffee Grounds. Polymers. 2019;11:1942. doi: 10.3390/polym11121942. PubMed DOI PMC

Thai Q.B., Nguyen S.T., Ho D.K., Tran T.D., Huynh D.M., Do N.H.N., Luu T.P., Le P.K., Le D.K., Phan-Thien N., et al. Cellulose-Based Aerogels from Sugarcane Bagasse for Oil Spill-Cleaning and Heat Insulation Applications. Carbohydr. Polym. 2020;228:115365. doi: 10.1016/j.carbpol.2019.115365. PubMed DOI

Sun W., Fang Y., Wu L., Liu X. Micron down Feather Fibers Reinforced Cellulose Composite Aerogel with Excellent Acoustic and Thermal Insulation. J. Porous Mater. 2023;30:989–997. doi: 10.1007/s10934-022-01403-1. DOI

Hu X., Zhang S., Yang B., Hao M., Chen Z., Liu Y., Ramakrishna S., Wang X., Yao J. Bacterial Cellulose Composite Aerogel with High Elasticity and Adjustable Wettability for Dye Absorption and Oil–Water Separation. Appl. Surf. Sci. 2023;640:158299. doi: 10.1016/j.apsusc.2023.158299. DOI

Fan B., Pan S., Bao X., Liu Y., Yu Y., Zhou M., Wang Q., Wang P. Highly Elastic Photothermal Nanofibrillated Cellulose Aerogels for Solar-Assisted Efficient Cleanup of Viscous Oil Spill. Int. J. Biol. Macromol. 2024;256:128327. doi: 10.1016/j.ijbiomac.2023.128327. PubMed DOI

Guo J., Zhou S., Ma X., He S., Chen D., Xie F., Wang C., Yang H., Li W. Regenerated Cellulose/Polyethyleneimine Composite Aerogel for Efficient and Selective Adsorption of Anionic Dyes. Sep. Purif. Technol. 2024;330:125480. doi: 10.1016/j.seppur.2023.125480. DOI

Tran D.T., Nguyen S.T., Do N.D., Thai N.N.T., Thai Q.B., Huynh H.K.P., Nguyen V.T.T., Phan A.N. Green Aerogels from Rice Straw for Thermal, Acoustic Insulation and Oil Spill Cleaning Applications. Mater. Chem. Phys. 2020;253:123363. doi: 10.1016/j.matchemphys.2020.123363. DOI

Guo L., Chen Z., Lyu S., Fu F., Wang S. Highly Flexible Cross-Linked Cellulose Nanofibril Sponge-like Aerogels with Improved Mechanical Property and Enhanced Flame Retardancy. Carbohydr. Polym. 2018;179:333–340. doi: 10.1016/j.carbpol.2017.09.084. PubMed DOI

Bhuiyan M.A.R., Wang L., Shanks R.A., Ara Z.A., Saha T. Electrospun Polyacrylonitrile–Silica Aerogel Coating on Viscose Nonwoven Fabric for Versatile Protection and Thermal Comfort. Cellulose. 2020;27:10501–10517. doi: 10.1007/s10570-020-03489-9. DOI

Chan E.P., Lee J.-H., Chung J.Y., Stafford C.M. An Automated Spin-Assisted Approach for Molecular Layer-by-Layer Assembly of Crosslinked Polymer Thin Films. Rev. Sci. Instrum. 2012;83:114102. doi: 10.1063/1.4767289. PubMed DOI

Atoufi Z., Reid M.S., Larsson P.A., Wågberg L. Surface Tailoring of Cellulose Aerogel-like Structures with Ultrathin Coatings Using Molecular Layer-by-Layer Assembly. Carbohydr. Polym. 2022;282:119098. doi: 10.1016/j.carbpol.2022.119098. PubMed DOI

Johnson P.M., Yoon J., Kelly J.Y., Howarter J.A., Stafford C.M. Molecular Layer-by-Layer Deposition of Highly Crosslinked Polyamide Films. J. Polym. Sci. Part B Polym. Phys. 2012;50:168–173. doi: 10.1002/polb.23002. DOI

La P., Huynh N., Bui K., Pham K., Dao X.-T., Tran T., Nguyen T., Hoang N., Mai P., Nguyen H.H. Synthesis and Surface Modification of Cellulose Aerogel from Coconut Peat for Oil Adsorption. Res. Sq. 2021. preprint . DOI

Kaya M. Super Absorbent, Light, and Highly Flame Retardant Cellulose-Based Aerogel Crosslinked with Citric Acid. J. Appl. Polym. Sci. 2017;134:45315. doi: 10.1002/app.45315. DOI

Wicklein B., Kocjan D., Carosio F., Camino G., Bergström L. Tuning the Nanocellulose–Borate Interaction to Achieve Highly Flame Retardant Hybrid Materials. Chem. Mater. 2016;28:1985–1989. doi: 10.1021/acs.chemmater.6b00564. DOI

Jelle B.P. Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities. Energy Build. 2011;43:2549–2563. doi: 10.1016/j.enbuild.2011.05.015. DOI

BuyAerogel.com|Airloy® X103 Strong Aerogel Large Panels. [(accessed on 16 August 2023)]. Available online: http://www.buyaerogel.com/product/airloy-x103-large-panels/

Antlauf M., Boulanger N., Berglund L., Oksman K., Andersson O. Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities. Biomacromolecules. 2021;22:3800–3809. doi: 10.1021/acs.biomac.1c00643. PubMed DOI PMC

Zhang X., Zhao X., Xue T., Yang F., Fan W., Liu T. Bidirectional Anisotropic Polyimide/Bacterial Cellulose Aerogels by Freeze-Drying for Super-Thermal Insulation. Chem. Eng. J. 2020;385:123963. doi: 10.1016/j.cej.2019.123963. DOI

Sai H., Wang M., Miao C., Song Q., Wang Y., Fu R., Wang Y., Ma L., Hao Y. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile. Gels. 2021;7:145. doi: 10.3390/gels7030145. PubMed DOI PMC

Jiang S., Zhang M., Jiang W., Xu Q., Yu J., Liu L., Liu L. Multiscale Nanocelluloses Hybrid Aerogels for Thermal Insulation: The Study on Mechanical and Thermal Properties. Carbohydr. Polym. 2020;247:116701. doi: 10.1016/j.carbpol.2020.116701. PubMed DOI

Dong C., Hu Y., Zhu Y., Wang J., Jia X., Chen J., Li J. Fabrication of Textile Waste Fibers Aerogels with Excellent Oil/Organic Solvent Adsorption and Thermal Properties. Gels. 2022;8:684. doi: 10.3390/gels8100684. PubMed DOI PMC

Liu Z., Lyu J., Fang D., Zhang X. Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments. ACS Nano. 2019;13:5703–5711. doi: 10.1021/acsnano.9b01094. PubMed DOI

Nguyen S.T., Feng J., Ng S.K., Wong J.P.W., Tan V.B.C., Duong H.M. Advanced Thermal Insulation and Absorption Properties of Recycled Cellulose Aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2014;445:128–134. doi: 10.1016/j.colsurfa.2014.01.015. DOI

Yang H., Wang Z., Liu Z., Cheng H., Li C. Continuous, Strong, Porous Silk Firoin-Based Aerogel Fibers toward Textile Thermal Insulation. Polymers. 2019;11:1899. doi: 10.3390/polym11111899. PubMed DOI PMC

Song M., Jiang J., Qin H., Ren X., Jiang F. Flexible and Super Thermal Insulating Cellulose Nanofibril/Emulsion Composite Aerogel with Quasi-Closed Pores. ACS Appl. Mater. Interfaces. 2020;12:45363–45372. doi: 10.1021/acsami.0c14091. PubMed DOI

Zeng Z., Wu T., Han D., Ren Q., Siqueira G., Nyström G. Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. Acs Nano. 2020;14:2927–2938. doi: 10.1021/acsnano.9b07452. PubMed DOI

Yu Z., Suryawanshi A., He H., Liu J., Li Y., Lin X., Sun Z. Preparation and Characterisation of Fire-Resistant PNIPAAm/SA/AgNP Thermosensitive Network Hydrogels and Laminated Cotton Fabric Used in Firefighter Protective Clothing. Cellulose. 2020;27:5391–5406. doi: 10.1007/s10570-020-03146-1. DOI

Yu Z., Liu J., Suryawanshi A., He H., Wang Y., Zhao Y. Thermal Insulating and Fire-Retarding Behavior of Treated Cotton Fabrics with a Novel High Water-Retaining Hydrogel Used in Thermal Protective Clothing. Cellulose. 2021;28:2581–2597. doi: 10.1007/s10570-021-03696-y. DOI

Kim S.J., Kim H.A. Effect of Fabric Structural Parameters and Weaving Conditions to Warp Tension of Aramid Fabrics for Protective Garments. Text. Res. J. 2018;88:987–1001. doi: 10.1177/0040517517693981. DOI

Cao M., Li S.-L., Cheng J.-B., Zhang A.-N., Wang Y.-Z., Zhao H.-B. Fully Bio-Based, Low Fire-Hazard and Superelastic Aerogel without Hazardous Cross-Linkers for Excellent Thermal Insulation and Oil Clean-up Absorption. J. Hazard. Mater. 2021;403:123977. doi: 10.1016/j.jhazmat.2020.123977. PubMed DOI

Wang B., Li P., Xu Y.-J., Jiang Z.-M., Dong C.-H., Liu Y., Zhu P. Bio-Based, Nontoxic and Flame-Retardant Cotton/Alginate Blended Fibres as Filling Materials: Thermal Degradation Properties, Flammability and Flame-Retardant Mechanism. Compos. Part B Eng. 2020;194:108038. doi: 10.1016/j.compositesb.2020.108038. DOI

Zhao H.-B., Chen M., Chen H.-B. Thermally Insulating and Flame-Retardant Polyaniline/Pectin Aerogels. ACS Sustain. Chem. Eng. 2017;5:7012–7019. doi: 10.1021/acssuschemeng.7b01247. DOI

Chen J., Xie H., Lai X., Li H., Gao J., Zeng X. An Ultrasensitive Fire-Warning Chitosan/Montmorillonite/Carbon Nanotube Composite Aerogel with High Fire-Resistance. Chem. Eng. J. 2020;399:125729. doi: 10.1016/j.cej.2020.125729. DOI

He C., Huang J., Li S., Meng K., Zhang L., Chen Z., Lai Y. Mechanically Resistant and Sustainable Cellulose-Based Composite Aerogels with Excellent Flame Retardant, Sound-Absorption, and Superantiwetting Ability for Advanced Engineering Materials. ACS Sustain. Chem. Eng. 2018;6:927–936. doi: 10.1021/acssuschemeng.7b03281. DOI

He S., Liu C., Chi X., Zhang Y., Yu G., Wang H., Li B., Peng H. Bio-Inspired Lightweight Pulp Foams with Improved Mechanical Property and Flame Retardancy via Borate Cross-Linking. Chem. Eng. J. 2019;371:34–42. doi: 10.1016/j.cej.2019.04.018. DOI

Thanh N.T.L. Investigation on the Flame-Retardant and Physical Properties of the Modified Cellulosic and Polyurethane Aerogel. Mater. Today Proc. 2022;66:2726–2729. doi: 10.1016/j.matpr.2022.06.503. DOI

Gong J., Li J., Xu J., Xiang Z., Mo L. Research on Cellulose Nanocrystals Produced from Cellulose Sources with Various Polymorphs. RSC Adv. 2017;7:33486–33493. doi: 10.1039/C7RA06222B. DOI

Dong H., Xie Y., Zeng G., Tang L., Liang J., He Q., Zhao F., Zeng Y., Wu Y. The Dual Effects of Carboxymethyl Cellulose on the Colloidal Stability and Toxicity of Nanoscale Zero-Valent Iron. Chemosphere. 2016;144:1682–1689. doi: 10.1016/j.chemosphere.2015.10.066. PubMed DOI

Yahya E.B., Alzalouk M.M., Alfallous K.A., Abogmaza A.F. Antibacterial Cellulose-Based Aerogels for Wound Healing Application: A Review. Biomed. Res. Ther. 2020;7:4032–4040. doi: 10.15419/bmrat.v7i10.637. DOI

Lu T., Li Q., Chen W., Yu H. Composite Aerogels Based on Dialdehyde Nanocellulose and Collagen for Potential Applications as Wound Dressing and Tissue Engineering Scaffold. Compos. Sci. Technol. 2014;94:132–138. doi: 10.1016/j.compscitech.2014.01.020. DOI

Wang X., Cheng F., Liu J., Smått J.-H., Gepperth D., Lastusaari M., Xu C., Hupa L. Biocomposites of Copper-Containing Mesoporous Bioactive Glass and Nanofibrillated Cellulose: Biocompatibility and Angiogenic Promotion in Chronic Wound Healing Application. Acta Biomater. 2016;46:286–298. doi: 10.1016/j.actbio.2016.09.021. PubMed DOI

Jack A.A., Nordli H.R., Powell L.C., Farnell D.J.J., Pukstad B., Rye P.D., Thomas D.W., Chinga-Carrasco G., Hill K.E. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development. Biomacromolecules. 2019;20:2953–2961. doi: 10.1021/acs.biomac.9b00522. PubMed DOI

Yassin M.T., Mostafa A.A.-F., Al Askar A.A. In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels. Plants. 2021;10:2742. doi: 10.3390/plants10122742. PubMed DOI PMC

Jayan S.S., Jayan J.S., Saritha A. A Review on Recent Advances towards Sustainable Development of Bio-Inspired Agri-Waste Based Cellulose Aerogels. Int. J. Biol. Macromol. 2023;248:125928. doi: 10.1016/j.ijbiomac.2023.125928. PubMed DOI

Edwards J.V., Fontenot K., Liebner F., Pircher N.D.n., French A.D., Condon B.D. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose. Int. J. Mol. Sci. 2018;19:840. doi: 10.3390/ijms19030840. PubMed DOI PMC

De Cicco F., Russo P., Reverchon E., García-González C.A., Aquino R.P., Del Gaudio P. Prilling and Supercritical Drying: A Successful Duo to Produce Core-Shell Polysaccharide Aerogel Beads for Wound Healing. Carbohydr. Polym. 2016;147:482–489. doi: 10.1016/j.carbpol.2016.04.031. PubMed DOI

Kishor R., Purchase D., Saratale G.D., Saratale R.G., Ferreira L.F.R., Bilal M., Chandra R., Bharagava R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021;9:105012. doi: 10.1016/j.jece.2020.105012. DOI

Lomoko G.M.N.A., Paliulis D., Valters K. Removal of Copper (II) Ions from Polluted Water Using Modified Wheat Bran. Environ. Clim. Technol. 2021;25:853–864. doi: 10.2478/rtuect-2021-0064. DOI

Ardila-Leal L.D., Poutou-Piñales R.A., Pedroza-Rodríguez A.M., Quevedo-Hidalgo B.E. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules. 2021;26:3813. doi: 10.3390/molecules26133813. PubMed DOI PMC

Altynbayeva G., Kadnikova O., Aydarhanov A., Toretayev M. Industrial Wastewaters of the Feed Industry: Use of Sodium Ferrate in the Phenol Purification Process. Environ. Clim. Technol. 2021;25:829–839. doi: 10.2478/rtuect-2021-0062. DOI

Chandanshive V., Kadam S., Rane N., Jeon B.-H., Jadhav J., Govindwar S. In Situ Textile Wastewater Treatment in High Rate Transpiration System Furrows Planted with Aquatic Macrophytes and Floating Phytobeds. Chemosphere. 2020;252:126513. doi: 10.1016/j.chemosphere.2020.126513. PubMed DOI

Islam M.T., Saenz-Arana R., Hernandez C., Guinto T., Ahsan M.A., Bragg D.T., Wang H., Alvarado-Tenorio B., Noveron J.C. Conversion of Waste Tire Rubber into a High-Capacity Adsorbent for the Removal of Methylene Blue, Methyl Orange, and Tetracycline from Water. J. Environ. Chem. Eng. 2018;6:3070–3082. doi: 10.1016/j.jece.2018.04.058. DOI

Wei F., Shahid M.J., Alnusairi G.S.H., Afzal M., Khan A., El-Esawi M.A., Abbas Z., Wei K., Zaheer I.E., Rizwan M., et al. Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. Sustainability. 2020;12:5801. doi: 10.3390/su12145801. DOI

Liugė M., Paliulis D. Treatment of Water Containing Dyes Using Cellulose Aerogels. Environ. Clim. Technol. 2023;27:314–322. doi: 10.2478/rtuect-2023-0024. DOI

Neetha J.N., Sandesh K., Kumar K.G., Chidananda B., Ujwal P. Optimization of Direct Blue-14 Dye Degradation by Bacillus Fermus (Kx898362) an Alkaliphilic Plant Endophyte and Assessment of Degraded Metabolite Toxicity. J. Hazard. Mater. 2019;364:742–751. doi: 10.1016/j.jhazmat.2018.10.074. PubMed DOI

Shen D., Fan J., Zhou W., Gao B., Yue Q., Kang Q. Adsorption Kinetics and Isotherm of Anionic Dyes onto Organo-Bentonite from Single and Multisolute Systems. J. Hazard. Mater. 2009;172:99–107. doi: 10.1016/j.jhazmat.2009.06.139. PubMed DOI

Patel H. Charcoal as an Adsorbent for Textile Wastewater Treatment. Sep. Sci. Technol. 2018;53:2797–2812. doi: 10.1080/01496395.2018.1473880. DOI

Javanbakht V., Ghoreishi S.M., Javanbakht M. Mathematical Modeling of Batch Adsorption Kinetics of Lead Ions on Modified Natural Zeolite from Aqueous Media. Theor. Found. Chem. Eng. 2019;53:1057–1066. doi: 10.1134/S0040579519060046. DOI

Lyu W., Li J., Zheng L., Liu H., Chen J., Zhang W., Liao Y. Fabrication of 3D Compressible Polyaniline/Cellulose Nanofiber Aerogel for Highly Efficient Removal of Organic Pollutants and Its Environmental-Friendly Regeneration by Peroxydisulfate Process. Chem. Eng. J. 2021;414:128931. doi: 10.1016/j.cej.2021.128931. DOI

Ali Musa M., Idrus S. Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review. Sustainability. 2021;13:4656. doi: 10.3390/su13094656. DOI

Li W., Mu B., Yang Y. Feasibility of Industrial-Scale Treatment of Dye Wastewater via Bio-Adsorption Technology. Bioresour. Technol. 2019;277:157–170. doi: 10.1016/j.biortech.2019.01.002. PubMed DOI

Nguyen T.A., Juang R.-S. Treatment of Waters and Wastewaters Containing Sulfur Dyes: A Review. Chem. Eng. J. 2013;219:109–117. doi: 10.1016/j.cej.2012.12.102. DOI

Rambabu K., Bharath G., Banat F., Show P.L. Green Synthesis of Zinc Oxide Nanoparticles Using Phoenix Dactylifera Waste as Bioreductant for Effective Dye Degradation and Antibacterial Performance in Wastewater Treatment. J. Hazard. Mater. 2021;402:123560. doi: 10.1016/j.jhazmat.2020.123560. PubMed DOI

Hu B.-C., Zhang H.-R., Li S.-C., Chen W.-S., Wu Z.-Y., Liang H.-W., Yu H.-P., Yu S.-H. Robust Carbonaceous Nanofiber Aerogels from All Biomass Precursors. Adv. Funct. Mater. 2023;33:2207532. doi: 10.1002/adfm.202207532. DOI

Ilangovan M., Guna V., Olivera S., Ravi A., Muralidhara H.B., Santosh M.S., Reddy N. Highly Porous Carbon from a Natural Cellulose Fiber as High Efficiency Sorbent for Lead in Waste Water. Bioresour. Technol. 2017;245:296–299. doi: 10.1016/j.biortech.2017.08.141. PubMed DOI

Jiang Z., Ho S.-H., Wang X., Li Y., Wang C. Application of Biodegradable Cellulose-Based Biomass Materials in Wastewater Treatment. Environ. Pollut. 2021;290:118087. doi: 10.1016/j.envpol.2021.118087. PubMed DOI

Li T., Chen C., Brozena A.H., Zhu J.Y., Xu L., Driemeier C., Dai J., Rojas O.J., Isogai A., Wågberg L., et al. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature. 2021;590:47–56. doi: 10.1038/s41586-020-03167-7. PubMed DOI

Zhang J., Zhang X., Tian Y., Zhong T., Liu F. Novel and Wet-Resilient Cellulose Nanofiber Cryogels with Tunable Porosity and Improved Mechanical Strength for Methyl Orange Dyes Removal. J. Hazard. Mater. 2021;416:125897. doi: 10.1016/j.jhazmat.2021.125897. PubMed DOI

Liu J.-L., Qian W.-C., Guo J.-Z., Shen Y., Li B. Selective Removal of Anionic and Cationic Dyes by Magnetic Fe3O4-Loaded Amine-Modified Hydrochar. Bioresour. Technol. 2021;320:124374. doi: 10.1016/j.biortech.2020.124374. PubMed DOI

Qiu C., Li Y., Liu H., Wang X., Hu S., Qi H. A Novel Crosslinking Strategy on Functional Cellulose-Based Aerogel for Effective and Selective Removal of Dye. Chem. Eng. J. 2023;463:142404. doi: 10.1016/j.cej.2023.142404. DOI

Wu W., Yang Y., Wang B., Rong L., Xu H., Sui X., Zhong Y., Zhang L., Chen Z., Feng X., et al. The Effect of the Degree of Substitution on the Solubility of Cellulose Acetoacetates in Water: A Molecular Dynamics Simulation and Density Functional Theory Study. Carbohydr. Res. 2020;496:108134. doi: 10.1016/j.carres.2020.108134. PubMed DOI

Li L., Rong L., Xu Z., Wang B., Feng X., Mao Z., Xu H., Yuan J., Liu S., Sui X. Cellulosic Sponges with pH Responsive Wettability for Efficient Oil-Water Separation. Carbohydr. Polym. 2020;237:116133. doi: 10.1016/j.carbpol.2020.116133. PubMed DOI

Peng F., Liu H., Xiao D., Guo L., Yue F., Würfe H., Heinze T., Qi H. Green Fabrication of High Strength, Transparent Cellulose-Based Films with Durable Fluorescence and UV-Blocking Performance. J. Mater. Chem. A. 2022;10:7811–7817. doi: 10.1039/D2TA00817C. DOI

Liu H., Sui X., Xu H., Zhang L., Zhong Y., Mao Z. Self-Healing Polysaccharide Hydrogel Based on Dynamic Covalent Enamine Bonds. Macromol. Mater. Eng. 2016;301:725–732. doi: 10.1002/mame.201600042. DOI

Li Z., Wang X., Kuang W., Dong C., Fan Y., Guo Y., Qiao Q., Zhu Z., Liu Y., Zhu Y. Biofiber Waste Derived Zwitterionic and Photocatalytic Dye Adsorbent: Switchable Selectivity, in-Situ Degradation and Multi-Tasking Application. Bioresour. Technol. 2022;352:127080. doi: 10.1016/j.biortech.2022.127080. PubMed DOI

Maatar W., Boufi S. Microporous Cationic Nanofibrillar Cellulose Aerogel as Promising Adsorbent of Acid Dyes. Cellulose. 2017;24:1001–1015. doi: 10.1007/s10570-016-1162-0. DOI

Zhang M., Xu T., Zhao Q., Liu K., Liang D., Si C. Cellulose-Based Materials for Carbon Capture and Conversion. Carbon Capture Sci. Technol. 2024;10:100157. doi: 10.1016/j.ccst.2023.100157. DOI

Zhang M., Wang Y., Liu K., Liu Y., Xu T., Du H., Si C. Strong, Conductive, and Freezing-Tolerant Polyacrylamide/PEDOT:PSS/Cellulose Nanofibrils Hydrogels for Wearable Strain Sensors. Carbohydr. Polym. 2023;305:120567. doi: 10.1016/j.carbpol.2023.120567. PubMed DOI

Ho N.A.D., Leo C.P. A Review on the Emerging Applications of Cellulose, Cellulose Derivatives and Nanocellulose in Carbon Capture. Environ. Res. 2021;197:111100. doi: 10.1016/j.envres.2021.111100. PubMed DOI

Adegoke K.A., Oyedotun K.O., Ighalo J.O., Amaku J.F., Olisah C., Adeola A.O., Iwuozor K.O., Akpomie K.G., Conradie J. Cellulose Derivatives and Cellulose-Metal-Organic Frameworks for CO2 adsorption and Separation. J. CO2 Util. 2022;64:102163. doi: 10.1016/j.jcou.2022.102163. DOI

Zheng Y., Liu H., Yan L., Yang H., Dai L., Si C. Lignin-Based Encapsulation of Liquid Metal Particles for Flexible and High-Efficiently Recyclable Electronics. Adv. Funct. Mater. 2023:2310653. doi: 10.1002/adfm.202310653. DOI

Liu H., Xu T., Liang Q., Zhao Q., Zhao D., Si C. Compressible Cellulose Nanofibrils/Reduced Graphene Oxide Composite Carbon Aerogel for Solid-State Supercapacitor. Adv. Compos. Hybrid Mater. 2022;5:1168–1179. doi: 10.1007/s42114-022-00427-0. DOI

Xu T., Liu K., Sheng N., Zhang M., Liu W., Liu H., Dai L., Zhang X., Si C., Du H., et al. Biopolymer-Based Hydrogel Electrolytes for Advanced Energy Storage/Conversion Devices: Properties, Applications, and Perspectives. Energy Storage Mater. 2022;48:244–262. doi: 10.1016/j.ensm.2022.03.013. DOI

Duan Y., Yang H., Liu K., Xu T., Chen J., Xie H., Du H., Dai L., Si C. Cellulose Nanofibril Aerogels Reinforcing Polymethyl Methacrylate with High Optical Transparency. Adv. Compos. Hybrid Mater. 2023;6:123. doi: 10.1007/s42114-023-00700-w. DOI

Liu W., Du H., Zhang M., Liu K., Liu H., Xie H., Zhang X., Si C. Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustain. Chem. Eng. 2020;8:7536–7562. doi: 10.1021/acssuschemeng.0c00125. DOI

Liu W., Lin Q., Chen S., Yang H., Liu K., Pang B., Xu T., Si C. Microencapsulated Phase Change Material through Cellulose Nanofibrils Stabilized Pickering Emulsion Templating. Adv. Compos. Hybrid Mater. 2023;6:149. doi: 10.1007/s42114-023-00725-1. DOI

Xu T., Du H., Liu H., Liu W., Zhang X., Si C., Liu P., Zhang K. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices. Adv. Mater. 2021;33:2101368. doi: 10.1002/adma.202101368. PubMed DOI PMC

Zulaikha W., Hassan M.Z., Ismail Z. Recent Development of Natural Fibre for Nanocellulose Extraction and Application. Mater. Today Proc. 2022;66:2265–2273. doi: 10.1016/j.matpr.2022.06.221. DOI

Yu S., Zhao X., Zhang J., Liu S., Yuan Z., Liu X., Liu B., Yi X. A Novel Combining Strategy of Cellulose Aerogel and Hierarchically Porous Metal Organic Frameworks (HP-MOFs) to Improve the CO2 Absorption Performance. Cellulose. 2022;29:6783–6796. doi: 10.1007/s10570-022-04668-6. DOI

Zhou G., Wang K., Liu R., Tian Y., Kong B., Qi G. Synthesis and CO2 Adsorption Performance of TEPA-Loaded Cellulose Whisker/Silica Composite Aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2021;631:127675. doi: 10.1016/j.colsurfa.2021.127675. DOI

Ma H., Wang Z., Zhang X.-F., Ding M., Yao J. In Situ Growth of Amino-Functionalized ZIF-8 on Bacterial Cellulose Foams for Enhanced CO2 Adsorption. Carbohydr. Polym. 2021;270:118376. doi: 10.1016/j.carbpol.2021.118376. PubMed DOI

Miao Y., Luo H., Pudukudy M., Zhi Y., Zhao W., Shan S., Jia Q., Ni Y. CO2 Capture Performance and Characterization of Cellulose Aerogels Synthesized from Old Corrugated Containers. Carbohydr. Polym. 2020;227:115380. doi: 10.1016/j.carbpol.2019.115380. PubMed DOI

Seddiqi H., Oliaei E., Honarkar H., Jin J., Geonzon L.C., Bacabac R.G., Klein-Nulend J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose. 2021;28:1893–1931. doi: 10.1007/s10570-020-03674-w. DOI

Pan D., Yang G., Abo-Dief H.M., Dong J., Su F., Liu C., Li Y., Bin Xu B., Murugadoss V., Naik N., et al. Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites. Nano-Micro Lett. 2022;14:118. doi: 10.1007/s40820-022-00863-z. PubMed DOI PMC

Pan D., Dong J., Gui Y., Su F., Chang B., Liu C., Zhu Y.-C., Guo Z. Ice Template Method Assists in Obtaining Carbonized Cellulose/Boron Nitride Aerogel with 3D Spatial Network Structure to Enhance the Thermal Conductivity and Flame Retardancy of Epoxy-Based Composites. Adv. Compos. Hybrid Mater. 2021;5:58–70. doi: 10.1007/s42114-021-00362-6. DOI

Cellulose Sciences International—Crunchbase Company Profile & Funding. [(accessed on 7 June 2023)]. Available online: https://www.crunchbase.com/organization/cellulose-sciences-international.

INACELL: Cellulose Aerogels for Thermal Insulation in Buildings|Activos. [(accessed on 5 June 2023)]. Available online: https://www.tecnalia.com/en/technological-assets/inacell-cellulose-aerogels-for-thermal-insulation-in-buildings.

Bioaerogels. [(accessed on 5 June 2023)]. Available online: https://www.aerogel-it.de/bioaerogels.

Aerogel-It and Fibenol Collaborate for Sustainable Superinsulation|Fibenol. [(accessed on 6 June 2023)]. Available online: https://fibenol.com/news/aerogel-it-and-fibenol-collaborate-for-sustainable-superinsulation.

Guerrero-Alburquerque N., Zhao S., Adilien N., Koebel M.M., Lattuada M., Malfait W.J. Strong, Machinable, and Insulating Chitosan–Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS Appl. Mater. Interfaces. 2020;12:22037–22049. doi: 10.1021/acsami.0c03047. PubMed DOI

Empa—Building Energy Materials and Components—3. Cellulose Aerogels. [(accessed on 7 June 2023)]. Available online: https://www.empa.ch/web/s312/3.-cellulose-aerogels.

Allied Market Research Aerogel Market to Garner $7.5 Billion, Globally, by 2032 at 19.4% CAGR, Says Allied Market Research. PR Newswire. May 9, 2023.

Wood-Based Aerogels (AEROWOOD) [(accessed on 17 June 2023)]. Available online: https://blogs.helsinki.fi/aerowood-project/partners/

Smirnova I., Gurikov P. Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids. 2018;134:228–233. doi: 10.1016/j.supflu.2017.12.037. DOI

Grand View Research . Aerogel Market Size, Share, Growth & Trends Report, 2030. Grand View Research; San Francisco, CA, USA: 2023.

Sen S., Singh A., Bera C., Roy S., Kailasam K. Recent Developments in Biomass Derived Cellulose Aerogel Materials for Thermal Insulation Application: A Review. Cellulose. 2022;29:4805–4833. doi: 10.1007/s10570-022-04586-7. DOI

Wu J., Cooper D., Miller R. Virtual Impactor Aerosol Concentrator for Cleanroom Monitoring. J. Environ. Sci. 2006;32:52–56. doi: 10.17764/jiet.1.32.4.j663114j2007072l. DOI

Komarneni S., Roy R., Selvaraj U., Malla P.B., Breval E. Nanocomposite Aerogels: The SiO2–Al2O3 System. J. Mater. Res. 1993;8:3163–3167. doi: 10.1557/JMR.1993.3163. DOI

Pajonk G. ChemInform Abstract: Aerogel Catalysts. ChemInform. 2010;22 doi: 10.1002/chin.199133322. DOI

Lavoine N., Bergström L. Nanocellulose-Based Foams and Aerogels: Processing, Properties, and Applications. J. Mater. Chem. A. 2017;5:16105–16117. doi: 10.1039/C7TA02807E. DOI

Uetani K., Hatori K. Thermal Conductivity Analysis and Applications of Nanocellulose Materials. Sci. Technol. Adv. Mater. 2017;18:877–892. doi: 10.1080/14686996.2017.1390692. PubMed DOI PMC

Carosio F., Kochumalayil J., Cuttica F., Camino G., Berglund L. Oriented Clay Nanopaper from Biobased Components—Mechanisms for Superior Fire Protection Properties. ACS Appl. Mater. Interfaces. 2015;7:5847–5856. doi: 10.1021/am509058h. PubMed DOI

Österberg M., Vartiainen J., Lucenius J., Hippi U., Seppälä J., Serimaa R., Laine J. A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials. ACS Appl. Mater. Interfaces. 2013;5:4640–4647. doi: 10.1021/am401046x. PubMed DOI

Dorez G., Taguet A., Ferry L., Lopez-Cuesta J.M. Thermal and Fire Behavior of Natural Fibers/PBS Biocomposites. Polym. Degrad. Stab. 2013;98:87–95. doi: 10.1016/j.polymdegradstab.2012.10.026. DOI

Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI

Feng J., Nguyen S.T., Fan Z., Duong H.M. Advanced Fabrication and Oil Absorption Properties of Super-Hydrophobic Recycled Cellulose Aerogels. Chem. Eng. J. 2015;270:168–175. doi: 10.1016/j.cej.2015.02.034. DOI

Li Y.-Q., Samad Y.A., Polychronopoulou K., Alhassan S.M., Liao K. Carbon Aerogel from Winter Melon for Highly Efficient and Recyclable Oils and Organic Solvents Absorption. ACS Sustain. Chem. Eng. 2014;2:1492–1497. doi: 10.1021/sc500161b. DOI

Mesceriakove S., Pileidis D.F., Mäkilä E., Sevilla M., Eveliina R., Salonen J., Sillanpää M., Titirici M. Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. ACS Appl. Mater. Interfaces. 2015;7:25875–25883. doi: 10.1021/acsami.5b08287. PubMed DOI

Chen H., Wang X., Li J., Wang X. Cotton Derived Carbonaceous Aerogels for the Efficient Removal of Organic Pollutants and Heavy Metal Ions. J. Mater. Chem. A. 2015;3:6073–6081. doi: 10.1039/C5TA00299K. DOI

Li Y., Zhang R., Tian X., Yang C., Zhou Z. Facile Synthesis of Fe3O4 Nanoparticles Decorated on 3D Graphene Aerogels as Broad-Spectrum Sorbents for Water Treatment. Appl. Surf. Sci. 2016;369:11–18. doi: 10.1016/j.apsusc.2016.02.019. DOI

Highly Compressible Anisotropic Graphene Aerogels Fabricated by Directional Freezing for Efficient Absorption of Organic Liquids—ScienceDirect. [(accessed on 13 June 2023)]. Available online: https://www.sciencedirect.com/science/article/pii/S0008622316300380.

Hong J.-Y., Sohn E.-H., Park S., Park H.S. Highly-Efficient and Recyclable Oil Absorbing Performance of Functionalized Graphene Aerogel. Chem. Eng. J. 2015;269:229–235. doi: 10.1016/j.cej.2015.01.066. DOI

Suchithra P.S., Vazhayal L., Peer Mohamed A., Ananthakumar S. Mesoporous Organic–Inorganic Hybrid Aerogels through Ultrasonic Assisted Sol–Gel Intercalation of Silica–PEG in Bentonite for Effective Removal of Dyes, Volatile Organic Pollutants and Petroleum Products from Aqueous Solution. Chem. Eng. J. 2012;200–202:589–600. doi: 10.1016/j.cej.2012.06.083. DOI

Anirudhan T.S., Sreekumari S.S. Adsorptive Removal of Heavy Metal Ions from Industrial Effluents Using Activated Carbon Derived from Waste Coconut Buttons. J. Environ. Sci. 2011;23:1989–1998. doi: 10.1016/S1001-0742(10)60515-3. PubMed DOI

Chen W., Yu H., Lee S.-Y., Wei T., Li J., Fan Z. Nanocellulose: A Promising Nanomaterial for Advanced Electrochemical Energy Storage. Chem. Soc. Rev. 2018;47:2837–2872. doi: 10.1039/C7CS00790F. PubMed DOI

Liu H., Xu T., Liu K., Zhang M., Liu W., Li H., Du H., Si C. Lignin-Based Electrodes for Energy Storage Application. Ind. Crops Prod. 2021;165:113425. doi: 10.1016/j.indcrop.2021.113425. DOI

Recent Progress in Carbon-Based Materials for Supercapacitor Electrodes: A Review|SpringerLink. [(accessed on 13 June 2023)]. Available online: https://link.springer.com/article/10.1007/s10853-020-05157-6. DOI

Wang F., Cheong J.Y., He Q., Duan G., He S., Zhang L., Zhao Y., Kim I.-D., Jiang S. Phosphorus-Doped Thick Carbon Electrode for High-Energy Density and Long-Life Supercapacitors. Chem. Eng. J. 2021;414:128767. doi: 10.1016/j.cej.2021.128767. DOI

Cao L., Li H., Xu Z., Zhang H., Ding L., Wang S., Zhang G., Hou H., Xu W., Yang F., et al. Comparison of the Heteroatoms-Doped Biomass-Derived Carbon Prepared by One-Step Nitrogen-Containing Activator for High Performance Supercapacitor. Diam. Relat. Mater. 2021;114:108316. doi: 10.1016/j.diamond.2021.108316. DOI

Cao L., Li H., Xu Z., Gao R., Wang S., Zhang G., Jiang S., Xu W., Hou H. Camellia Pollen-Derived Carbon with Controllable N Content for High-Performance Supercapacitors by Ammonium Chloride Activation and Dual N-Doping. ChemNanoMat. 2021;7:34–43. doi: 10.1002/cnma.202000531. DOI

Wang F., Chen L., Li H., Duan G., He S., Zhang L., Zhang G., Zhou Z., Jiang S. N-Doped Honeycomb-like Porous Carbon towards High-Performance Supercapacitor. Chin. Chem. Lett. 2020;31:1986–1990. doi: 10.1016/j.cclet.2020.02.020. DOI

Liu H., Du H., Zheng T., Liu K., Ji X., Xu T., Zhang X., Si C. Cellulose Based Composite Foams and Aerogels for Advanced Energy Storage Devices. Chem. Eng. J. 2021;426:130817. doi: 10.1016/j.cej.2021.130817. DOI

Zaman A., Huang F., Jiang M., Wei W., Zhou Z. Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy Built Environ. 2020;1:60–76. doi: 10.1016/j.enbenv.2019.09.002. DOI

Dutta S., Kim J., Ide Y., Kim J.H., Hossain M.S.A., Bando Y., Yamauchi Y., Wu K.C.-W. 3D Network of Cellulose-Based Energy Storage Devices and Related Emerging Applications. Mater. Horiz. 2017;4:522–545. doi: 10.1039/C6MH00500D. DOI

Ganesan K., Budtova T., Ratke L., Gurikov P., Baudron V., Preibisch I., Niemeyer P., Smirnova I., Milow B. Review on the Production of Polysaccharide Aerogel Particles. Materials. 2018;11:2144. doi: 10.3390/ma11112144. PubMed DOI PMC

Mavelil-Sam R., Pothan L.A., Thomas S. Biobased Aerogels: Polysaccharide and Protein-Based Materials. The Royal Society of Chemistry; London, UK: 2018. Polysaccharide and Protein Based Aerogels: An Introductory Outlook; pp. 1–8. RSC Green Chemistry. DOI

García-González C.A., Carenza E., Zeng M., Smirnova I., Roig A. Design of Biocompatible Magnetic Pectin Aerogel Monoliths and Microspheres. RSC Adv. 2012;2:9816–9823. doi: 10.1039/c2ra21500d. DOI

Ulker Z., Erkey C. A Novel Hybrid Material: An Inorganic Silica Aerogel Core Encapsulated with a Tunable Organic Alginate Aerogel Layer. RSC Adv. 2014;4:62362–62366. doi: 10.1039/C4RA09089F. DOI

Lovskaya D.D., Lebedev A.E., Menshutina N.V. Aerogels as Drug Delivery Systems: In Vitro and in Vivo Evaluations. J. Supercrit. Fluids. 2015;106:115–121. doi: 10.1016/j.supflu.2015.07.011. DOI

Martins M., Barros A.A., Quraishi S., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Preparation of Macroporous Alginate-Based Aerogels for Biomedical Applications. J. Supercrit. Fluids. 2015;106:152–159. doi: 10.1016/j.supflu.2015.05.010. DOI

Kuttor A., Szalóki M., Rente T., Kerényi F., Bakó J., Fábián I., Lázár I., Jenei A., Hegedüs C. Preparation and Application of Highly Porous Aerogel-Based Bioactive Materials in Dentistry. Front. Mater. Sci. 2014;8:46–52. doi: 10.1007/s11706-014-0231-2. DOI

Druel L., Bardl R., Vorwerg W., Budtova T. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules. 2017;18:4232–4239. doi: 10.1021/acs.biomac.7b01272. PubMed DOI

Yan N., Zhou Y., Zheng Y., Qiao S., Yu Q., Li Z., Lu H. Antibacterial Properties and Cytocompatibility of Bio-Based Nanostructured Carbon Aerogels Derived from Silver Nanoparticles Deposited onto Bacterial Cellulose. RSC Adv. 2015;5:97467–97476. doi: 10.1039/C5RA15485E. DOI

Takeshita S., Yoda S. Chitosan Aerogels: Transparent, Flexible Thermal Insulators. Chem. Mater. 2015;27:7569–7572. doi: 10.1021/acs.chemmater.5b03610. DOI

Wan C., Jiao Y., Sun Q., Li J. Preparation, Characterization, and Antibacterial Properties of Silver Nanoparticles Embedded into Cellulose Aerogels. Polym. Compos. 2016;37:1137–1142. doi: 10.1002/pc.23276. DOI

Thomas S., Pothan L.A., Mavelil-Sam R. Biobased Aerogels: Polysaccharide and Protein-Based Materials. The Royal Society of Chemistry; London, UK: 2018.

Rudaz C., Courson R., Bonnet L., Calas-Etienne S., Sallée H., Budtova T. Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules. 2014;15:2188–2195. doi: 10.1021/bm500345u. PubMed DOI

Vilela C., Pinto R.J.B., Pinto S., Marques P.A.A.P., Silvestre A.J.D., Freire C.S.R. Polysaccharide Based Hybrid Materials. Springer; Cham, Switzerland: 2018. Polysaccharides-Based Hybrids with Carbon Nanotubes; pp. 95–114.

Maleki H., Durães L., García-González C.A., del Gaudio P., Portugal A., Mahmoudi M. Synthesis and Biomedical Applications of Aerogels: Possibilities and Challenges. Adv. Colloid Interface Sci. 2016;236:1–27. doi: 10.1016/j.cis.2016.05.011. PubMed DOI

Concha M., Vidal A., Giacaman A., Ojeda J., Pavicic F., Oyarzun-Ampuero F.A., Torres C., Cabrera M., Moreno-Villoslada I., Orellana S.L. Aerogels Made of Chitosan and Chondroitin Sulfate at High Degree of Neutralization: Biological Properties toward Wound Healing. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2018;106:2464–2471. doi: 10.1002/jbm.b.34038. PubMed DOI

Xin G., Yao T., Sun H., Scott S.M., Shao D., Wang G., Lian J. Highly Thermally Conductive and Mechanically Strong Graphene Fibers. Science. 2015;349:1083–1087. doi: 10.1126/science.aaa6502. PubMed DOI

Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X.-M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014;26:5310–5336. doi: 10.1002/adma.201400633. PubMed DOI

Li G., Hong G., Dong D., Song W., Zhang X. Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers. Adv. Mater. 2018;30:1801754. doi: 10.1002/adma.201801754. PubMed DOI

Xiong J., Chen J., Lee P.S. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Adv. Mater. 2021;33:2002640. doi: 10.1002/adma.202002640. PubMed DOI PMC

Wang H., Zhang Y., Liang X., Zhang Y. Smart Fibers and Textiles for Personal Health Management. ACS Nano. 2021;15:12497–12508. doi: 10.1021/acsnano.1c06230. PubMed DOI

Chen B., Wu M., Fang S., Cao Y., Pei L., Zhong H., Sun C., Lin X., Li X., Shen J., et al. Liquid Metal-Tailored PEDOT:PSS for Noncontact Flexible Electronics with High Spatial Resolution. ACS Nano. 2022;16:19305–19318. doi: 10.1021/acsnano.2c08760. PubMed DOI

Li W., Zhang Y., Yu Z., Zhu T., Kang J., Liu K., Li Z., Tan S.C. In Situ Growth of a Stable Metal-Organic Framework (MOF) on Flexible Fabric via a Layer-by-Layer Strategy for Versatile Applications. ACS Nano. 2022;16:14779–14791. doi: 10.1021/acsnano.2c05624. PubMed DOI

Zhu X., Jiang G., Wang G., Zhu Y., Cheng W., Zeng S., Zhou J., Xu G., Zhao D. Cellulose-Based Functional Gels and Applications in Flexible Supercapacitors. Resour. Chem. Mater. 2023;2:177–188. doi: 10.1016/j.recm.2023.03.004. DOI

Bai Y., Zhao W., Bi S., Liu S., Huang W., Zhao Q. Preparation and Application of Cellulose Gel in Flexible Supercapacitors. J. Energy Storage. 2021;42:103058. doi: 10.1016/j.est.2021.103058. DOI

Choi H.W., Shin D.-W., Yang J., Lee S., Figueiredo C., Sinopoli S., Ullrich K., Jovančić P., Marrani A., Momentè R., et al. Smart Textile Lighting/Display System with Multifunctional Fibre Devices for Large Scale Smart Home and IoT Applications. Nat. Commun. 2022;13:814. doi: 10.1038/s41467-022-28459-6. PubMed DOI PMC

Shi J., Liu S., Zhang L., Yang B., Shu L., Yang Y., Ren M., Wang Y., Chen J., Chen W., et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2020;32:1901958. doi: 10.1002/adma.201901958. PubMed DOI

Liu X., Miao J., Fan Q., Zhang W., Zuo X., Tian M., Zhu S., Zhang X., Qu L. Smart Textile Based on 3D Stretchable Silver Nanowires/MXene Conductive Networks for Personal Healthcare and Thermal Management. ACS Appl. Mater. Interfaces. 2021;13:56607–56619. doi: 10.1021/acsami.1c18828. PubMed DOI

Li M., Li Z., Ye X., He W., Qu L., Tian M. A Smart Self-Powered Rope for Water/Fire Rescue. Adv. Funct. Mater. 2023;33:2210111. doi: 10.1002/adfm.202210111. DOI

Li M., Li Z., Ye X., Zhang X., Qu L., Tian M. Tendril-Inspired 900% Ultrastretching Fiber-Based Zn-Ion Batteries for Wearable Energy Textiles. ACS Appl. Mater. Interfaces. 2021;13:17110–17117. doi: 10.1021/acsami.1c02329. PubMed DOI

Chen Y., Li Y., Zhang C., Qi H., Hubbe M.A. Holocellulosic Fibers and Nanofibrils Using Peracetic Acid Pulping and Sulfamic Acid Esterification. Carbohydr. Polym. 2022;295:119902. doi: 10.1016/j.carbpol.2022.119902. PubMed DOI

Zhang C., Wang M., Lin X., Tao S., Wang X., Chen Y., Liu H., Wang Y., Qi H. Holocellulose Nanofibrils Assisted Exfoliation of Boron Nitride Nanosheets for Thermal Management Nanocomposite Films. Carbohydr. Polym. 2022;291:119578. doi: 10.1016/j.carbpol.2022.119578. PubMed DOI

Yamada S. A Transient Supercapacitor with a Water-Dissolvable Ionic Gel for Sustainable Electronics. ACS Appl. Mater. Interfaces. 2022;14:26595–26603. doi: 10.1021/acsami.2c00915. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...