Incorporation of Cellulose-Based Aerogels into Textile Structures
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-32510 M
Czech Science Foundation (GACR)
PubMed
38203881
PubMed Central
PMC10779952
DOI
10.3390/ma17010027
PII: ma17010027
Knihovny.cz E-zdroje
- Klíčová slova
- bio-based aerogel, flame retardant, multifunctional properties, textile applications, thermal insulation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Given their exceptional attributes, aerogels are viewed as a material with immense potential. Being a natural polymer, cellulose offers the advantage of being both replenishable and capable of breaking down naturally. Cellulose-derived aerogels encompass the replenish ability, biocompatible nature, and ability to degrade naturally inherent in cellulose, along with additional benefits like minimal weight, extensive porosity, and expansive specific surface area. Even with increasing appreciation and acceptance, the undiscovered possibilities of aerogels within the textiles sphere continue to be predominantly uninvestigated. In this context, we outline the latest advancements in the study of cellulose aerogels' formulation and their diverse impacts on textile formations. Drawing from the latest studies, we reviewed the materials used for the creation of various kinds of cellulose-focused aerogels and their properties, analytical techniques, and multiple functionalities in relation to textiles. This comprehensive analysis extensively covers the diverse strategies employed to enhance the multifunctionality of cellulose-based aerogels in the textiles industry. Additionally, we focused on the global market size of bio-derivative aerogels, companies in the industry producing goods, and prospects moving forward.
Zobrazit více v PubMed
Barrios E., Fox D., Li Sip Y.Y., Catarata R., Calderon J.E., Azim N., Afrin S., Zhang Z., Zhai L. Nanomaterials in Advanced, High-Performance Aerogel Composites: A Review. Polymers. 2019;11:726. doi: 10.3390/polym11040726. PubMed DOI PMC
Nita L.E., Ghilan A., Rusu A.G., Neamtu I., Chiriac A.P. New Trends in Bio-Based Aerogels. Pharmaceutics. 2020;12:449. doi: 10.3390/pharmaceutics12050449. PubMed DOI PMC
Kistler S.S. Coherent Expanded Aerogels and Jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI
Revin V.V., Nazarova N.B., Tsareva E.E., Liyaskina E.V., Revin V.D., Pestov N.A. Production of Bacterial Cellulose Aerogels with Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020;8:1392. doi: 10.3389/fbioe.2020.603407. PubMed DOI PMC
Maleki H. Recent Advances in Aerogels for Environmental Remediation Applications: A Review. Chem. Eng. J. 2016;300:98–118. doi: 10.1016/j.cej.2016.04.098. DOI
Hrubesh L.W. Aerogel Applications. J. Non-Cryst. Solids. 1998;225:335–342. doi: 10.1016/S0022-3093(98)00135-5. DOI
Bheekhun N., Abu Talib A.R., Hassan M.R. Aerogels in Aerospace: An Overview. Adv. Mater. Sci. Eng. 2013;2013:e406065. doi: 10.1155/2013/406065. DOI
Vareda J.P., Valente A.J.M., Durães L. Heavy Metals in Iberian Soils: Removal by Current Adsorbents/Amendments and Prospective for Aerogels. Adv. Colloid Interface Sci. 2016;237:28–42. doi: 10.1016/j.cis.2016.08.009. PubMed DOI
Stergar J., Maver U. Review of Aerogel-Based Materials in Biomedical Applications. J. Sol-Gel Sci. Technol. 2016;77:738–752. doi: 10.1007/s10971-016-3968-5. DOI
Maleki H., Durães L., Portugal A. An Overview on Silica Aerogels Synthesis and Different Mechanical Reinforcing Strategies. J. Non-Cryst. Solids. 2014;385:55–74. doi: 10.1016/j.jnoncrysol.2013.10.017. DOI
Long L.-Y., Weng Y.-X., Wang Y.-Z. Cellulose Aerogels: Synthesis, Applications, and Prospects. Polymers. 2018;10:623. doi: 10.3390/polym10060623. PubMed DOI PMC
Jiang Y., Chowdhury S., Balasubramanian R. New Insights into the Role of Nitrogen-Bonding Configurations in Enhancing the Photocatalytic Activity of Nitrogen-Doped Graphene Aerogels. J. Colloid Interface Sci. 2019;534:574–585. doi: 10.1016/j.jcis.2018.09.064. PubMed DOI
Nguyen B.N., Meador M.A.B., Scheiman D., McCorkle L. Polyimide Aerogels Using Triisocyanate as Cross-Linker. ACS Appl. Mater. Interfaces. 2017;9:27313–27321. doi: 10.1021/acsami.7b07821. PubMed DOI
Zhu F. Starch Based Aerogels: Production, Properties and Applications. Trends Food Sci. Technol. 2019;89:1–10. doi: 10.1016/j.tifs.2019.05.001. DOI
García-González C.A., Uy J.J., Alnaief M., Smirnova I. Preparation of Tailor-Made Starch-Based Aerogel Microspheres by the Emulsion-Gelation Method. Carbohydr. Polym. 2012;88:1378–1386. doi: 10.1016/j.carbpol.2012.02.023. DOI
Li Z., Zhong L., Zhang T., Qiu F., Yue X., Yang D. Sustainable, Flexible, and Superhydrophobic Functionalized Cellulose Aerogel for Selective and Versatile Oil/Water Separation. ACS Sustain. Chem. Eng. 2019;7:9984–9994. doi: 10.1021/acssuschemeng.9b01122. DOI
Abdul Khalil H.P.S., Adnan A.S., Yahya E.B., Olaiya N.G., Safrida S., Hossain M.S., Balakrishnan V., Gopakumar D.A., Abdullah C.K., Oyekanmi A.A., et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers. 2020;12:1759. doi: 10.3390/polym12081759. PubMed DOI PMC
Novak B.M., Auerbach D., Verrier C. Low-Density, Mutually Interpenetrating Organic-Inorganic Composite Materials via Supercritical Drying Techniques. Chem. Mater. 1994;6:282–286. doi: 10.1021/cm00039a006. DOI
Wei C., Zhang Q., Wang Z., Yang W., Lu H., Huang Z., Yang W., Zhu J. Recent Advances in MXene-Based Aerogels: Fabrication, Performance and Application. Adv. Funct. Mater. 2023;33:2211889. doi: 10.1002/adfm.202211889. DOI
Yang W.-J., Yuen A.C.Y., Li A., Lin B., Chen T.B.Y., Yang W., Lu H.-D., Yeoh G.H. Recent Progress in Bio-Based Aerogel Absorbents for Oil/Water Separation. Cellulose. 2019;26:6449–6476. doi: 10.1007/s10570-019-02559-x. DOI
Fernandes E.M., Pires R.A., Mano J.F., Reis R.L. Bionanocomposites from Lignocellulosic Resources: Properties, Applications and Future Trends for Their Use in the Biomedical Field. Prog. Polym. Sci. 2013;38:1415–1441. doi: 10.1016/j.progpolymsci.2013.05.013. DOI
Moon R.J., Martini A., Nairn J., Simonsen J., Youngblood J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011;40:3941–3994. doi: 10.1039/c0cs00108b. PubMed DOI
Eichhorn S.J., Dufresne A., Aranguren M., Marcovich N.E., Capadona J.R., Rowan S.J., Weder C., Thielemans W., Roman M., Renneckar S. Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010;45:1–33. doi: 10.1007/s10853-009-3874-0. DOI
Jianan C., Shaoqiong Y., Jinyue R. A Study on the Preparation, Structure, and Properties of Microcrystalline Cellulose. J. Macromol. Sci. Part A Pure Appl. Chem. 2006;33:1851–1862. doi: 10.1080/10601329608011011. DOI
Virtanen T., Svedström K., Andersson S., Tervala L., Torkkeli M., Knaapila M., Kotelnikova N., Maunu S.L., Serimaa R. A Physico-Chemical Characterisation of New Raw Materials for Microcrystalline Cellulose Manufacturing. Cellulose. 2012;19:219–235. doi: 10.1007/s10570-011-9636-6. DOI
Reddy N., Yang Y. Properties and Potential Applications of Natural Cellulose Fibers from the Bark of Cotton Stalks. Bioresour. Technol. 2009;100:3563–3569. doi: 10.1016/j.biortech.2009.02.047. PubMed DOI
Mai T., Luu T., Le P., Le P., Hoang Nguyen Do N., Chau N.D.Q. Fabrication of Cotton Aerogels and Its Application in Water Treatment; Proceedings of the 12th Regional Conference on Chemical Engineering (RCChE 2019); Ho Chi Minh City, Vietnam. 15–16 October 2019.
Wang X., Li H., Cao Y., Tang Q. Cellulose Extraction from Wood Chip in an Ionic Liquid 1-Allyl-3-Methylimidazolium Chloride (AmimCl) Bioresour. Technol. 2011;102:7959–7965. doi: 10.1016/j.biortech.2011.05.064. PubMed DOI
Cara C., Ruiz E., Ballesteros I., Negro M.J., Castro E. Enhanced Enzymatic Hydrolysis of Olive Tree Wood by Steam Explosion and Alkaline Peroxide Delignification. Process Biochem. 2006;41:423–429. doi: 10.1016/j.procbio.2005.07.007. DOI
Abe K., Yano H. Comparison of the Characteristics of Cellulose Microfibril Aggregates of Wood, Rice Straw and Potato Tuber. Cellulose. 2009;16:1017–1023. doi: 10.1007/s10570-009-9334-9. DOI
Hoang Nguyen Do N., Tran V., Tran Q., Le K., Nguyen P., Duong H., Thai Q.B., Le P. Recycling of Pineapple Leaf and Cotton Waste Fibers into Heat-Insulating and Flexible Cellulose Aerogel Composites. J. Environ. Polym. Degrad. 2021;29:1112–1121. doi: 10.1007/s10924-020-01955-w. DOI
Sun J.X., Sun X.F., Zhao H., Sun R.C. Isolation and Characterization of Cellulose from Sugarcane Bagasse. Polym. Degrad. Stab. 2004;84:331–339. doi: 10.1016/j.polymdegradstab.2004.02.008. DOI
Trache D., Hussin M.H., Chuin C.T.H., Sabar S., Fazita M.N., Taiwo O.F., Hassan T.M., Haafiz M.M. Microcrystalline Cellulose: Isolation, Characterization and Bio-Composites Application—A Review. Int. J. Biol. Macromol. 2016;93:789–804. doi: 10.1016/j.ijbiomac.2016.09.056. PubMed DOI
Siqueira G., Bras J., Dufresne A. Cellulosic Bionanocomposites: A Review of Preparation, Properties and Applications. Polymers. 2010;2:728–765. doi: 10.3390/polym2040728. DOI
Hinterstoisser B., Salmén L. Application of Dynamic 2D FTIR to Cellulose. Vib. Spectrosc. 2000;22:111–118. doi: 10.1016/S0924-2031(99)00063-6. DOI
Bochek A.M. Effect of Hydrogen Bonding on Cellulose Solubility in Aqueous and Nonaqueous Solvents. Russ. J. Appl. Chem. 2003;76:1711–1719. doi: 10.1023/B:RJAC.0000018669.88546.56. DOI
Lavanya D., Kulkarni P., Dixit M., Raavi P.K., Krishna L.N.V. Sources of Cellulose and Their Applications—A Review. Int. J. Drug Formul. Res. 2011;2:19–38.
Myasoedova V.V. Physical Chemistry of Non-Aqueous Solutions of Cellulose and Its Derivatives. Wiley; Chichester, UK: 2000.
Orts W.J., Sojka R.E., Glenn G.M., Gross R.A. Biopolymers from Polysaccharides and Agroproteins. Volume 786. American Chemical Society; Washington, DC, USA: 2001. Biopolymers from Polysaccharides and Agroproteins, Copyright, Foreword; pp. i–v. (ACS Symposium Series).
Hon D.N.-S., Shiraishi N. Wood and Cellulosic Chemistry, Second Edition, Revised, and Expanded. CRC Press; New York, NY, USA: 2000.
Surapolchai W., Schiraldi D.A. The Effects of Physical and Chemical Interactions in the Formation of Cellulose Aerogels. Polym. Bull. 2010;65:951–960. doi: 10.1007/s00289-010-0306-x. DOI
Ahmadi M., Madadlou A., Saboury A.A. Whey Protein Aerogel as Blended with Cellulose Crystalline Particles or Loaded with Fish Oil. Food Chem. 2016;196:1016–1022. doi: 10.1016/j.foodchem.2015.10.031. PubMed DOI
Seantier B., Bendahou D., Bendahou A., Grohens Y., Kaddami H. Multi-Scale Cellulose Based New Bio-Aerogel Composites with Thermal Super-Insulating and Tunable Mechanical Properties. Carbohydr. Polym. 2016;138:335–348. doi: 10.1016/j.carbpol.2015.11.032. PubMed DOI
Nguyen B.N., Cudjoe E., Douglas A., Scheiman D., McCorkle L., Meador M.A.B., Rowan S.J. Polyimide Cellulose Nanocrystal Composite Aerogels. Macromolecules. 2016;49:1692–1703. doi: 10.1021/acs.macromol.5b01573. DOI
Liebner F., Potthast A., Rosenau T., Haimer E., Wendland M. Cellulose Aerogels: Highly Porous, Ultra-Lightweight Materials. Holzforschung. 2008;62:129–135. doi: 10.1515/HF.2008.051. DOI
Ratke L. Monoliths and Fibrous Cellulose Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 173–190. Advances in Sol-Gel Derived Materials and Technologies.
Innerlohinger J., Weber H.K., Kraft G. Aerocellulose: Aerogels and Aerogel-like Materials Made from Cellulose. Macromol. Symp. 2006;244:126–135. doi: 10.1002/masy.200651212. DOI
Hoepfner S., Ratke L., Milow B. Synthesis and Characterisation of Nanofibrillar Cellulose Aerogels. Cellulose. 2008;15:121–129. doi: 10.1007/s10570-007-9146-8. DOI
Sescousse R., Gavillon R., Budtova T. Aerocellulose from Cellulose–Ionic Liquid Solutions: Preparation, Properties and Comparison with Cellulose–NaOH and Cellulose–NMMO Routes. Carbohydr. Polym. 2011;83:1766–1774. doi: 10.1016/j.carbpol.2010.10.043. DOI
Tan C., Fung B., Newman J., Vu C. Organic Aerogels with Very High Impact Strength. Adv. Mater. 2001;13:644–646. doi: 10.1002/1521-4095(200105)13:9<644::AID-ADMA644>3.0.CO;2-#. DOI
Jin H., Nishiyama Y., Wada M., Kuga S. Nanofibrillar Cellulose Aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2004;240:63–67. doi: 10.1016/j.colsurfa.2004.03.007. DOI
Fischer F., Rigacci A., Pirard R., Berthon-Fabry S., Achard P. Cellulose-Based Aerogels. Polymer. 2006;47:7636–7645. doi: 10.1016/j.polymer.2006.09.004. DOI
Sözcü S., Venkataraman M., Tomkova B., Militky J. Selected Topics in Fibrous Materials Science. TUL FT Liberec: Technicka Univerzita v Liberci; Liberec, Czech Republic: 2022. Cellulose-Based Aerogels Understading Their Origin, Preparation and Multifunctional Effect for Potential Application; p. 93.
Fischer S. Master’s Thesis. Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek “Georgius Agricola”; Freiberg, Germany: 2009. Anorganische Salzhydratschmelzen.
Fischer S., Leipner H., Thümmler K., Brendler E., Peters J. Inorganic Molten Salts as Solvents for Cellulose. Cellulose. 2003;10:227–236. doi: 10.1023/A:1025128028462. DOI
Frey M.W., Theil M.H. Calculated Phase Diagrams for Cellulose/Ammonia/Ammonium Thiocyanate Solutions in Comparison to Experimental Results. Cellulose. 2004;11:53–63. doi: 10.1023/B:CELL.0000014771.69377.3d. DOI
Cuce E., Cuce P.M., Wood C.J., Riffat S.B. Toward Aerogel Based Thermal Superinsulation in Buildings: A Comprehensive Review. Renew. Sustain. Energy Rev. 2014;34:273–299. doi: 10.1016/j.rser.2014.03.017. DOI
Sadineni S.B., Madala S., Boehm R.F. Passive Building Energy Savings: A Review of Building Envelope Components. Renew. Sustain. Energy Rev. 2011;15:3617–3631. doi: 10.1016/j.rser.2011.07.014. DOI
Rahbar Shamskar K., Heidari H., Rashidi A. Preparation and Evaluation of Nanocrystalline Cellulose Aerogels from Raw Cotton and Cotton Stalk. Ind. Crops Prod. 2016;93:203–211. doi: 10.1016/j.indcrop.2016.01.044. DOI
Pääkkö M., Vapaavuori J., Silvennoinen R., Kosonen H., Ankerfors M., Lindström T., Berglund L.A., Ikkala O. Long and Entangled Native Cellulose I Nanofibers Allow Flexible Aerogels and Hierarchically Porous Templates for Functionalities. Soft Matter. 2008;4:2492–2499. doi: 10.1039/b810371b. DOI
Nguyen V., Quoc Lam H., Nguyen T., Ly P., Nguyen D.M., Hoang D. Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment. ACS Omega. 2022;7:1003–1013. doi: 10.1021/acsomega.1c05586. PubMed DOI PMC
Wu Z.-Y., Li C., Liang H.-W., Chen J.-F., Yu S.-H. Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem. Int. Ed. 2013;52:2925–2929. doi: 10.1002/anie.201209676. PubMed DOI
Négrier M., Ahmar E.E., Sescousse R., Sauceau M., Budtova T. Upcycling of Textile Waste into High Added Value Cellulose Porous Materials, Aerogels and Cryogels. RSC Sustain. 2023;1:335–345. doi: 10.1039/D2SU00084A. DOI
Yang X., Fei B., Ma J., Liu X., Yang S., Tian G., Jiang Z. Porous Nanoplatelets Wrapped Carbon Aerogels by Pyrolysis of Regenerated Bamboo Cellulose Aerogels as Supercapacitor Electrodes. Carbohydr. Polym. 2018;180:385–392. doi: 10.1016/j.carbpol.2017.10.013. PubMed DOI
Zhou X., Luo G., Wang H., Xu D., Zeng K., Wu X., Ren D. Development of a Novel Bamboo Cellulose Nanofibrils Hybrid Aerogel with High Thermal-Insulating Performance for Fresh Strawberry Cold-Chain Logistics. Int. J. Biol. Macromol. 2023;229:452–462. doi: 10.1016/j.ijbiomac.2022.12.316. PubMed DOI
Yang H., Sheikhi A., van de Ven T.G.M. Reusable Green Aerogels from Cross-Linked Hairy Nanocrystalline Cellulose and Modified Chitosan for Dye Removal. Langmuir. 2016;32:11771–11779. doi: 10.1021/acs.langmuir.6b03084. PubMed DOI
Nemoto J., Saito T., Isogai A. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters. ACS Appl. Mater. Interfaces. 2015;7:19809–19815. doi: 10.1021/acsami.5b05841. PubMed DOI
Du A., Zhou B., Zhang Z., Shen J. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel. Materials. 2013;6:941–968. doi: 10.3390/ma6030941. PubMed DOI PMC
Soleimani Dorcheh A., Abbasi M.H. Silica Aerogel; Synthesis, Properties and Characterization. J. Mater. Process. Technol. 2008;199:10–26. doi: 10.1016/j.jmatprotec.2007.10.060. DOI
Dervin S., Pillai S. Sol-Gel Materials for Energy, Environment and Electronic Applications. Springer; Cham, Switzerland: 2017. An Introduction to Sol-Gel Processing for Aerogels; pp. 1–22.
Neacşu I.A., Nicoară A.I., Vasile O.R., Vasile B.Ş. Chapter 9—Inorganic Micro- and Nanostructured Implants for Tissue Engineering. In: Grumezescu A.M., editor. Nanobiomaterials in Hard Tissue Engineering. William Andrew Publishing; Norwich, NY, USA: 2016. pp. 271–295.
Carraher C.E. General Topics. Polym. News. 2005;30:386–388. doi: 10.1080/00323910500402961. DOI
Do N.H.N., Luu T.P., Thai Q.B., Le D.K., Chau N.D.Q., Nguyen S.T., Le P.K., Phan-Thien N., Duong H.M. Heat and Sound Insulation Applications of Pineapple Aerogels from Pineapple Waste. Mater. Chem. Phys. 2020;242:122267. doi: 10.1016/j.matchemphys.2019.122267. DOI
Duong H., Xie Z., Wei K., Nian N., Tan K., Lim H., Li A., Chung K.-S., Lim W. Thermal Jacket Design Using Cellulose Aerogels for Heat Insulation Application of Water Bottles. Fluids. 2017;2:64. doi: 10.3390/fluids2040064. DOI
Karadagli I., Milow B., Ratke L., Schulz B., Seide G., Gries T. Synthesis and Characterization of Highly Porous Cellulose Aerogels for Textiles Applications; Proceedings of the Cellular Materials: CELLMAT 2012; Dresden, Germany. 7–9 November 2012.
Han Y., Zhang X., Wu X., Lu C. Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustain. Chem. Eng. 2015;3:1853–1859. doi: 10.1021/acssuschemeng.5b00438. DOI
Bao M.X., Xu S., Wang X., Sun R. Porous Cellulose Aerogels with High Mechanical Performance and Their Absorption Behaviors. Bioresources. 2016;11:8–20. doi: 10.15376/biores.11.1.8-20. DOI
Hüsing N., Schubert U. Aerogels—Airy Materials: Chemistry, Structure, and Properties. Angew. Chem. Int. Ed. 1998;37:22–45. doi: 10.1002/(SICI)1521-3773(19980202)37:1/2<22::AID-ANIE22>3.0.CO;2-I. PubMed DOI
Buchtová N., Budtova T. Cellulose Aero-, Cryo- and Xerogels: Towards Understanding of Morphology Control. Cellulose. 2016;23:2585–2595. doi: 10.1007/s10570-016-0960-8. DOI
Quiño J., Ruehl M., Klima T., Ruiz F., Will S., Braeuer A. Supercritical Drying of Aerogel: In Situ Analysis of Concentration Profiles inside the Gel and Derivation of the Effective Binary Diffusion Coefficient Using Raman Spectroscopy. J. Supercrit. Fluids. 2016;108:1–12. doi: 10.1016/j.supflu.2015.10.011. DOI
Özbakır Y., Erkey C. Experimental and Theoretical Investigation of Supercritical Drying of Silica Alcogels. J. Supercrit. Fluids. 2015;98:153–166. doi: 10.1016/j.supflu.2014.12.001. DOI
Sanz-Moral L.M., Rueda M., Mato R., Martín Á. View Cell Investigation of Silica Aerogels during Supercritical Drying: Analysis of Size Variation and Mass Transfer Mechanisms. J. Supercrit. Fluids. 2014;92:24–30. doi: 10.1016/j.supflu.2014.05.004. DOI
Griffin J.S., Mills D.H., Cleary M., Nelson R., Manno V.P., Hodes M. Continuous Extraction Rate Measurements during Supercritical CO2 Drying of Silica Alcogel. J. Supercrit. Fluids. 2014;94:38–47. doi: 10.1016/j.supflu.2014.05.020. DOI
García-González C.A., Alnaief M., Smirnova I. Polysaccharide-Based Aerogels—Promising Biodegradable Carriers for Drug Delivery Systems. Carbohydr. Polym. 2011;86:1425–1438. doi: 10.1016/j.carbpol.2011.06.066. DOI
Liebner F., Haimer E., Wendland M., Neouze M.-A., Schlufter K., Miethe P., Heinze T., Potthast A., Rosenau T. Aerogels from Unaltered Bacterial Cellulose: Application of scCO2 Drying for the Preparation of Shaped, Ultra-Lightweight Cellulosic Aerogels. Macromol. Biosci. 2010;10:349–352. doi: 10.1002/mabi.200900371. PubMed DOI
Lu Y., Qingfeng S., Yang D., She X., Yao X., Zhu G., Liu Y., Zhao H., Li J. Fabrication of Mesoporous Lignocellulose Aerogels from Wood via Cyclic Liquid Nitrogen Freezing–Thawing in Ionic Liquid Solution. J. Mater. Chem. 2012;22:13548–13557. doi: 10.1039/c2jm31310c. DOI
Pircher N., Carbajal L., Schimper C., Bacher M., Rennhofer H., Nedelec J.-M., Lichtenegger H.C., Rosenau T., Liebner F. Impact of Selected Solvent Systems on the Pore and Solid Structure of Cellulose Aerogels. Cellulose. 2016;23:1949–1966. doi: 10.1007/s10570-016-0896-z. PubMed DOI PMC
Wang X., Zhang Y., Jiang H., Song Y., Zhou Z., Zhao H. Fabrication and Characterization of Nano-Cellulose Aerogels via Supercritical CO2 Drying Technology. Mater. Lett. 2016;183:179–182. doi: 10.1016/j.matlet.2016.07.081. DOI
Heath L., Thielemans W. Cellulose Nanowhisker Aerogels. Green Chem. 2010;12:1448–1453. doi: 10.1039/c0gc00035c. DOI
Schestakow M., Karadagli I., Ratke L. Cellulose Aerogels Prepared from an Aqueous Zinc Chloride Salt Hydrate Melt. Carbohydr. Polym. 2016;137:642–649. doi: 10.1016/j.carbpol.2015.10.097. PubMed DOI
Tajiri K., Igarashi K., Nishio T. Effects of Supercritical Drying Media on Structure and Properties of Silica Aerogel. J. Non-Cryst. Solids. 1995;186:83–87. doi: 10.1016/0022-3093(95)00038-0. DOI
Laudise R.A., Johnson D.W. Supercritical Drying of Gels. J. Non-Cryst. Solids. 1986;79:155–164. doi: 10.1016/0022-3093(86)90043-8. DOI
Kocon L., Despetis F., Phalippou J. Ultralow Density Silica Aerogels by Alcohol Supercritical Drying. J. Non-Cryst. Solids. 1998;225:96–100. doi: 10.1016/S0022-3093(98)00322-6. DOI
Stolarski M., Walendziewski J., Steininger M., Pniak B. Synthesis and Characteristic of Silica Aerogels. Appl. Catal. A Gen. 1999;177:139–148. doi: 10.1016/S0926-860X(98)00296-8. DOI
Mahadik D.B., Lee Y.K., Chavan N.K., Mahadik S.A., Park H.-H. Monolithic and Shrinkage-Free Hydrophobic Silica Aerogels via New Rapid Supercritical Extraction Process. J. Supercrit. Fluids. 2016;107:84–91. doi: 10.1016/j.supflu.2015.08.020. DOI
Kong Y., Shen X.-D., Cui S. Direct Synthesis of Anatase TiO2 Aerogel Resistant to High Temperature under Supercritical Ethanol. Mater. Lett. 2014;117:192–194. doi: 10.1016/j.matlet.2013.12.004. DOI
Kirkbir F., Murata H., Meyers D., Chaudhuri S.R. Drying of Large Monolithic Aerogels between Atmospheric and Supercritical Pressures. J. Sol-Gel Sci. Technol. 1998;13:311–316. doi: 10.1023/A:1008668009340. DOI
Kirkbir F., Murata H., Meyers D., Chaudhuri S.R. Drying of Aerogels in Different Solvents between Atmospheric and Supercritical Pressures. J. Non-Cryst. Solids. 1998;225:14–18. doi: 10.1016/S0022-3093(98)00003-9. DOI
Dowson M., Grogan M., Birks T., Harrison D., Craig S. Streamlined Life Cycle Assessment of Transparent Silica Aerogel Made by Supercritical Drying. Appl. Energy. 2012;97:396–404. doi: 10.1016/j.apenergy.2011.11.047. DOI
van Bommel M.J., de Haan A.B. Drying of Silica Aerogel with Supercritical Carbon Dioxide. J. Non-Cryst. Solids. 1995;186:78–82. doi: 10.1016/0022-3093(95)00072-0. DOI
Sanz-Moral L.M., Rueda M., Nieto A., Novak Z., Knez Ž., Martín Á. Gradual Hydrophobic Surface Functionalization of Dry Silica Aerogels by Reaction with Silane Precursors Dissolved in Supercritical Carbon Dioxide. J. Supercrit. Fluids. 2013;84:74–79. doi: 10.1016/j.supflu.2013.09.010. DOI
Pajonk G.M., Venkateswara Rao A., Sawant B.M., Parvathy N.N. Dependence of Monolithicity and Physical Properties of TMOS Silica Aerogels on Gel Aging and Drying conditions. J. Non-Cryst. Solids. 1997;209:40–50. doi: 10.1016/S0022-3093(96)00560-1. DOI
Masmoudi Y., Rigacci A., Ilbizian P., Cauneau F., Achard P. Diffusion During the Supercritical Drying of Silica Gels. Dry. Technol. 2006;24:1121–1125. doi: 10.1080/07373930600778270. DOI
García-González C.A., Camino-Rey M.C., Alnaief M., Zetzl C., Smirnova I. Supercritical Drying of Aerogels Using CO2: Effect of Extraction Time on the End Material Textural Properties. J. Supercrit. Fluids. 2012;66:297–306. doi: 10.1016/j.supflu.2012.02.026. DOI
Wang Y.-Y., Gao Y.-B., Sun Y.-H., Chen S.-Y. Effect of Preparation Parameters on the Texture of SiO2 Aerogels. Catal. Today. 1996;30:171–175. doi: 10.1016/0920-5861(96)00010-7. DOI
Lu Y., Gao R., Xiao S., Yin Y., Liu Q., Li J. Biobased Aerogels: Polysaccharide and Protein-Based Materials. The Royal Society of Chemistry; London, UK: 2018. Cellulose Based Aerogels: Processing and Morphology; pp. 25–41. RSC Green Chemistry.
Wang X., Zhang Y., Jiang H., Song Y., Zhou Z., Zhao H. Tert-Butyl Alcohol Used to Fabricate Nano-Cellulose Aerogels via Freeze-Drying Technology. Mater. Res. Express. 2017;4:065006. doi: 10.1088/2053-1591/aa72bc. DOI
Pons A., Casas L., Estop E., Molins E., Harris K.D.M., Xu M. A New Route to Aerogels: Monolithic Silica Cryogels. J. Non-Cryst. Solids. 2012;358:461–469. doi: 10.1016/j.jnoncrysol.2011.10.031. DOI
Jiang F., Hsieh Y.-L. Super Water Absorbing and Shape Memory Nanocellulose Aerogels from TEMPO-Oxidized Cellulose Nanofibrils via Cyclic Freezing–Thawing. J. Mater. Chem. A. 2013;2:350–359. doi: 10.1039/C3TA13629A. DOI
Zhang X., Yu Y., Jiang Z., Wang H. The Effect of Freezing Speed and Hydrogel Concentration on the Microstructure and Compressive Performance of Bamboo-Based Cellulose Aerogel. J. Wood Sci. 2015;61:595–601. doi: 10.1007/s10086-015-1514-7. DOI
Nakagaito A., Kondo H., Takagi H. Cellulose Nanofiber Aerogel Production and Applications. J. Reinf. Plast. Compos. 2013;32:1547–1552. doi: 10.1177/0731684413494110. DOI
Jiménez-Saelices C., Seantier B., Cathala B., Grohens Y. Spray Freeze-Dried Nanofibrillated Cellulose Aerogels with Thermal Superinsulating Properties. Carbohydr. Polym. 2017;157:105–113. doi: 10.1016/j.carbpol.2016.09.068. PubMed DOI
Cai H., Sharma S., Liu W., Mu W., Liu W., Zhang X., Deng Y. Aerogel Microspheres from Natural Cellulose Nanofibrils and Their Application as Cell Culture Scaffold. Biomacromolecules. 2014;15:2540–2547. doi: 10.1021/bm5003976. PubMed DOI
Cai J., Kimura S., Wada M., Kuga S., Zhang L. Cellulose Aerogels from Aqueous Alkali Hydroxide–Urea Solution. ChemSusChem. 2008;1:149–154. doi: 10.1002/cssc.200700039. PubMed DOI
Beaumont M., Kondor A., Plappert S., Mitterer C., Opietnik M., Potthast A., Rosenau T. Surface Properties and Porosity of Highly Porous, Nanostructured Cellulose II Particles. Cellulose. 2017;24:435–440. doi: 10.1007/s10570-016-1091-y. DOI
Reichenauer G. Structural Characterization of Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 449–498. Advances in Sol-Gel Derived Materials and Technologies.
Luo Y., Wang S., Fu X., Du X., Wang H., Zhou M., Cheng X., Du Z. Fabrication of a Bio-Based Superhydrophobic and Flame-Retardant Cotton Fabric for Oil–Water Separation. Macromol. Mater. Eng. 2021;306:2000624. doi: 10.1002/mame.202000624. DOI
Walenta E. Small Angle X-ray Scattering. Von O. GLATTER Und O. KRATKY. London: Academic Press Inc. Ltd. 1982. ISBN 0-12-286280-5. X, 515 Seiten, Geb. £ 43,60; US $ 81.00. Acta Polym. 1985;36:296. doi: 10.1002/actp.1985.010360520. DOI
Hunt A.J. Light Scattering for Aerogel Characterization. J. Non-Cryst. Solids. 1998;225:303–306. doi: 10.1016/S0022-3093(98)00048-9. DOI
Fauziyah M., Widiyastuti W., Balgis R., Setyawan H. Production of Cellulose Aerogels from Coir Fibers via an Alkali–Urea Method for Sorption Applications. Cellulose. 2019;26:9583–9598. doi: 10.1007/s10570-019-02753-x. DOI
Qiu J., Guo X., Lei W., Ding R., Zhang Y., Yang H. Facile Preparation of Cellulose Aerogels with Controllable Pore Structure. Nanomaterials. 2023;13:613. doi: 10.3390/nano13030613. PubMed DOI PMC
Horvat G., Pantić M., Knez Ž., Novak Z. A Brief Evaluation of Pore Structure Determination for Bioaerogels. Gels. 2022;8:438. doi: 10.3390/gels8070438. PubMed DOI PMC
Thomson W. 4. On the Equilibrium of Vapour at a Curved Surface of Liquid. Proc. R. Soc. Edinb. 1872;7:63–68. doi: 10.1017/S0370164600041729. DOI
Gibbs J.W. The Collected Works of J. Willard Gibbs: Thermodynamics. Yale University Press; New Haven, CT, USA: 1948.
Maloney T.C. Thermoporosimetry of Hard (Silica) and Soft (Cellulosic) Materials by Isothermal Step Melting. J. Therm. Anal. Calorim. 2015;121:7–17. doi: 10.1007/s10973-015-4592-2. DOI
Riikonen J., Salonen J., Lehto V.-P. Utilising Thermoporometry to Obtain New Insights into Nanostructured Materials. J. Therm. Anal. Calorim. 2011;105:811–821. doi: 10.1007/s10973-010-1167-0. DOI
Kaviany M. Principles of Heat Transfer in Porous Media. Springer Science & Business Media; New York, NY, USA: 2012.
Tanikawa W., Shimamoto T. Klinkenberg Effect for Gas Permeability and Its Comparison to Water Permeability for Porous Sedimentary Rocks. Hydrol. Earth Syst. Sci. Discuss. 2006;3:1315–1338. doi: 10.5194/hessd-3-1315-2006. DOI
Scheidegger A.E. The Physics of Flow through Porous Media. 3rd ed. University of Toronto Press; Toronto, ON, Canada: 2020.
Giesche H. Mercury Porosimetry: A General (Practical) Overview. Part. Part. Syst. Charact. 2006;23:9–19. doi: 10.1002/ppsc.200601009. DOI
Pirard R., Alie C., Pirard J.-P. Characterization of Porous Texture of Hyperporous Materials by Mercury Porosimetry Using Densification Equation. Powder Technol. 2002;128:242–247. doi: 10.1016/S0032-5910(02)00185-7. DOI
Job N., Pirard R., Pirard J.-P., Alié C. Non Intrusive Mercury Porosimetry: Pyrolysis of Resorcinol-Formaldehyde Xerogels. Part. Part. Syst. Charact. 2006;23:72–81. doi: 10.1002/ppsc.200601011. DOI
Hossen M., Talbot M., Kennard R., Bousfield D., Mason M. A Comparative Study of Methods for Porosity Determination of Cellulose Based Porous Materials. Cellulose. 2020;27:6849–6860. doi: 10.1007/s10570-020-03257-9. DOI
Lu H., Luo H., Leventis N. Mechanical Characterization of Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 499–535. Advances in Sol-Gel Derived Materials and Technologies.
Wingfield C., Baski A., Bertino M.F., Leventis N., Mohite D.P., Lu H. Fabrication of Sol−Gel Materials with Anisotropic Physical Properties by Photo-Cross-Linking. Chem. Mater. 2009;21:2108–2114. doi: 10.1021/cm803374b. DOI
Dieter G.E., Bacon D. Mechanical Metallurgy. Volume 3 McGraw-Hill; New York, NY, USA: 1976.
Ahmad H., Anguilano L., Fan M. Microstructural Architecture and Mechanical Properties of Empowered Cellulose-Based Aerogel Composites via TEMPO-Free Oxidation. Carbohydr. Polym. 2022;298:120117. doi: 10.1016/j.carbpol.2022.120117. PubMed DOI
Gross J., Fricke J. Ultrasonic Velocity Measurements in Silica, Carbon and Organic Aerogels. J. Non-Cryst. Solids. 1992;145:217–222. doi: 10.1016/S0022-3093(05)80459-4. DOI
Calemczuk R., de Goer A.M., Salce B., Maynard R., Zarembowitch A. Low-Temperature Properties of Silica Aerogels. EPL. 1987;3:1205. doi: 10.1209/0295-5075/3/11/009. PubMed DOI
Gross J., Reichenauer G., Fricke J. Mechanical Properties of SiO2 Aerogels. J. Phys. D Appl. Phys. 1988;21:1447. doi: 10.1088/0022-3727/21/9/020. DOI
Lemay J.D., Tillotson T.M., Hrubesh L.W., Pekala R.W. Microstructural Dependence of Aerogel Mechanical Properties. MRS Online Proc. Libr. 1990;180:321. doi: 10.1557/PROC-180-321. DOI
Woignier T., Phalippou J., Hdach H., Larnac G., Pernot F., Scherer G.W. Evolution of Mechanical Properties during the Alcogel-Aerogel-Glass Process. J. Non-Cryst. Solids. 1992;147–148:672–680. doi: 10.1016/S0022-3093(05)80697-0. DOI
Scherer G.W. Crack-Tip Stress in Gels. J. Non-Cryst. Solids. 1992;144:210–216. doi: 10.1016/S0022-3093(05)80402-8. DOI
Zarzycki J. Critical Stress Intensity Factors of Wet Gels. J. Non-Cryst. Solids. 1988;100:359–363. doi: 10.1016/0022-3093(88)90046-4. DOI
Evans A.G. Slow Crack Growth in Brittle Materials under Dynamic Loading Conditions. Int. J. Fract. 1974;10:251–259. doi: 10.1007/BF00113930. DOI
Hafidi Alaoui A., Woignier T., Pernot F., Phalippou J., Hihi A. Stress Intensity Factor in Silica Alcogels and Aerogels. J. Non-Cryst. Solids. 2000;265:29–35. doi: 10.1016/S0022-3093(99)00887-X. DOI
Zhang Y., Wang S., Xu G., Wang G., Zhao M. Effect of Microstructure on Fatigue-Crack Propagation of 18CrNiMo7-6 High-Strength Steel. Int. J. Fatigue. 2022;163:107027. doi: 10.1016/j.ijfatigue.2022.107027. DOI
Buchtová N., Pradille C., Bouvard J.-L., Budtova T. Mechanical Properties of Cellulose Aerogels and Cryogels. Soft Matter. 2019;15:7901–7908. doi: 10.1039/C9SM01028A. PubMed DOI
American Society for Testing and Materials; West Conshohocken, PA, USA: 2022. Standard Test Method for Tensile Properties of Plastics.
American Society for Testing and Materials; West Conshohocken, PA, USA: 2023. Standard Test Method for Compressive Properties of Rigid Plastics.
American Society for Testing and Materials; West Conshohocken, PA, USA: 2017. Standard Test Methods for Flexible Cellular Materials—Slab, Bonded, and Molded Urethane Foams.
Xu Y., Xu T., Liu H., Cai H., Wang C. Gain Regulation of the Microchannel Plate System. Int. J. Mass. Spectrom. 2017;421:234–237. doi: 10.1016/j.ijms.2017.07.017. DOI
Cao L., Fu Q., Si Y., Ding B., Yu J. Porous Materials for Sound Absorption. Compos. Commun. 2018;10:25–35. doi: 10.1016/j.coco.2018.05.001. DOI
Wang G., Yuan P., Ma B., Yuan W., Luo J. Hierarchically Structured M13 Phage Aerogel for Enhanced Sound-Absorption. Macromol. Mater. Eng. 2020;305:2000452. doi: 10.1002/mame.202000452. DOI
Begum H., Horoshenkov K.V., Conte M., Malfait W.J., Zhao S., Koebel M.M., Bonfiglio P., Venegas R. The Acoustical Properties of Tetraethyl Orthosilicate Based Granular Silica Aerogels. J. Acoust. Soc. Am. 2021;149:4149–4158. doi: 10.1121/10.0005200. PubMed DOI
American Society for Testing and Materials; West Conshohocken, PA, USA: 2019. Standard Test Method for Impedance and Absorption of Acoustical Materials Using a Tube, Two Microphones and a Digital Frequency Analysis System.
Kueh A., Razali A., Lee Y., Hamdan S., Yakub I., Suhaili N. Acoustical and Mechanical Characteristics of Mortars with Pineapple Leaf Fiber and Silica Aerogel Infills—Measurement and Modeling. Mater. Today Commun. 2023;35:105540. doi: 10.1016/j.mtcomm.2023.105540. DOI
Wang G., Ma B., Yuan W., Luo J. Acoustic and Mechanical Characterization of a Novel Polypropylene Fibers Based Composite Aerogel. Mater. Lett. 2023;334:133696. doi: 10.1016/j.matlet.2022.133696. DOI
Wang Y., Zhu H., Tu W., Su Y., Jiang F., Riffat S. Sound Absorption, Structure and Mechanical Behavior of Konjac Glucomannan-Based Aerogels with Addition of Gelatin and Wheat Straw. Constr. Build. Mater. 2022;352:129052. doi: 10.1016/j.conbuildmat.2022.129052. DOI
Feng J., Le D., Nguyen S.T., Tan Chin Nien V., Jewell D., Duong H.M. Silicacellulose Hybrid Aerogels for Thermal and Acoustic Insulation Applications. Colloids Surf. A Physicochem. Eng. Asp. 2016;506:298–305. doi: 10.1016/j.colsurfa.2016.06.052. DOI
Huang J., Wang X., Guo W., Niu H., Song L., Hu Y. Eco-Friendly Thermally Insulating Cellulose Aerogels with Exceptional Flame Retardancy, Mechanical Property and Thermal Stability. J. Taiwan Inst. Chem. Eng. 2022;131:104159. doi: 10.1016/j.jtice.2021.104159. DOI
Ebert H.-P. Aerogels Handbook. Springer; New York, NY, USA: 2011. Thermal Properties of Aerogels; pp. 537–564.
Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. 2011th ed. Springer; New York, NY, USA: 2011. Advances in Sol-Gel Derived Materials and Technologies.
Guo W., Chen S., Liang F., Jin L., Ji C., Zhang P., Fei B. Ultra-Light-Weight, Anti-Flammable and Water-Proof Cellulosic Aerogels for Thermal Insulation Applications. Int. J. Biol. Macromol. 2023;246:125343. doi: 10.1016/j.ijbiomac.2023.125343. PubMed DOI
Yan M., Pan Y., Cheng X., Zhang Z., Deng Y., Lun Z., Gong L., Gao M., Zhang H. “Robust–Soft” Anisotropic Nanofibrillated Cellulose Aerogels with Superior Mechanical, Flame-Retardant, and Thermal Insulating Properties. ACS Appl. Mater. Interfaces. 2021;13:27458–27470. doi: 10.1021/acsami.1c05334. PubMed DOI
Wang D., Peng H., Yu B., Zhou K., Pan H., Zhang L., Li M., Liu M., Tian A., Fu S. Biomimetic Structural Cellulose Nanofiber Aerogels with Exceptional Mechanical, Flame-Retardant and Thermal-Insulating Properties. Chem. Eng. J. 2020;389:124449. doi: 10.1016/j.cej.2020.124449. DOI
Underwriters Laboratories of the United States; Northbrook, IL, USA: 2013. The Standard Tests for Flammability—Vertical Burning Tests.
Qin Z., Chen X., Lv Y., Zhao B., Fang X., Pan K. Wearable and High-Performance Piezoresistive Sensor Based on Nanofiber/Sodium Alginate Synergistically Enhanced MXene Composite Aerogel. Chem. Eng. J. 2023;451:138586. doi: 10.1016/j.cej.2022.138586. DOI
Chen Y., Zhang C., Tao S., Chai H., Xu D., Li X., Qi H. High-Performance Smart Cellulose Nanohybrid Aerogel Fibers as a Platform toward Multifunctional Textiles. Chem. Eng. J. 2023;466:143153. doi: 10.1016/j.cej.2023.143153. DOI
Jiang F., Hsieh Y.-L. Amphiphilic Superabsorbent Cellulose Nanofibril Aerogels. J. Mater. Chem. A. 2014;2:6337–6342. doi: 10.1039/C4TA00743C. DOI
Nguyen H.S.H., Phan H.H., Huynh H.K.P., Nguyen S.T., Nguyen V.T.T., Phan A.N. Understanding the Effects of Cellulose Fibers from Various Pre-Treated Barley Straw on Properties of Aerogels. Fuel Process. Technol. 2022;236:107425. doi: 10.1016/j.fuproc.2022.107425. DOI
Sun J., Wu Z., An B., Ma C., Xu L., Zhang Z., Luo S., Li W., Liu S. Thermal-Insulating, Flame-Retardant and Mechanically Resistant Aerogel Based on Bio-Inspired Tubular Cellulose. Compos. Part B Eng. 2021;220:108997. doi: 10.1016/j.compositesb.2021.108997. DOI
He H., Wang Y., Yu Z., Liu J., Zhao Y., Ke Y. Ecofriendly Flame-Retardant Composite Aerogel Derived from Polysaccharide: Preparation, Flammability, Thermal Kinetics, and Mechanism. Carbohydr. Polym. 2021;269:118291. doi: 10.1016/j.carbpol.2021.118291. PubMed DOI
Athamneh T., Hajnal A., Al-Najjar M.A.A., Alshweiat A., Obaidat R., Awad A.A., Al-Alwany R., Keitel J., Wu D., Kieserling H., et al. In Vivo Tests of a Novel Wound Dressing Based on Agar Aerogel. Int. J. Biol. Macromol. 2023;239:124238. doi: 10.1016/j.ijbiomac.2023.124238. PubMed DOI
Batista M.P., Gonçalves V.S.S., Gaspar F.B., Nogueira I.D., Matias A.A., Gurikov P. Novel Alginate-Chitosan Aerogel Fibres for Potential Wound Healing Applications. Int. J. Biol. Macromol. 2020;156:773–782. doi: 10.1016/j.ijbiomac.2020.04.089. PubMed DOI
Tripathi G., Park M., Lim H., Lee B.-T. Natural TEMPO Oxidized Cellulose Nano Fiber/Alginate/dSECM Hybrid Aerogel with Improved Wound Healing and Hemostatic Ability. Int. J. Biol. Macromol. 2023;243:125226. doi: 10.1016/j.ijbiomac.2023.125226. PubMed DOI
Han X., Ding S., Zhu L., Wang S. Preparation and Characterization of Flame-Retardant and Thermal Insulating Bio-Based Composite Aerogels. Energy Build. 2023;278:112656. doi: 10.1016/j.enbuild.2022.112656. DOI
Xu Y., Yan C., Du C., Xu K., Li Y., Xu M., Bourbigot S., Fontaine G., Li B., Liu L. High-Strength, Thermal-Insulating, Fire-Safe Bio-Based Organic Lightweight Aerogel Based on 3D Network Construction of Natural Tubular Fibers. Compos. Part B Eng. 2023;261:110809. doi: 10.1016/j.compositesb.2023.110809. DOI
López-Iglesias C., Barros J., Ardao I., Monteiro F.J., Alvarez-Lorenzo C., Gómez-Amoza J.L., García-González C.A. Vancomycin-Loaded Chitosan Aerogel Particles for Chronic Wound Applications. Carbohydr. Polym. 2019;204:223–231. doi: 10.1016/j.carbpol.2018.10.012. PubMed DOI
Mirmoeini S.S., Moradi M., Tajik H., Almasi H., Gama F.M. Cellulose/Salep-Based Intelligent Aerogel with Red Grape Anthocyanins: Preparation, Characterization and Application in Beef Packaging. Food Chem. 2023;425:136493. doi: 10.1016/j.foodchem.2023.136493. PubMed DOI
Mirmoeini S.S., Hosseini S.H., Lotfi Javid A., Esmaeili Koutamehr M., Sharafi H., Molaei R., Moradi M. Essential Oil-Loaded Starch/Cellulose Aerogel: Preparation, Characterization and Application in Cheese Packaging. Int. J. Biol. Macromol. 2023;244:125356. doi: 10.1016/j.ijbiomac.2023.125356. PubMed DOI
Ye R., Li H., Long J., Wang Y., Peng D. Bio-Aerogels Derived from Corn Stalk and Premna Microphylla Leaves as Eco-Friendly Sorbents for Oily Water Treatment: The Role of Microstructure in Adsorption Performance. J. Clean. Prod. 2023;403:136720. doi: 10.1016/j.jclepro.2023.136720. DOI
Wang Q., Zuo W., Tian Y., Kong L., Cai G., Zhang H., Li L., Zhang J. An Ultralight and Flexible Nanofibrillated Cellulose/Chitosan Aerogel for Efficient Chromium Removal: Adsorption-Reduction Process and Mechanism. Chemosphere. 2023;329:138622. doi: 10.1016/j.chemosphere.2023.138622. PubMed DOI
Erfanian E., Moaref R., Ajdary R., Tam K.C., Rojas O.J., Kamkar M., Sundararaj U. Electrochemically Synthesized Graphene/TEMPO-Oxidized Cellulose Nanofibrils Hydrogels: Highly Conductive Green Inks for 3D Printing of Robust Structured EMI Shielding Aerogels. Carbon. 2023;210:118037. doi: 10.1016/j.carbon.2023.118037. DOI
Peng Q., Lu Y., Li Z., Zhang J., Zong L. Biomimetic, Hierarchical-Ordered Cellulose Nanoclaw Hybrid Aerogel with High Strength and Thermal Insulation. Carbohydr. Polym. 2022;297:119990. doi: 10.1016/j.carbpol.2022.119990. PubMed DOI
Karadagli I., Schulz B., Schestakow M., Milow B., Gries T., Ratke L. Production of Porous Cellulose Aerogel Fibers by an Extrusion Process. J. Supercrit. Fluids. 2015;106:105–114. doi: 10.1016/j.supflu.2015.06.011. DOI
Zhang X., Kwek L.P., Duyen K.L., Tan M.S., Duong H.M. Fabrication and Properties of Hybrid Coffee-Cellulose Aerogels from Spent Coffee Grounds. Polymers. 2019;11:1942. doi: 10.3390/polym11121942. PubMed DOI PMC
Thai Q.B., Nguyen S.T., Ho D.K., Tran T.D., Huynh D.M., Do N.H.N., Luu T.P., Le P.K., Le D.K., Phan-Thien N., et al. Cellulose-Based Aerogels from Sugarcane Bagasse for Oil Spill-Cleaning and Heat Insulation Applications. Carbohydr. Polym. 2020;228:115365. doi: 10.1016/j.carbpol.2019.115365. PubMed DOI
Sun W., Fang Y., Wu L., Liu X. Micron down Feather Fibers Reinforced Cellulose Composite Aerogel with Excellent Acoustic and Thermal Insulation. J. Porous Mater. 2023;30:989–997. doi: 10.1007/s10934-022-01403-1. DOI
Hu X., Zhang S., Yang B., Hao M., Chen Z., Liu Y., Ramakrishna S., Wang X., Yao J. Bacterial Cellulose Composite Aerogel with High Elasticity and Adjustable Wettability for Dye Absorption and Oil–Water Separation. Appl. Surf. Sci. 2023;640:158299. doi: 10.1016/j.apsusc.2023.158299. DOI
Fan B., Pan S., Bao X., Liu Y., Yu Y., Zhou M., Wang Q., Wang P. Highly Elastic Photothermal Nanofibrillated Cellulose Aerogels for Solar-Assisted Efficient Cleanup of Viscous Oil Spill. Int. J. Biol. Macromol. 2024;256:128327. doi: 10.1016/j.ijbiomac.2023.128327. PubMed DOI
Guo J., Zhou S., Ma X., He S., Chen D., Xie F., Wang C., Yang H., Li W. Regenerated Cellulose/Polyethyleneimine Composite Aerogel for Efficient and Selective Adsorption of Anionic Dyes. Sep. Purif. Technol. 2024;330:125480. doi: 10.1016/j.seppur.2023.125480. DOI
Tran D.T., Nguyen S.T., Do N.D., Thai N.N.T., Thai Q.B., Huynh H.K.P., Nguyen V.T.T., Phan A.N. Green Aerogels from Rice Straw for Thermal, Acoustic Insulation and Oil Spill Cleaning Applications. Mater. Chem. Phys. 2020;253:123363. doi: 10.1016/j.matchemphys.2020.123363. DOI
Guo L., Chen Z., Lyu S., Fu F., Wang S. Highly Flexible Cross-Linked Cellulose Nanofibril Sponge-like Aerogels with Improved Mechanical Property and Enhanced Flame Retardancy. Carbohydr. Polym. 2018;179:333–340. doi: 10.1016/j.carbpol.2017.09.084. PubMed DOI
Bhuiyan M.A.R., Wang L., Shanks R.A., Ara Z.A., Saha T. Electrospun Polyacrylonitrile–Silica Aerogel Coating on Viscose Nonwoven Fabric for Versatile Protection and Thermal Comfort. Cellulose. 2020;27:10501–10517. doi: 10.1007/s10570-020-03489-9. DOI
Chan E.P., Lee J.-H., Chung J.Y., Stafford C.M. An Automated Spin-Assisted Approach for Molecular Layer-by-Layer Assembly of Crosslinked Polymer Thin Films. Rev. Sci. Instrum. 2012;83:114102. doi: 10.1063/1.4767289. PubMed DOI
Atoufi Z., Reid M.S., Larsson P.A., Wågberg L. Surface Tailoring of Cellulose Aerogel-like Structures with Ultrathin Coatings Using Molecular Layer-by-Layer Assembly. Carbohydr. Polym. 2022;282:119098. doi: 10.1016/j.carbpol.2022.119098. PubMed DOI
Johnson P.M., Yoon J., Kelly J.Y., Howarter J.A., Stafford C.M. Molecular Layer-by-Layer Deposition of Highly Crosslinked Polyamide Films. J. Polym. Sci. Part B Polym. Phys. 2012;50:168–173. doi: 10.1002/polb.23002. DOI
La P., Huynh N., Bui K., Pham K., Dao X.-T., Tran T., Nguyen T., Hoang N., Mai P., Nguyen H.H. Synthesis and Surface Modification of Cellulose Aerogel from Coconut Peat for Oil Adsorption. Res. Sq. 2021. preprint . DOI
Kaya M. Super Absorbent, Light, and Highly Flame Retardant Cellulose-Based Aerogel Crosslinked with Citric Acid. J. Appl. Polym. Sci. 2017;134:45315. doi: 10.1002/app.45315. DOI
Wicklein B., Kocjan D., Carosio F., Camino G., Bergström L. Tuning the Nanocellulose–Borate Interaction to Achieve Highly Flame Retardant Hybrid Materials. Chem. Mater. 2016;28:1985–1989. doi: 10.1021/acs.chemmater.6b00564. DOI
Jelle B.P. Traditional, State-of-the-Art and Future Thermal Building Insulation Materials and Solutions—Properties, Requirements and Possibilities. Energy Build. 2011;43:2549–2563. doi: 10.1016/j.enbuild.2011.05.015. DOI
BuyAerogel.com|Airloy® X103 Strong Aerogel Large Panels. [(accessed on 16 August 2023)]. Available online: http://www.buyaerogel.com/product/airloy-x103-large-panels/
Antlauf M., Boulanger N., Berglund L., Oksman K., Andersson O. Thermal Conductivity of Cellulose Fibers in Different Size Scales and Densities. Biomacromolecules. 2021;22:3800–3809. doi: 10.1021/acs.biomac.1c00643. PubMed DOI PMC
Zhang X., Zhao X., Xue T., Yang F., Fan W., Liu T. Bidirectional Anisotropic Polyimide/Bacterial Cellulose Aerogels by Freeze-Drying for Super-Thermal Insulation. Chem. Eng. J. 2020;385:123963. doi: 10.1016/j.cej.2019.123963. DOI
Sai H., Wang M., Miao C., Song Q., Wang Y., Fu R., Wang Y., Ma L., Hao Y. Robust Silica-Bacterial Cellulose Composite Aerogel Fibers for Thermal Insulation Textile. Gels. 2021;7:145. doi: 10.3390/gels7030145. PubMed DOI PMC
Jiang S., Zhang M., Jiang W., Xu Q., Yu J., Liu L., Liu L. Multiscale Nanocelluloses Hybrid Aerogels for Thermal Insulation: The Study on Mechanical and Thermal Properties. Carbohydr. Polym. 2020;247:116701. doi: 10.1016/j.carbpol.2020.116701. PubMed DOI
Dong C., Hu Y., Zhu Y., Wang J., Jia X., Chen J., Li J. Fabrication of Textile Waste Fibers Aerogels with Excellent Oil/Organic Solvent Adsorption and Thermal Properties. Gels. 2022;8:684. doi: 10.3390/gels8100684. PubMed DOI PMC
Liu Z., Lyu J., Fang D., Zhang X. Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments. ACS Nano. 2019;13:5703–5711. doi: 10.1021/acsnano.9b01094. PubMed DOI
Nguyen S.T., Feng J., Ng S.K., Wong J.P.W., Tan V.B.C., Duong H.M. Advanced Thermal Insulation and Absorption Properties of Recycled Cellulose Aerogels. Colloids Surf. A Physicochem. Eng. Asp. 2014;445:128–134. doi: 10.1016/j.colsurfa.2014.01.015. DOI
Yang H., Wang Z., Liu Z., Cheng H., Li C. Continuous, Strong, Porous Silk Firoin-Based Aerogel Fibers toward Textile Thermal Insulation. Polymers. 2019;11:1899. doi: 10.3390/polym11111899. PubMed DOI PMC
Song M., Jiang J., Qin H., Ren X., Jiang F. Flexible and Super Thermal Insulating Cellulose Nanofibril/Emulsion Composite Aerogel with Quasi-Closed Pores. ACS Appl. Mater. Interfaces. 2020;12:45363–45372. doi: 10.1021/acsami.0c14091. PubMed DOI
Zeng Z., Wu T., Han D., Ren Q., Siqueira G., Nyström G. Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. Acs Nano. 2020;14:2927–2938. doi: 10.1021/acsnano.9b07452. PubMed DOI
Yu Z., Suryawanshi A., He H., Liu J., Li Y., Lin X., Sun Z. Preparation and Characterisation of Fire-Resistant PNIPAAm/SA/AgNP Thermosensitive Network Hydrogels and Laminated Cotton Fabric Used in Firefighter Protective Clothing. Cellulose. 2020;27:5391–5406. doi: 10.1007/s10570-020-03146-1. DOI
Yu Z., Liu J., Suryawanshi A., He H., Wang Y., Zhao Y. Thermal Insulating and Fire-Retarding Behavior of Treated Cotton Fabrics with a Novel High Water-Retaining Hydrogel Used in Thermal Protective Clothing. Cellulose. 2021;28:2581–2597. doi: 10.1007/s10570-021-03696-y. DOI
Kim S.J., Kim H.A. Effect of Fabric Structural Parameters and Weaving Conditions to Warp Tension of Aramid Fabrics for Protective Garments. Text. Res. J. 2018;88:987–1001. doi: 10.1177/0040517517693981. DOI
Cao M., Li S.-L., Cheng J.-B., Zhang A.-N., Wang Y.-Z., Zhao H.-B. Fully Bio-Based, Low Fire-Hazard and Superelastic Aerogel without Hazardous Cross-Linkers for Excellent Thermal Insulation and Oil Clean-up Absorption. J. Hazard. Mater. 2021;403:123977. doi: 10.1016/j.jhazmat.2020.123977. PubMed DOI
Wang B., Li P., Xu Y.-J., Jiang Z.-M., Dong C.-H., Liu Y., Zhu P. Bio-Based, Nontoxic and Flame-Retardant Cotton/Alginate Blended Fibres as Filling Materials: Thermal Degradation Properties, Flammability and Flame-Retardant Mechanism. Compos. Part B Eng. 2020;194:108038. doi: 10.1016/j.compositesb.2020.108038. DOI
Zhao H.-B., Chen M., Chen H.-B. Thermally Insulating and Flame-Retardant Polyaniline/Pectin Aerogels. ACS Sustain. Chem. Eng. 2017;5:7012–7019. doi: 10.1021/acssuschemeng.7b01247. DOI
Chen J., Xie H., Lai X., Li H., Gao J., Zeng X. An Ultrasensitive Fire-Warning Chitosan/Montmorillonite/Carbon Nanotube Composite Aerogel with High Fire-Resistance. Chem. Eng. J. 2020;399:125729. doi: 10.1016/j.cej.2020.125729. DOI
He C., Huang J., Li S., Meng K., Zhang L., Chen Z., Lai Y. Mechanically Resistant and Sustainable Cellulose-Based Composite Aerogels with Excellent Flame Retardant, Sound-Absorption, and Superantiwetting Ability for Advanced Engineering Materials. ACS Sustain. Chem. Eng. 2018;6:927–936. doi: 10.1021/acssuschemeng.7b03281. DOI
He S., Liu C., Chi X., Zhang Y., Yu G., Wang H., Li B., Peng H. Bio-Inspired Lightweight Pulp Foams with Improved Mechanical Property and Flame Retardancy via Borate Cross-Linking. Chem. Eng. J. 2019;371:34–42. doi: 10.1016/j.cej.2019.04.018. DOI
Thanh N.T.L. Investigation on the Flame-Retardant and Physical Properties of the Modified Cellulosic and Polyurethane Aerogel. Mater. Today Proc. 2022;66:2726–2729. doi: 10.1016/j.matpr.2022.06.503. DOI
Gong J., Li J., Xu J., Xiang Z., Mo L. Research on Cellulose Nanocrystals Produced from Cellulose Sources with Various Polymorphs. RSC Adv. 2017;7:33486–33493. doi: 10.1039/C7RA06222B. DOI
Dong H., Xie Y., Zeng G., Tang L., Liang J., He Q., Zhao F., Zeng Y., Wu Y. The Dual Effects of Carboxymethyl Cellulose on the Colloidal Stability and Toxicity of Nanoscale Zero-Valent Iron. Chemosphere. 2016;144:1682–1689. doi: 10.1016/j.chemosphere.2015.10.066. PubMed DOI
Yahya E.B., Alzalouk M.M., Alfallous K.A., Abogmaza A.F. Antibacterial Cellulose-Based Aerogels for Wound Healing Application: A Review. Biomed. Res. Ther. 2020;7:4032–4040. doi: 10.15419/bmrat.v7i10.637. DOI
Lu T., Li Q., Chen W., Yu H. Composite Aerogels Based on Dialdehyde Nanocellulose and Collagen for Potential Applications as Wound Dressing and Tissue Engineering Scaffold. Compos. Sci. Technol. 2014;94:132–138. doi: 10.1016/j.compscitech.2014.01.020. DOI
Wang X., Cheng F., Liu J., Smått J.-H., Gepperth D., Lastusaari M., Xu C., Hupa L. Biocomposites of Copper-Containing Mesoporous Bioactive Glass and Nanofibrillated Cellulose: Biocompatibility and Angiogenic Promotion in Chronic Wound Healing Application. Acta Biomater. 2016;46:286–298. doi: 10.1016/j.actbio.2016.09.021. PubMed DOI
Jack A.A., Nordli H.R., Powell L.C., Farnell D.J.J., Pukstad B., Rye P.D., Thomas D.W., Chinga-Carrasco G., Hill K.E. Cellulose Nanofibril Formulations Incorporating a Low-Molecular-Weight Alginate Oligosaccharide Modify Bacterial Biofilm Development. Biomacromolecules. 2019;20:2953–2961. doi: 10.1021/acs.biomac.9b00522. PubMed DOI
Yassin M.T., Mostafa A.A.-F., Al Askar A.A. In Vitro Evaluation of Biological Activities and Phytochemical Analysis of Different Solvent Extracts of Punica granatum L. (Pomegranate) Peels. Plants. 2021;10:2742. doi: 10.3390/plants10122742. PubMed DOI PMC
Jayan S.S., Jayan J.S., Saritha A. A Review on Recent Advances towards Sustainable Development of Bio-Inspired Agri-Waste Based Cellulose Aerogels. Int. J. Biol. Macromol. 2023;248:125928. doi: 10.1016/j.ijbiomac.2023.125928. PubMed DOI
Edwards J.V., Fontenot K., Liebner F., Pircher N.D.n., French A.D., Condon B.D. Structure/Function Analysis of Cotton-Based Peptide-Cellulose Conjugates: Spatiotemporal/Kinetic Assessment of Protease Aerogels Compared to Nanocrystalline and Paper Cellulose. Int. J. Mol. Sci. 2018;19:840. doi: 10.3390/ijms19030840. PubMed DOI PMC
De Cicco F., Russo P., Reverchon E., García-González C.A., Aquino R.P., Del Gaudio P. Prilling and Supercritical Drying: A Successful Duo to Produce Core-Shell Polysaccharide Aerogel Beads for Wound Healing. Carbohydr. Polym. 2016;147:482–489. doi: 10.1016/j.carbpol.2016.04.031. PubMed DOI
Kishor R., Purchase D., Saratale G.D., Saratale R.G., Ferreira L.F.R., Bilal M., Chandra R., Bharagava R.N. Ecotoxicological and Health Concerns of Persistent Coloring Pollutants of Textile Industry Wastewater and Treatment Approaches for Environmental Safety. J. Environ. Chem. Eng. 2021;9:105012. doi: 10.1016/j.jece.2020.105012. DOI
Lomoko G.M.N.A., Paliulis D., Valters K. Removal of Copper (II) Ions from Polluted Water Using Modified Wheat Bran. Environ. Clim. Technol. 2021;25:853–864. doi: 10.2478/rtuect-2021-0064. DOI
Ardila-Leal L.D., Poutou-Piñales R.A., Pedroza-Rodríguez A.M., Quevedo-Hidalgo B.E. A Brief History of Colour, the Environmental Impact of Synthetic Dyes and Removal by Using Laccases. Molecules. 2021;26:3813. doi: 10.3390/molecules26133813. PubMed DOI PMC
Altynbayeva G., Kadnikova O., Aydarhanov A., Toretayev M. Industrial Wastewaters of the Feed Industry: Use of Sodium Ferrate in the Phenol Purification Process. Environ. Clim. Technol. 2021;25:829–839. doi: 10.2478/rtuect-2021-0062. DOI
Chandanshive V., Kadam S., Rane N., Jeon B.-H., Jadhav J., Govindwar S. In Situ Textile Wastewater Treatment in High Rate Transpiration System Furrows Planted with Aquatic Macrophytes and Floating Phytobeds. Chemosphere. 2020;252:126513. doi: 10.1016/j.chemosphere.2020.126513. PubMed DOI
Islam M.T., Saenz-Arana R., Hernandez C., Guinto T., Ahsan M.A., Bragg D.T., Wang H., Alvarado-Tenorio B., Noveron J.C. Conversion of Waste Tire Rubber into a High-Capacity Adsorbent for the Removal of Methylene Blue, Methyl Orange, and Tetracycline from Water. J. Environ. Chem. Eng. 2018;6:3070–3082. doi: 10.1016/j.jece.2018.04.058. DOI
Wei F., Shahid M.J., Alnusairi G.S.H., Afzal M., Khan A., El-Esawi M.A., Abbas Z., Wei K., Zaheer I.E., Rizwan M., et al. Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review. Sustainability. 2020;12:5801. doi: 10.3390/su12145801. DOI
Liugė M., Paliulis D. Treatment of Water Containing Dyes Using Cellulose Aerogels. Environ. Clim. Technol. 2023;27:314–322. doi: 10.2478/rtuect-2023-0024. DOI
Neetha J.N., Sandesh K., Kumar K.G., Chidananda B., Ujwal P. Optimization of Direct Blue-14 Dye Degradation by Bacillus Fermus (Kx898362) an Alkaliphilic Plant Endophyte and Assessment of Degraded Metabolite Toxicity. J. Hazard. Mater. 2019;364:742–751. doi: 10.1016/j.jhazmat.2018.10.074. PubMed DOI
Shen D., Fan J., Zhou W., Gao B., Yue Q., Kang Q. Adsorption Kinetics and Isotherm of Anionic Dyes onto Organo-Bentonite from Single and Multisolute Systems. J. Hazard. Mater. 2009;172:99–107. doi: 10.1016/j.jhazmat.2009.06.139. PubMed DOI
Patel H. Charcoal as an Adsorbent for Textile Wastewater Treatment. Sep. Sci. Technol. 2018;53:2797–2812. doi: 10.1080/01496395.2018.1473880. DOI
Javanbakht V., Ghoreishi S.M., Javanbakht M. Mathematical Modeling of Batch Adsorption Kinetics of Lead Ions on Modified Natural Zeolite from Aqueous Media. Theor. Found. Chem. Eng. 2019;53:1057–1066. doi: 10.1134/S0040579519060046. DOI
Lyu W., Li J., Zheng L., Liu H., Chen J., Zhang W., Liao Y. Fabrication of 3D Compressible Polyaniline/Cellulose Nanofiber Aerogel for Highly Efficient Removal of Organic Pollutants and Its Environmental-Friendly Regeneration by Peroxydisulfate Process. Chem. Eng. J. 2021;414:128931. doi: 10.1016/j.cej.2021.128931. DOI
Ali Musa M., Idrus S. Physical and Biological Treatment Technologies of Slaughterhouse Wastewater: A Review. Sustainability. 2021;13:4656. doi: 10.3390/su13094656. DOI
Li W., Mu B., Yang Y. Feasibility of Industrial-Scale Treatment of Dye Wastewater via Bio-Adsorption Technology. Bioresour. Technol. 2019;277:157–170. doi: 10.1016/j.biortech.2019.01.002. PubMed DOI
Nguyen T.A., Juang R.-S. Treatment of Waters and Wastewaters Containing Sulfur Dyes: A Review. Chem. Eng. J. 2013;219:109–117. doi: 10.1016/j.cej.2012.12.102. DOI
Rambabu K., Bharath G., Banat F., Show P.L. Green Synthesis of Zinc Oxide Nanoparticles Using Phoenix Dactylifera Waste as Bioreductant for Effective Dye Degradation and Antibacterial Performance in Wastewater Treatment. J. Hazard. Mater. 2021;402:123560. doi: 10.1016/j.jhazmat.2020.123560. PubMed DOI
Hu B.-C., Zhang H.-R., Li S.-C., Chen W.-S., Wu Z.-Y., Liang H.-W., Yu H.-P., Yu S.-H. Robust Carbonaceous Nanofiber Aerogels from All Biomass Precursors. Adv. Funct. Mater. 2023;33:2207532. doi: 10.1002/adfm.202207532. DOI
Ilangovan M., Guna V., Olivera S., Ravi A., Muralidhara H.B., Santosh M.S., Reddy N. Highly Porous Carbon from a Natural Cellulose Fiber as High Efficiency Sorbent for Lead in Waste Water. Bioresour. Technol. 2017;245:296–299. doi: 10.1016/j.biortech.2017.08.141. PubMed DOI
Jiang Z., Ho S.-H., Wang X., Li Y., Wang C. Application of Biodegradable Cellulose-Based Biomass Materials in Wastewater Treatment. Environ. Pollut. 2021;290:118087. doi: 10.1016/j.envpol.2021.118087. PubMed DOI
Li T., Chen C., Brozena A.H., Zhu J.Y., Xu L., Driemeier C., Dai J., Rojas O.J., Isogai A., Wågberg L., et al. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature. 2021;590:47–56. doi: 10.1038/s41586-020-03167-7. PubMed DOI
Zhang J., Zhang X., Tian Y., Zhong T., Liu F. Novel and Wet-Resilient Cellulose Nanofiber Cryogels with Tunable Porosity and Improved Mechanical Strength for Methyl Orange Dyes Removal. J. Hazard. Mater. 2021;416:125897. doi: 10.1016/j.jhazmat.2021.125897. PubMed DOI
Liu J.-L., Qian W.-C., Guo J.-Z., Shen Y., Li B. Selective Removal of Anionic and Cationic Dyes by Magnetic Fe3O4-Loaded Amine-Modified Hydrochar. Bioresour. Technol. 2021;320:124374. doi: 10.1016/j.biortech.2020.124374. PubMed DOI
Qiu C., Li Y., Liu H., Wang X., Hu S., Qi H. A Novel Crosslinking Strategy on Functional Cellulose-Based Aerogel for Effective and Selective Removal of Dye. Chem. Eng. J. 2023;463:142404. doi: 10.1016/j.cej.2023.142404. DOI
Wu W., Yang Y., Wang B., Rong L., Xu H., Sui X., Zhong Y., Zhang L., Chen Z., Feng X., et al. The Effect of the Degree of Substitution on the Solubility of Cellulose Acetoacetates in Water: A Molecular Dynamics Simulation and Density Functional Theory Study. Carbohydr. Res. 2020;496:108134. doi: 10.1016/j.carres.2020.108134. PubMed DOI
Li L., Rong L., Xu Z., Wang B., Feng X., Mao Z., Xu H., Yuan J., Liu S., Sui X. Cellulosic Sponges with pH Responsive Wettability for Efficient Oil-Water Separation. Carbohydr. Polym. 2020;237:116133. doi: 10.1016/j.carbpol.2020.116133. PubMed DOI
Peng F., Liu H., Xiao D., Guo L., Yue F., Würfe H., Heinze T., Qi H. Green Fabrication of High Strength, Transparent Cellulose-Based Films with Durable Fluorescence and UV-Blocking Performance. J. Mater. Chem. A. 2022;10:7811–7817. doi: 10.1039/D2TA00817C. DOI
Liu H., Sui X., Xu H., Zhang L., Zhong Y., Mao Z. Self-Healing Polysaccharide Hydrogel Based on Dynamic Covalent Enamine Bonds. Macromol. Mater. Eng. 2016;301:725–732. doi: 10.1002/mame.201600042. DOI
Li Z., Wang X., Kuang W., Dong C., Fan Y., Guo Y., Qiao Q., Zhu Z., Liu Y., Zhu Y. Biofiber Waste Derived Zwitterionic and Photocatalytic Dye Adsorbent: Switchable Selectivity, in-Situ Degradation and Multi-Tasking Application. Bioresour. Technol. 2022;352:127080. doi: 10.1016/j.biortech.2022.127080. PubMed DOI
Maatar W., Boufi S. Microporous Cationic Nanofibrillar Cellulose Aerogel as Promising Adsorbent of Acid Dyes. Cellulose. 2017;24:1001–1015. doi: 10.1007/s10570-016-1162-0. DOI
Zhang M., Xu T., Zhao Q., Liu K., Liang D., Si C. Cellulose-Based Materials for Carbon Capture and Conversion. Carbon Capture Sci. Technol. 2024;10:100157. doi: 10.1016/j.ccst.2023.100157. DOI
Zhang M., Wang Y., Liu K., Liu Y., Xu T., Du H., Si C. Strong, Conductive, and Freezing-Tolerant Polyacrylamide/PEDOT:PSS/Cellulose Nanofibrils Hydrogels for Wearable Strain Sensors. Carbohydr. Polym. 2023;305:120567. doi: 10.1016/j.carbpol.2023.120567. PubMed DOI
Ho N.A.D., Leo C.P. A Review on the Emerging Applications of Cellulose, Cellulose Derivatives and Nanocellulose in Carbon Capture. Environ. Res. 2021;197:111100. doi: 10.1016/j.envres.2021.111100. PubMed DOI
Adegoke K.A., Oyedotun K.O., Ighalo J.O., Amaku J.F., Olisah C., Adeola A.O., Iwuozor K.O., Akpomie K.G., Conradie J. Cellulose Derivatives and Cellulose-Metal-Organic Frameworks for CO2 adsorption and Separation. J. CO2 Util. 2022;64:102163. doi: 10.1016/j.jcou.2022.102163. DOI
Zheng Y., Liu H., Yan L., Yang H., Dai L., Si C. Lignin-Based Encapsulation of Liquid Metal Particles for Flexible and High-Efficiently Recyclable Electronics. Adv. Funct. Mater. 2023:2310653. doi: 10.1002/adfm.202310653. DOI
Liu H., Xu T., Liang Q., Zhao Q., Zhao D., Si C. Compressible Cellulose Nanofibrils/Reduced Graphene Oxide Composite Carbon Aerogel for Solid-State Supercapacitor. Adv. Compos. Hybrid Mater. 2022;5:1168–1179. doi: 10.1007/s42114-022-00427-0. DOI
Xu T., Liu K., Sheng N., Zhang M., Liu W., Liu H., Dai L., Zhang X., Si C., Du H., et al. Biopolymer-Based Hydrogel Electrolytes for Advanced Energy Storage/Conversion Devices: Properties, Applications, and Perspectives. Energy Storage Mater. 2022;48:244–262. doi: 10.1016/j.ensm.2022.03.013. DOI
Duan Y., Yang H., Liu K., Xu T., Chen J., Xie H., Du H., Dai L., Si C. Cellulose Nanofibril Aerogels Reinforcing Polymethyl Methacrylate with High Optical Transparency. Adv. Compos. Hybrid Mater. 2023;6:123. doi: 10.1007/s42114-023-00700-w. DOI
Liu W., Du H., Zhang M., Liu K., Liu H., Xie H., Zhang X., Si C. Bacterial Cellulose-Based Composite Scaffolds for Biomedical Applications: A Review. ACS Sustain. Chem. Eng. 2020;8:7536–7562. doi: 10.1021/acssuschemeng.0c00125. DOI
Liu W., Lin Q., Chen S., Yang H., Liu K., Pang B., Xu T., Si C. Microencapsulated Phase Change Material through Cellulose Nanofibrils Stabilized Pickering Emulsion Templating. Adv. Compos. Hybrid Mater. 2023;6:149. doi: 10.1007/s42114-023-00725-1. DOI
Xu T., Du H., Liu H., Liu W., Zhang X., Si C., Liu P., Zhang K. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices. Adv. Mater. 2021;33:2101368. doi: 10.1002/adma.202101368. PubMed DOI PMC
Zulaikha W., Hassan M.Z., Ismail Z. Recent Development of Natural Fibre for Nanocellulose Extraction and Application. Mater. Today Proc. 2022;66:2265–2273. doi: 10.1016/j.matpr.2022.06.221. DOI
Yu S., Zhao X., Zhang J., Liu S., Yuan Z., Liu X., Liu B., Yi X. A Novel Combining Strategy of Cellulose Aerogel and Hierarchically Porous Metal Organic Frameworks (HP-MOFs) to Improve the CO2 Absorption Performance. Cellulose. 2022;29:6783–6796. doi: 10.1007/s10570-022-04668-6. DOI
Zhou G., Wang K., Liu R., Tian Y., Kong B., Qi G. Synthesis and CO2 Adsorption Performance of TEPA-Loaded Cellulose Whisker/Silica Composite Aerogel. Colloids Surf. A Physicochem. Eng. Asp. 2021;631:127675. doi: 10.1016/j.colsurfa.2021.127675. DOI
Ma H., Wang Z., Zhang X.-F., Ding M., Yao J. In Situ Growth of Amino-Functionalized ZIF-8 on Bacterial Cellulose Foams for Enhanced CO2 Adsorption. Carbohydr. Polym. 2021;270:118376. doi: 10.1016/j.carbpol.2021.118376. PubMed DOI
Miao Y., Luo H., Pudukudy M., Zhi Y., Zhao W., Shan S., Jia Q., Ni Y. CO2 Capture Performance and Characterization of Cellulose Aerogels Synthesized from Old Corrugated Containers. Carbohydr. Polym. 2020;227:115380. doi: 10.1016/j.carbpol.2019.115380. PubMed DOI
Seddiqi H., Oliaei E., Honarkar H., Jin J., Geonzon L.C., Bacabac R.G., Klein-Nulend J. Cellulose and Its Derivatives: Towards Biomedical Applications. Cellulose. 2021;28:1893–1931. doi: 10.1007/s10570-020-03674-w. DOI
Pan D., Yang G., Abo-Dief H.M., Dong J., Su F., Liu C., Li Y., Bin Xu B., Murugadoss V., Naik N., et al. Vertically Aligned Silicon Carbide Nanowires/Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites. Nano-Micro Lett. 2022;14:118. doi: 10.1007/s40820-022-00863-z. PubMed DOI PMC
Pan D., Dong J., Gui Y., Su F., Chang B., Liu C., Zhu Y.-C., Guo Z. Ice Template Method Assists in Obtaining Carbonized Cellulose/Boron Nitride Aerogel with 3D Spatial Network Structure to Enhance the Thermal Conductivity and Flame Retardancy of Epoxy-Based Composites. Adv. Compos. Hybrid Mater. 2021;5:58–70. doi: 10.1007/s42114-021-00362-6. DOI
Cellulose Sciences International—Crunchbase Company Profile & Funding. [(accessed on 7 June 2023)]. Available online: https://www.crunchbase.com/organization/cellulose-sciences-international.
INACELL: Cellulose Aerogels for Thermal Insulation in Buildings|Activos. [(accessed on 5 June 2023)]. Available online: https://www.tecnalia.com/en/technological-assets/inacell-cellulose-aerogels-for-thermal-insulation-in-buildings.
Bioaerogels. [(accessed on 5 June 2023)]. Available online: https://www.aerogel-it.de/bioaerogels.
Aerogel-It and Fibenol Collaborate for Sustainable Superinsulation|Fibenol. [(accessed on 6 June 2023)]. Available online: https://fibenol.com/news/aerogel-it-and-fibenol-collaborate-for-sustainable-superinsulation.
Guerrero-Alburquerque N., Zhao S., Adilien N., Koebel M.M., Lattuada M., Malfait W.J. Strong, Machinable, and Insulating Chitosan–Urea Aerogels: Toward Ambient Pressure Drying of Biopolymer Aerogel Monoliths. ACS Appl. Mater. Interfaces. 2020;12:22037–22049. doi: 10.1021/acsami.0c03047. PubMed DOI
Empa—Building Energy Materials and Components—3. Cellulose Aerogels. [(accessed on 7 June 2023)]. Available online: https://www.empa.ch/web/s312/3.-cellulose-aerogels.
Allied Market Research Aerogel Market to Garner $7.5 Billion, Globally, by 2032 at 19.4% CAGR, Says Allied Market Research. PR Newswire. May 9, 2023.
Wood-Based Aerogels (AEROWOOD) [(accessed on 17 June 2023)]. Available online: https://blogs.helsinki.fi/aerowood-project/partners/
Smirnova I., Gurikov P. Aerogel Production: Current Status, Research Directions, and Future Opportunities. J. Supercrit. Fluids. 2018;134:228–233. doi: 10.1016/j.supflu.2017.12.037. DOI
Grand View Research . Aerogel Market Size, Share, Growth & Trends Report, 2030. Grand View Research; San Francisco, CA, USA: 2023.
Sen S., Singh A., Bera C., Roy S., Kailasam K. Recent Developments in Biomass Derived Cellulose Aerogel Materials for Thermal Insulation Application: A Review. Cellulose. 2022;29:4805–4833. doi: 10.1007/s10570-022-04586-7. DOI
Wu J., Cooper D., Miller R. Virtual Impactor Aerosol Concentrator for Cleanroom Monitoring. J. Environ. Sci. 2006;32:52–56. doi: 10.17764/jiet.1.32.4.j663114j2007072l. DOI
Komarneni S., Roy R., Selvaraj U., Malla P.B., Breval E. Nanocomposite Aerogels: The SiO2–Al2O3 System. J. Mater. Res. 1993;8:3163–3167. doi: 10.1557/JMR.1993.3163. DOI
Pajonk G. ChemInform Abstract: Aerogel Catalysts. ChemInform. 2010;22 doi: 10.1002/chin.199133322. DOI
Lavoine N., Bergström L. Nanocellulose-Based Foams and Aerogels: Processing, Properties, and Applications. J. Mater. Chem. A. 2017;5:16105–16117. doi: 10.1039/C7TA02807E. DOI
Uetani K., Hatori K. Thermal Conductivity Analysis and Applications of Nanocellulose Materials. Sci. Technol. Adv. Mater. 2017;18:877–892. doi: 10.1080/14686996.2017.1390692. PubMed DOI PMC
Carosio F., Kochumalayil J., Cuttica F., Camino G., Berglund L. Oriented Clay Nanopaper from Biobased Components—Mechanisms for Superior Fire Protection Properties. ACS Appl. Mater. Interfaces. 2015;7:5847–5856. doi: 10.1021/am509058h. PubMed DOI
Österberg M., Vartiainen J., Lucenius J., Hippi U., Seppälä J., Serimaa R., Laine J. A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials. ACS Appl. Mater. Interfaces. 2013;5:4640–4647. doi: 10.1021/am401046x. PubMed DOI
Dorez G., Taguet A., Ferry L., Lopez-Cuesta J.M. Thermal and Fire Behavior of Natural Fibers/PBS Biocomposites. Polym. Degrad. Stab. 2013;98:87–95. doi: 10.1016/j.polymdegradstab.2012.10.026. DOI
Klemm D., Heublein B., Fink H.-P., Bohn A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005;44:3358–3393. doi: 10.1002/anie.200460587. PubMed DOI
Feng J., Nguyen S.T., Fan Z., Duong H.M. Advanced Fabrication and Oil Absorption Properties of Super-Hydrophobic Recycled Cellulose Aerogels. Chem. Eng. J. 2015;270:168–175. doi: 10.1016/j.cej.2015.02.034. DOI
Li Y.-Q., Samad Y.A., Polychronopoulou K., Alhassan S.M., Liao K. Carbon Aerogel from Winter Melon for Highly Efficient and Recyclable Oils and Organic Solvents Absorption. ACS Sustain. Chem. Eng. 2014;2:1492–1497. doi: 10.1021/sc500161b. DOI
Mesceriakove S., Pileidis D.F., Mäkilä E., Sevilla M., Eveliina R., Salonen J., Sillanpää M., Titirici M. Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. ACS Appl. Mater. Interfaces. 2015;7:25875–25883. doi: 10.1021/acsami.5b08287. PubMed DOI
Chen H., Wang X., Li J., Wang X. Cotton Derived Carbonaceous Aerogels for the Efficient Removal of Organic Pollutants and Heavy Metal Ions. J. Mater. Chem. A. 2015;3:6073–6081. doi: 10.1039/C5TA00299K. DOI
Li Y., Zhang R., Tian X., Yang C., Zhou Z. Facile Synthesis of Fe3O4 Nanoparticles Decorated on 3D Graphene Aerogels as Broad-Spectrum Sorbents for Water Treatment. Appl. Surf. Sci. 2016;369:11–18. doi: 10.1016/j.apsusc.2016.02.019. DOI
Highly Compressible Anisotropic Graphene Aerogels Fabricated by Directional Freezing for Efficient Absorption of Organic Liquids—ScienceDirect. [(accessed on 13 June 2023)]. Available online: https://www.sciencedirect.com/science/article/pii/S0008622316300380.
Hong J.-Y., Sohn E.-H., Park S., Park H.S. Highly-Efficient and Recyclable Oil Absorbing Performance of Functionalized Graphene Aerogel. Chem. Eng. J. 2015;269:229–235. doi: 10.1016/j.cej.2015.01.066. DOI
Suchithra P.S., Vazhayal L., Peer Mohamed A., Ananthakumar S. Mesoporous Organic–Inorganic Hybrid Aerogels through Ultrasonic Assisted Sol–Gel Intercalation of Silica–PEG in Bentonite for Effective Removal of Dyes, Volatile Organic Pollutants and Petroleum Products from Aqueous Solution. Chem. Eng. J. 2012;200–202:589–600. doi: 10.1016/j.cej.2012.06.083. DOI
Anirudhan T.S., Sreekumari S.S. Adsorptive Removal of Heavy Metal Ions from Industrial Effluents Using Activated Carbon Derived from Waste Coconut Buttons. J. Environ. Sci. 2011;23:1989–1998. doi: 10.1016/S1001-0742(10)60515-3. PubMed DOI
Chen W., Yu H., Lee S.-Y., Wei T., Li J., Fan Z. Nanocellulose: A Promising Nanomaterial for Advanced Electrochemical Energy Storage. Chem. Soc. Rev. 2018;47:2837–2872. doi: 10.1039/C7CS00790F. PubMed DOI
Liu H., Xu T., Liu K., Zhang M., Liu W., Li H., Du H., Si C. Lignin-Based Electrodes for Energy Storage Application. Ind. Crops Prod. 2021;165:113425. doi: 10.1016/j.indcrop.2021.113425. DOI
Recent Progress in Carbon-Based Materials for Supercapacitor Electrodes: A Review|SpringerLink. [(accessed on 13 June 2023)]. Available online: https://link.springer.com/article/10.1007/s10853-020-05157-6. DOI
Wang F., Cheong J.Y., He Q., Duan G., He S., Zhang L., Zhao Y., Kim I.-D., Jiang S. Phosphorus-Doped Thick Carbon Electrode for High-Energy Density and Long-Life Supercapacitors. Chem. Eng. J. 2021;414:128767. doi: 10.1016/j.cej.2021.128767. DOI
Cao L., Li H., Xu Z., Zhang H., Ding L., Wang S., Zhang G., Hou H., Xu W., Yang F., et al. Comparison of the Heteroatoms-Doped Biomass-Derived Carbon Prepared by One-Step Nitrogen-Containing Activator for High Performance Supercapacitor. Diam. Relat. Mater. 2021;114:108316. doi: 10.1016/j.diamond.2021.108316. DOI
Cao L., Li H., Xu Z., Gao R., Wang S., Zhang G., Jiang S., Xu W., Hou H. Camellia Pollen-Derived Carbon with Controllable N Content for High-Performance Supercapacitors by Ammonium Chloride Activation and Dual N-Doping. ChemNanoMat. 2021;7:34–43. doi: 10.1002/cnma.202000531. DOI
Wang F., Chen L., Li H., Duan G., He S., Zhang L., Zhang G., Zhou Z., Jiang S. N-Doped Honeycomb-like Porous Carbon towards High-Performance Supercapacitor. Chin. Chem. Lett. 2020;31:1986–1990. doi: 10.1016/j.cclet.2020.02.020. DOI
Liu H., Du H., Zheng T., Liu K., Ji X., Xu T., Zhang X., Si C. Cellulose Based Composite Foams and Aerogels for Advanced Energy Storage Devices. Chem. Eng. J. 2021;426:130817. doi: 10.1016/j.cej.2021.130817. DOI
Zaman A., Huang F., Jiang M., Wei W., Zhou Z. Preparation, Properties, and Applications of Natural Cellulosic Aerogels: A Review. Energy Built Environ. 2020;1:60–76. doi: 10.1016/j.enbenv.2019.09.002. DOI
Dutta S., Kim J., Ide Y., Kim J.H., Hossain M.S.A., Bando Y., Yamauchi Y., Wu K.C.-W. 3D Network of Cellulose-Based Energy Storage Devices and Related Emerging Applications. Mater. Horiz. 2017;4:522–545. doi: 10.1039/C6MH00500D. DOI
Ganesan K., Budtova T., Ratke L., Gurikov P., Baudron V., Preibisch I., Niemeyer P., Smirnova I., Milow B. Review on the Production of Polysaccharide Aerogel Particles. Materials. 2018;11:2144. doi: 10.3390/ma11112144. PubMed DOI PMC
Mavelil-Sam R., Pothan L.A., Thomas S. Biobased Aerogels: Polysaccharide and Protein-Based Materials. The Royal Society of Chemistry; London, UK: 2018. Polysaccharide and Protein Based Aerogels: An Introductory Outlook; pp. 1–8. RSC Green Chemistry. DOI
García-González C.A., Carenza E., Zeng M., Smirnova I., Roig A. Design of Biocompatible Magnetic Pectin Aerogel Monoliths and Microspheres. RSC Adv. 2012;2:9816–9823. doi: 10.1039/c2ra21500d. DOI
Ulker Z., Erkey C. A Novel Hybrid Material: An Inorganic Silica Aerogel Core Encapsulated with a Tunable Organic Alginate Aerogel Layer. RSC Adv. 2014;4:62362–62366. doi: 10.1039/C4RA09089F. DOI
Lovskaya D.D., Lebedev A.E., Menshutina N.V. Aerogels as Drug Delivery Systems: In Vitro and in Vivo Evaluations. J. Supercrit. Fluids. 2015;106:115–121. doi: 10.1016/j.supflu.2015.07.011. DOI
Martins M., Barros A.A., Quraishi S., Gurikov P., Raman S.P., Smirnova I., Duarte A.R.C., Reis R.L. Preparation of Macroporous Alginate-Based Aerogels for Biomedical Applications. J. Supercrit. Fluids. 2015;106:152–159. doi: 10.1016/j.supflu.2015.05.010. DOI
Kuttor A., Szalóki M., Rente T., Kerényi F., Bakó J., Fábián I., Lázár I., Jenei A., Hegedüs C. Preparation and Application of Highly Porous Aerogel-Based Bioactive Materials in Dentistry. Front. Mater. Sci. 2014;8:46–52. doi: 10.1007/s11706-014-0231-2. DOI
Druel L., Bardl R., Vorwerg W., Budtova T. Starch Aerogels: A Member of the Family of Thermal Superinsulating Materials. Biomacromolecules. 2017;18:4232–4239. doi: 10.1021/acs.biomac.7b01272. PubMed DOI
Yan N., Zhou Y., Zheng Y., Qiao S., Yu Q., Li Z., Lu H. Antibacterial Properties and Cytocompatibility of Bio-Based Nanostructured Carbon Aerogels Derived from Silver Nanoparticles Deposited onto Bacterial Cellulose. RSC Adv. 2015;5:97467–97476. doi: 10.1039/C5RA15485E. DOI
Takeshita S., Yoda S. Chitosan Aerogels: Transparent, Flexible Thermal Insulators. Chem. Mater. 2015;27:7569–7572. doi: 10.1021/acs.chemmater.5b03610. DOI
Wan C., Jiao Y., Sun Q., Li J. Preparation, Characterization, and Antibacterial Properties of Silver Nanoparticles Embedded into Cellulose Aerogels. Polym. Compos. 2016;37:1137–1142. doi: 10.1002/pc.23276. DOI
Thomas S., Pothan L.A., Mavelil-Sam R. Biobased Aerogels: Polysaccharide and Protein-Based Materials. The Royal Society of Chemistry; London, UK: 2018.
Rudaz C., Courson R., Bonnet L., Calas-Etienne S., Sallée H., Budtova T. Aeropectin: Fully Biomass-Based Mechanically Strong and Thermal Superinsulating Aerogel. Biomacromolecules. 2014;15:2188–2195. doi: 10.1021/bm500345u. PubMed DOI
Vilela C., Pinto R.J.B., Pinto S., Marques P.A.A.P., Silvestre A.J.D., Freire C.S.R. Polysaccharide Based Hybrid Materials. Springer; Cham, Switzerland: 2018. Polysaccharides-Based Hybrids with Carbon Nanotubes; pp. 95–114.
Maleki H., Durães L., García-González C.A., del Gaudio P., Portugal A., Mahmoudi M. Synthesis and Biomedical Applications of Aerogels: Possibilities and Challenges. Adv. Colloid Interface Sci. 2016;236:1–27. doi: 10.1016/j.cis.2016.05.011. PubMed DOI
Concha M., Vidal A., Giacaman A., Ojeda J., Pavicic F., Oyarzun-Ampuero F.A., Torres C., Cabrera M., Moreno-Villoslada I., Orellana S.L. Aerogels Made of Chitosan and Chondroitin Sulfate at High Degree of Neutralization: Biological Properties toward Wound Healing. J. Biomed. Mater. Res.-Part B Appl. Biomater. 2018;106:2464–2471. doi: 10.1002/jbm.b.34038. PubMed DOI
Xin G., Yao T., Sun H., Scott S.M., Shao D., Wang G., Lian J. Highly Thermally Conductive and Mechanically Strong Graphene Fibers. Science. 2015;349:1083–1087. doi: 10.1126/science.aaa6502. PubMed DOI
Zeng W., Shu L., Li Q., Chen S., Wang F., Tao X.-M. Fiber-Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications. Adv. Mater. 2014;26:5310–5336. doi: 10.1002/adma.201400633. PubMed DOI
Li G., Hong G., Dong D., Song W., Zhang X. Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers. Adv. Mater. 2018;30:1801754. doi: 10.1002/adma.201801754. PubMed DOI
Xiong J., Chen J., Lee P.S. Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Adv. Mater. 2021;33:2002640. doi: 10.1002/adma.202002640. PubMed DOI PMC
Wang H., Zhang Y., Liang X., Zhang Y. Smart Fibers and Textiles for Personal Health Management. ACS Nano. 2021;15:12497–12508. doi: 10.1021/acsnano.1c06230. PubMed DOI
Chen B., Wu M., Fang S., Cao Y., Pei L., Zhong H., Sun C., Lin X., Li X., Shen J., et al. Liquid Metal-Tailored PEDOT:PSS for Noncontact Flexible Electronics with High Spatial Resolution. ACS Nano. 2022;16:19305–19318. doi: 10.1021/acsnano.2c08760. PubMed DOI
Li W., Zhang Y., Yu Z., Zhu T., Kang J., Liu K., Li Z., Tan S.C. In Situ Growth of a Stable Metal-Organic Framework (MOF) on Flexible Fabric via a Layer-by-Layer Strategy for Versatile Applications. ACS Nano. 2022;16:14779–14791. doi: 10.1021/acsnano.2c05624. PubMed DOI
Zhu X., Jiang G., Wang G., Zhu Y., Cheng W., Zeng S., Zhou J., Xu G., Zhao D. Cellulose-Based Functional Gels and Applications in Flexible Supercapacitors. Resour. Chem. Mater. 2023;2:177–188. doi: 10.1016/j.recm.2023.03.004. DOI
Bai Y., Zhao W., Bi S., Liu S., Huang W., Zhao Q. Preparation and Application of Cellulose Gel in Flexible Supercapacitors. J. Energy Storage. 2021;42:103058. doi: 10.1016/j.est.2021.103058. DOI
Choi H.W., Shin D.-W., Yang J., Lee S., Figueiredo C., Sinopoli S., Ullrich K., Jovančić P., Marrani A., Momentè R., et al. Smart Textile Lighting/Display System with Multifunctional Fibre Devices for Large Scale Smart Home and IoT Applications. Nat. Commun. 2022;13:814. doi: 10.1038/s41467-022-28459-6. PubMed DOI PMC
Shi J., Liu S., Zhang L., Yang B., Shu L., Yang Y., Ren M., Wang Y., Chen J., Chen W., et al. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. Adv. Mater. 2020;32:1901958. doi: 10.1002/adma.201901958. PubMed DOI
Liu X., Miao J., Fan Q., Zhang W., Zuo X., Tian M., Zhu S., Zhang X., Qu L. Smart Textile Based on 3D Stretchable Silver Nanowires/MXene Conductive Networks for Personal Healthcare and Thermal Management. ACS Appl. Mater. Interfaces. 2021;13:56607–56619. doi: 10.1021/acsami.1c18828. PubMed DOI
Li M., Li Z., Ye X., He W., Qu L., Tian M. A Smart Self-Powered Rope for Water/Fire Rescue. Adv. Funct. Mater. 2023;33:2210111. doi: 10.1002/adfm.202210111. DOI
Li M., Li Z., Ye X., Zhang X., Qu L., Tian M. Tendril-Inspired 900% Ultrastretching Fiber-Based Zn-Ion Batteries for Wearable Energy Textiles. ACS Appl. Mater. Interfaces. 2021;13:17110–17117. doi: 10.1021/acsami.1c02329. PubMed DOI
Chen Y., Li Y., Zhang C., Qi H., Hubbe M.A. Holocellulosic Fibers and Nanofibrils Using Peracetic Acid Pulping and Sulfamic Acid Esterification. Carbohydr. Polym. 2022;295:119902. doi: 10.1016/j.carbpol.2022.119902. PubMed DOI
Zhang C., Wang M., Lin X., Tao S., Wang X., Chen Y., Liu H., Wang Y., Qi H. Holocellulose Nanofibrils Assisted Exfoliation of Boron Nitride Nanosheets for Thermal Management Nanocomposite Films. Carbohydr. Polym. 2022;291:119578. doi: 10.1016/j.carbpol.2022.119578. PubMed DOI
Yamada S. A Transient Supercapacitor with a Water-Dissolvable Ionic Gel for Sustainable Electronics. ACS Appl. Mater. Interfaces. 2022;14:26595–26603. doi: 10.1021/acsami.2c00915. PubMed DOI