Radiative Heat Transfer Properties of Fiber-Aerogel Composites for Thermal Insulation

. 2025 Jul 11 ; 11 (7) : . [epub] 20250711

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40710700

Grantová podpora
21-32510 M The work was supported by the project 'Advanced structures for thermal insulation in extreme conditions' (Reg. No. 21-32510 M) granted by the Czech Science Foundation (GACR).

Fiber-aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times lower than that of still air (0.026 W/m·K). Their brittle skeleton and high infrared transparency, however, restrict how well they insulate, particularly at high temperatures (>300 °C). Incorporating microscale fibers into the aerogel matrix enhances mechanical strength and reduces radiative heat transfer by increasing scattering and absorption. For instance, it has been demonstrated that adding glass fibers reduces radiative heat transmission by around 40% because of increased infrared scattering. This review explores the fundamental mechanisms governing radiative heat transfer in fiber-aerogel composites, emphasizing absorption, scattering, and extinction coefficients. We discuss recent advancements in fiber-reinforced aerogels, focusing on material selection, structural modifications, and predictive heat transfer models. Recent studies indicate that incorporating fiber volume fractions as low as 10% can reduce the thermal conductivity of composites by up to 30%, without compromising their mechanical integrity. Key analytical and experimental methods for determining radiative properties, including Fourier transform infrared (FTIR) spectroscopy and numerical modeling approaches, are examined. The emissivity and transmittance of fiber-aerogel composites have been successfully measured using FTIR spectroscopy; tests show that fiber reinforcement at high temperatures reduces emissivity by about 15%. We conclude by outlining the present issues and potential avenues for future research to optimize fiber-aerogel composites for high-temperature applications, including energy-efficient buildings (where long-term thermal stability is necessary), electronics thermal management systems, and aerospace (where temperatures may surpass 1000 °C), with a focus on improving the materials' affordability and scalability for industrial applications.

Zobrazit více v PubMed

Kistler S.S. Coherent Expanded Aerogels and Jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI

Hrubesh L.W., Pekala R.W. Thermal properties of organic and inorganic aerogels. J. Mater. Res. 1994;9:731–738. doi: 10.1557/JMR.1994.0731. DOI

Lei J., Zheng S., Han Z., Niu Y., Pan D., Liu H., Liu C., Shen C. A Brief Review on the Preparation and Application of Silica Aerogel. Eng. Sci. 2024;30:1214. doi: 10.30919/es1214. DOI

Gurav J.L., Jung I.-K., Park H.-H., Kang E.S., Nadargi D.Y. Silica Aerogel: Synthesis and Applications. J. Nanomater. 2010;2010:409310. doi: 10.1155/2010/409310. DOI

Parale V.G., Kim T., Choi H., Phadtare V.D., Dhavale R.P., Kanamori K., Park H.-H. Mechanically Strengthened Aerogels Through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. Adv. Mater. 2024;36:2307772. doi: 10.1002/adma.202307772. PubMed DOI

Zhao J.-J., Duan Y.-Y., Wang X.-D., Wang B.-X. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. Int. J. Heat Mass Transf. 2012;55:5196–5204. doi: 10.1016/j.ijheatmasstransfer.2012.05.022. DOI

Shklover V., Braginsky L., Mishrikey M., Hafner C. Radiative heat transport in porous materials. MRS Online Proc. Libr. 2009;1162:303. doi: 10.1557/PROC-1162-J03-03. DOI

Militký J., Křemenáková D., Venkataraman M., Večerník J., Martínková L., Marek J. Sandwich Structures Reflecting Thermal Radiation Produced by the Human Body. Polymers. 2021;13:3309. doi: 10.3390/polym13193309. PubMed DOI PMC

Venkataraman M., Mishra R., Militky J., Kremenakova D., Michal P. Aerogel Based High Performance Thermal Insulation Materials. IOP Conf. Ser. Mater. Sci. Eng. 2019;553:012043. doi: 10.1088/1757-899X/553/1/012043. DOI

Venkataraman M., Mishra R., Wiener J., Militky J., Kotresh T., Vaclavik M. Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures. J. Text. Inst. 2015;106:736–747. doi: 10.1080/00405000.2014.939808. DOI

Tafreshi O.A., Mosanenzadeh S.G., Karamikamkar S., Saadatnia Z., Park C.B., Naguib H.E. A review on multifunctional aerogel fibers: Processing, fabrication, functionalization, and applications. Mater. Today Chem. 2022;23:100736. doi: 10.1016/j.mtchem.2021.100736. DOI

Ebert H.-P. Thermal Properties of Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 537–564. DOI

Militky J., Bajzík V. Surface roughness of heat protective clothing textiles. Int. J. Cloth. Sci. Technol. 2003;15:258–267. doi: 10.1108/09556220310478369. DOI

Sozcu S., Frajova J., Wiener J., Venkataraman M., Tomkova B., Militky J. Synthesis of Acetobacter xylinum Bacterial Cellulose Aerogels and Their Effect on the Selected Properties. Gels. 2025;11:272. doi: 10.3390/gels11040272. PubMed DOI PMC

He Y.-L., Xie T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 2015;81:28–50. doi: 10.1016/j.applthermaleng.2015.02.013. DOI

Villasmil W., Fischer L.J., Worlitschek J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 2019;103:71–84. doi: 10.1016/j.rser.2018.12.040. DOI

Xue J., Han R., Li Y., Zhang J., Liu J., Yang Y. Advances in multiple reinforcement strategies and applications for silica aerogel. J. Mater. Sci. 2023;58:14255–14283. doi: 10.1007/s10853-023-08945-y. DOI

Wang L., Lian W., Yin B., Liu X., Tang S. Silica nanowires-reinforced silica aerogels with outstanding thermal insulation, thermal stability and mechanical properties. Ceram. Int. 2024;50:6693–6702. doi: 10.1016/j.ceramint.2023.12.008. DOI

Zhan W., Chen L., Kong Q., Li L., Chen M., Jiang J., Li W., Shi F., Xu Z. The Synthesis and Polymer-Reinforced Mechanical Properties of SiO2 Aerogels: A Review. Molecules. 2023;28:5534. doi: 10.3390/molecules28145534. PubMed DOI PMC

Deng Z., Wang J., Wu A., Shen J., Zhou B. High strength SiO2 aerogel insulation. J. Non-Cryst. Solids. 1998;225:101–104. doi: 10.1016/S0022-3093(98)00106-9. DOI

Merillas B., Almeida C.M.R., Álvarez-Arenas T.E.G., Rodríguez-Pérez M.Á., Durães L. Enhanced thermal insulation performance of silica aerogel composites through infrared opacifier integration for high-temperature applications. Compos. Part C Open Access. 2025;16:100573. doi: 10.1016/j.jcomc.2025.100573. DOI

Yu H., Tong Z., Zhang B., Chen Z., Li X., Su D., Ji H. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chem. Eng. J. 2021;418:129342. doi: 10.1016/j.cej.2021.129342. DOI

Liu F., He C., Jiang Y., Feng J., Li L., Tang G., Feng J. Ultralight Ceramic Fiber Aerogel for High-Temperature Thermal Superinsulation. Nanomaterials. 2023;13:1305. doi: 10.3390/nano13081305. PubMed DOI PMC

Fedyukhin A.V., Strogonov K.V., Soloveva O.V., Solovev S.A., Akhmetova I.G., Berardi U., Zaitsev M.D., Grigorev D.V. Aerogel Product Applications for High-Temperature Thermal Insulation. Energies. 2022;15:7792. doi: 10.3390/en15207792. DOI

Sozcu S., Venkataraman M., Wiener J., Tomkova B., Militky J., Mahmood A. Incorporation of Cellulose-Based Aerogels into the Textile Structure. Materials. 2024;17:27. doi: 10.3390/ma17010027. PubMed DOI PMC

Lee O.-J., Lee K.-H., Yim T.J., Kim S.Y., Yoo K.-P. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids. 2002;298:287–292. doi: 10.1016/S0022-3093(01)01041-9. DOI

Wang J., Kuhn J., Lu X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J. Non-Cryst. Solids. 1995;186:296–300. doi: 10.1016/0022-3093(95)00068-2. DOI

Daryabeigi K. Heat Transfer in High-Temperature Fibrous Insulation. J. Thermophys. Heat Transf. 2003;17:10–20. doi: 10.2514/2.6746. DOI

Wei G., Liu Y., Zhang X., Yu F., Du X. Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transf. 2011;54:2355–2366. doi: 10.1016/j.ijheatmasstransfer.2011.02.026. DOI

Lu G., Wang X.-D., Duan Y.-Y., Li X.-W. Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials. J. Non-Cryst. Solids. 2011;357:3822–3829. doi: 10.1016/j.jnoncrysol.2011.07.022. DOI

Zeng S.O., Hunt A., Greif R. Geometric structure and thermal conductivity of porous medium silica aerogel. J. Heat Transf. 1995;117:1055–1058. doi: 10.1115/1.2836281. DOI

Wei G., Liu Y., Zhang X., Du X. Radiative heat transfer study on silica aerogel and its composite insulation materials. J. Non-Cryst. Solids. 2013;362:231–236. doi: 10.1016/j.jnoncrysol.2012.11.041. DOI

Fu Z., Corker J., Papathanasiou T., Wang Y., Zhou Y., Madyan O.A., Liao F., Fan M. Critical review on the thermal conductivity modelling of silica aerogel composites. J. Build. Eng. 2022;57:104814. doi: 10.1016/j.jobe.2022.104814. DOI

Zhang H., Qiao Y., Zhang X., Fang S. Structural and thermal study of highly porous nanocomposite SiO2-based aerogels. J. Non-Cryst. Solids. 2010;356:879–883. doi: 10.1016/j.jnoncrysol.2010.01.003. DOI

Karadagli I., Schulz B., Schestakow M., Milow B., Gries T., Ratke L. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids. 2015;106:105–114. doi: 10.1016/j.supflu.2015.06.011. DOI

Xiao L., Grogan M.D., Leon-Saval S.G., Williams R., England R., Wadsworth W.J., Birks T.A. Tapered fibers embedded in silica aerogel. Opt. Lett. 2009;34:2724–2726. doi: 10.1364/OL.34.002724. PubMed DOI

Sheng Z., Liu Z., Hou Y., Jiang H., Li Y., Li G., Zhang X. The Rising Aerogel Fibers: Status, Challenges, and Opportunities. Adv. Sci. 2023;10:2205762. doi: 10.1002/advs.202205762. PubMed DOI PMC

Carvajal S.A., Daryabeigi K., Ramírez J.H. Predictive radiation heat transfer modeling in fibrous insulation at high temperature. Int. J. Therm. Sci. 2024;198:108897. doi: 10.1016/j.ijthermalsci.2024.108897. DOI

Carvajal S.A., Paulien L., Elniski A., Daryabeigi K., Berg M.J. Analytical models of radiative transfer in fibrous insulation under collimated irradiation. Int. J. Heat Mass Transf. 2025;244:126961. doi: 10.1016/j.ijheatmasstransfer.2025.126961. DOI

Padmanabhan S.K., Haq E.U., Licciulli A. Synthesis of silica cryogel-glass fiber blanket by vacuum drying. Ceram. Int. 2016;42:7216–7222. doi: 10.1016/j.ceramint.2016.01.113. DOI

Xue J., Han R., Ge Y., Liu L., Yang Y. Preparation, mechanical, acoustic and thermal properties of silica composite aerogel using wet-laid glass fiber felt as scaffold. Compos. Part A Appl. Sci. Manuf. 2024;179:108058. doi: 10.1016/j.compositesa.2024.108058. DOI

He S., Li H., Zhang Y., Huang Y., Pan Y. High accuracy heat transfer model for aerogel/fiber composite mats. Int. Commun. Heat Mass Transf. 2025;162:108584. doi: 10.1016/j.icheatmasstransfer.2025.108584. DOI

Bi C., Tang G.H., Hu Z.J., Yang H.L., Li J.N. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int. J. Heat Mass Transf. 2014;79:126–136. doi: 10.1016/j.ijheatmasstransfer.2014.07.098. DOI

Zhao J.-J., Duan Y.-Y., Wang X.-D., Wang B.-X. Effects of solid–gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J. Nanopart. Res. 2012;14:1024. doi: 10.1007/s11051-012-1024-0. DOI

Xie T., He Y.-L. Heat transfer characteristics of silica aerogel composite materials: Structure reconstruction and numerical modeling. Int. J. Heat Mass Transf. 2016;95:621–635. doi: 10.1016/j.ijheatmasstransfer.2015.12.025. DOI

Xu H.-B., Zhu C.-Y., Tian L., Li Z.-Y. Applicable scope of the Rosseland model in predicting the radiative thermal conductivity of silica aerogel. Int. J. Therm. Sci. 2025;215:109953. doi: 10.1016/j.ijthermalsci.2025.109953. DOI

Zhang H., Wang X., Li Y. Measuring radiative properties of silica aerogel composite from FTIR transmittance test using KBr as diluents. Exp. Therm. Fluid Sci. 2018;91:144–154. doi: 10.1016/j.expthermflusci.2017.10.010. DOI

Wei G., Liu Y., Zhang X., Du X. Thermal Radiation in Silica Aerogel and its Composite Insulation Materials; Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 10: Heat and Mass Transport Processes, Parts A and B; Denver, CO, USA. 11–17 November 2011; pp. 1223–1231. DOI

Huang R., Jiang Y., Feng J., Li L., Hu Y., Wang X., Feng J. Robust and exceptional thermal insulating alumina-silica aerogel composites reinforced by ultra IR-opacified ZrO2 nanofibers. Chem. Eng. J. 2024;498:155283. doi: 10.1016/j.cej.2024.155283. DOI

Yang Z., Su G., Sun F. Theoretical Modeling of the Radiative Properties and Effective Thermal Conductivity of the Opacified Silica Aerogel. CMC. 2013;36:271–292. doi: 10.3970/cmc.2013.036.271. DOI

Pang H.-Q., Fan T.-H., Zhu C.-Y., Liu T.-Y., Gao Y.-F. Representation of the Characteristic Temperature of Correlative Thermal Conductivity of Opacifier-Fiber Doped Silica Aerogel by Steady-State Method at Large Temperature Differences. Int. J. Thermophys. 2022;43:150. doi: 10.1007/s10765-022-03068-z. DOI

He S., Zhang X., Wu X., Li P., Xu L. Theoretical study of heat transfer model of silica aerogel based on the porous structure of secondary particles. Appl. Therm. Eng. 2024;238:121935. doi: 10.1016/j.applthermaleng.2023.121935. DOI

Xiong X., Venkataraman M., Jašíková D., Yang T., Mishra R., Militký J., Petrů M. An experimental evaluation of convective heat transfer in multi-layered fibrous materials composed by different middle layer structures. J. Ind. Text. 2021;51:362–379. doi: 10.1177/1528083719878845. DOI

Krzemińska S., Cieślak M., Kamińska I., Nejman A. Application of Silica Aerogel in Composites Protecting Against Thermal Radiation. Autex Res. J. 2020;20:274–287. doi: 10.2478/aut-2020-0008. DOI

Goryunova K.I., Gahramanli Y.N. Insulating materials based on silica aerogel composites: Synthesis, properties and application. RSC Adv. 2024;14:34690–34707. doi: 10.1039/D4RA04976D. PubMed DOI PMC

Xiaoman X., Venkataraman M., Jašíková D., Yang T., Rajesh M., Militky J., Petru M. Thermal Behavior of Aerogel-Embedded Nonwovens in Cross Airflow. Autex Res. J. 2021;21:115–124. doi: 10.2478/aut-2019-0082. DOI

Burgos M.I., Velasco M.I., Acosta R.H., Perillo M.A. Environmental Topology and Water Availability Modulates the Catalytic Activity of β-Galactosidase Entrapped in a Nanosporous Silicate Matrix. Sci. Rep. 2016;6:36593. doi: 10.1038/srep36593. PubMed DOI PMC

Venkataraman M., Militký J., Mishra R., Jandová S. Unconventional measurement methods and simulation of aerogel assisted thermoregulation. J. Mech. Eng. (JMechE) 2018;5:62–96.

Zhang H., Li Y., Tao W. Effect of radiative heat transfer on determining thermal conductivity of semi-transparent materials using transient plane source method. Appl. Therm. Eng. 2017;114:337–345. doi: 10.1016/j.applthermaleng.2016.11.208. DOI

Al-Homoud M.S. Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 2005;40:353–366. doi: 10.1016/j.buildenv.2004.05.013. DOI

Smith D.S., Alzina A., Bourret J., Nait-Ali B., Pennec F., Tessier-Doyen N., Otsu K., Matsubara H., Elser P., Gonzenbach U.T. Thermal conductivity of porous materials. J. Mater. Res. 2013;28:2260–2272. doi: 10.1557/jmr.2013.179. DOI

Howell J.R., Menguc M.P., Siegel R. Thermal Radiation Heat Transfer. 6th ed. CRC Press; Boca Raton, FL, USA: 2015. DOI

Lee S.W., Lim C.H., Salleh E.@.I.B. Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation. Renew. Sustain. Energy Rev. 2016;65:643–661. doi: 10.1016/j.rser.2016.07.002. DOI

Malakooti S., Vivod S.L., Pereira M., Ruggeri C.R., Revilock D.M., Scheiman D.A., Guo H., Salem J.A., Benafan O., Johnston J.C., et al. Fabric reinforced polyimide aerogel matrix composites with low thermal conductivity, high flexural strength, and high sound absorption coefficient. Compos. Part B Eng. 2023;260:110751. doi: 10.1016/j.compositesb.2023.110751. DOI

Zhan C., Lu Q., Jiang H., Lu H., Liu Y. Facile preparation of lightweight high-elastic celluous/SiO2 composite aerogel with outstanding thermal insulation performance. J. Porous Mater. 2025:1–13. doi: 10.1007/s10934-025-01755-4. DOI

Cai H., Jiang Y., Feng J., Zhang S., Peng F., Xiao Y., Li L., Feng J. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Mater. Des. 2020;191:108640. doi: 10.1016/j.matdes.2020.108640. DOI

Lee S.C. Effect of fiber orientation on thermal radiation in fibrous media. Int. J. Heat Mass Transf. 1989;32:311–319. doi: 10.1016/0017-9310(89)90178-6. DOI

Venkataraman M., Mishra R., Kotresh T.M., Sakoi T., Militky J. Effect of compressibility on heat transport phenomena in aerogel-treated nonwoven fabrics. J. Text. Inst. 2016;107:1150–1158. doi: 10.1080/00405000.2015.1097084. DOI

Ma Y., Tang G.H., Hu Y. Modelling of hollow-fiber doping in silica aerogel composites for radiative and conductive insulation under high temperatures. Appl. Therm. Eng. 2024;254:123917. doi: 10.1016/j.applthermaleng.2024.123917. DOI

Dai Y., He Y., Yu D., Dai J., Wang Y., Bai F. Study on the effect of semi-transparency on thermal insulation performance of silica aerogel composites. Case Stud. Therm. Eng. 2024;54:104010. doi: 10.1016/j.csite.2024.104010. DOI

Feng T., Nie Z., Guo X., Yang X., Su K., Qi S., Cheng B. Aramid nanofibrous aerogels and their phase-change composites for highly efficient thermal management. Compos. Commun. 2025;54:102271. doi: 10.1016/j.coco.2025.102271. DOI

Venkataraman M., Mishra R., Subramaniam V., Gnanamani A., Kotresh T.M., Militky J. Dynamic heat flux measurement for advanced insulation materials. Fibers Polym. 2016;17:925–931. doi: 10.1007/s12221-016-5882-4. DOI

5.3.4. Rosseland Radiation Model Theory. [(accessed on 21 May 2025)]. Available online: https://ansyshelp.ansys.com/public//Views/Secured/corp/v242/en/flu_th/flu_th_sec_mod_ross.html?utm_source=chatgpt.com.

Dombrovsky L.A. Diffusion Approximation in Multidimensional Radiative Transfer Problems. Thermopedia, Begel House Inc.; Danbury, CT, USA: 2011. DOI

Zhao S., Dong J., Monte C., Sun X., Zhang W. New phase function development and complete spectral radiative properties measurements of aerogel infused fibrous blanket based on simulated annealing algorithm. Int. J. Therm. Sci. 2020;154:106407. doi: 10.1016/j.ijthermalsci.2020.106407. DOI

Retailleau F., Allheily V., Merlat L., Henry J.-F., Randrianalisoa J.H. Experimental characterization of radiative transfer in semi-transparent composite materials with rough boundaries. J. Quant. Spectrosc. Radiat. Transf. 2020;256:107300. doi: 10.1016/j.jqsrt.2020.107300. DOI

Huang B., Li J., Gong L., Dai P., Zhu C. The Influence of Reinforced Fibers and Opacifiers on the Effective Thermal Conductivity of Silica Aerogels. Gels. 2024;10:300. doi: 10.3390/gels10050300. PubMed DOI PMC

Daoût C., Rozenbaum O., De Sousa Meneses D., Rochais D. Identification of the spectral complex refractive indices of micrometric phases within a semi-transparent medium up to elevated temperatures. Int. J. Heat Mass Transf. 2024;223:125272. doi: 10.1016/j.ijheatmasstransfer.2024.125272. DOI

Markevicius G., Ladj R., Niemeyer P., Budtova T., Rigacci A. Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers. J. Mater. Sci. 2017;52:2210–2221. doi: 10.1007/s10853-016-0514-3. DOI

Fan W., Zhang X., Zhang Y., Zhang Y., Liu T. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 2019;173:47–52. doi: 10.1016/j.compscitech.2019.01.025. DOI

Hou X., Mao Y., Zhang R., Fang D. Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection. Chem. Eng. J. 2021;417:129341. doi: 10.1016/j.cej.2021.129341. DOI

Wang C., Bai L., Xu H., Qin S., Li Y., Zhang G. A Review of High-Temperature Aerogels: Composition, Mechanisms, and Properties. Gels. 2024;10:286. doi: 10.3390/gels10050286. PubMed DOI PMC

Krasnovskih M.P., Maksimovich N.G., Vaisman Y.I., Ketov A.A. Thermal stability of mineral-wool heat-insulating materials. Russ. J. Appl. Chem. 2014;87:1430–1434. doi: 10.1134/S1070427214100061. DOI

Zhou T., Cheng X., Pan Y., Li C., Gong L., Zhang H. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl. Surf. Sci. 2018;437:321–328. doi: 10.1016/j.apsusc.2017.12.146. DOI

Xia C., Hao M., Liu W., Zhang X., Miao Y., Ma C., Gao F. Synthesis of Al2O3-SiO2 aerogel from water glass with high thermal stability and low thermal conductivity. J. Sol-Gel Sci. Technol. 2023;106:561–571. doi: 10.1007/s10971-023-06085-y. DOI

Wang J., Zhang C., Deng Y., Zhang P. A Review of Research on the Effect of Temperature on the Properties of Polyurethane Foams. Polymers. 2022;14:4586. doi: 10.3390/polym14214586. PubMed DOI PMC

Lorenzati A., Fantucci S., Capozzoli A., Perino M. The Effect of Temperature on Thermal Performance of Fumed Silica Based Vacuum Insulation Panels for Buildings. Energy Procedia. 2017;111:490–499. doi: 10.1016/j.egypro.2017.03.211. DOI

Kaushik D., Singh H., Tassou S.A. Vacuum insulation panels for high-temperature applications—Design principles, challenges and pathways. Therm. Sci. Eng. Prog. 2024;48:102415. doi: 10.1016/j.tsep.2024.102415. DOI

Salosina M.O., Alifanov O.M., Nenarokomov A.V. Designing Thermal Shield with Choice of Structure Parameters of Composite Based on Carbon Aerogel. J. Engin. Thermophys. 2024;33:722–733. doi: 10.1134/S1810232824040052. DOI

Zhao J.-J., Duan Y.-Y., Wang X.-D., Wang B.-X. An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels. J. Non-Cryst. Solids. 2012;358:1303–1312. doi: 10.1016/j.jnoncrysol.2012.02.037. DOI

Aerogel: From the Nanomaze to Global Thermal Management—How the Microporous Structure Reinvents the Laws of Heat Transfer. [(accessed on 27 May 2025)]. Available online: https://insulatewool.com/news/aerogel-from-the-nanomaze-to-global-thermal-management-how-the-microporous-structure-reinvents-the-laws-of-heat-transfer?utm_source=chatgpt.com.

Arambakam R., Tafreshi H.V., Pourdeyhimi B. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations. Int. J. Heat Mass Transf. 2013;64:1109–1117. doi: 10.1016/j.ijheatmasstransfer.2013.05.047. DOI

Venkataraman M., Mishra R., Militky J., Behera B.K. Modelling and simulation of heat transfer by convection in aerogel treated nonwovens. J. Text. Inst. 2017;108:1442–1453. doi: 10.1080/00405000.2016.1255124. DOI

Dent R.W., Skelton J., Donovan J.G. Insulation Materials, Testing and Applications. ASTM International; West Conshohocken, PA, USA: 1990. Radiant Heat Transfer in Extremely Low Density Fibrous Assemblies; pp. 79–105. DOI

Li X. Doctoral Thesis. University of Notre Dame; Notre Dame, IN, USA: 2007. Radiative Heat Transfer Through Fibrous Materials. DOI

Yang F., Xie W., Meng S. Effect of porous microstructure and fiber arrangement of thermal protection composites on effective thermal conductivity. Mech. Mater. 2024;198:105147. doi: 10.1016/j.mechmat.2024.105147. DOI

Song W.F., Yu W.D. Study on radiative heat transfer property of fiber assemblies using FTIR. J. Therm. Anal. Calorim. 2011;103:785–790. doi: 10.1007/s10973-010-1025-0. DOI

Yuan H., Zhang H., Huang K., Cheng Y., Wang K., Cheng S., Li W., Jiang J., Li J., Tu C., et al. Dual-Emitter Graphene Glass Fiber Fabric for Radiant Heating. ACS Nano. 2022;16:2577–2584. doi: 10.1021/acsnano.1c09269. PubMed DOI

Wang F., Cheng L., Zhang Q., Zhang L. Effects of heat treatment and coatings on the infrared emissivity properties of carbon fibers. J. Mater. Res. 2014;29:1162–1167. doi: 10.1557/jmr.2014.106. DOI

Yang L., He X., He F. ITO coated quartz fibers for heat radiative applications. Mater. Lett. 2008;62:4539–4541. doi: 10.1016/j.matlet.2008.08.033. DOI

Veiseh S., Hakkaki-Fard A. Numerical Modeling of Combined Radiation and Conduction Heat Transfer in Mineral Wool Insulations. Heat Transf. Eng. 2009;30:477–486. doi: 10.1080/01457630802529065. DOI

Kang D., Jia S., Zhao C., Ni Y., Qi J., Kang Z., Sui Y., Wei F., Xiao B., Meng Q. High-temperature resistance performance of silica aerogel composites through fiber reinforcement. Ceram. Int. 2024;50:26829–26838. doi: 10.1016/j.ceramint.2024.04.411. DOI

Saleh M.H., Dhaef A.H. Heat Transfer in Inclined Enclosure of Silica Aerogel/Glass Fiber Composite Material. Int. J. Comput. Appl. 2015;117:5–12.

Liu H., Liu J., Tian Y., Wu X., Li Z. Investigation of high temperature thermal insulation performance of fiber-reinforced silica aerogel composites. Int. J. Therm. Sci. 2023;183:107827. doi: 10.1016/j.ijthermalsci.2022.107827. DOI

Zhang H., Fang W.-Z., Wang X., Li Y.-M., Tao W.-Q. Thermal conductivity of fiber and opacifier loaded silica aerogel composite. Int. J. Heat Mass Transf. 2017;115:21–31. doi: 10.1016/j.ijheatmasstransfer.2017.08.006. DOI

Wu Q., Yang L., Chen Z., Yang M., Liu T., Li M., Mukhopadhyaya P. SiO2 aerogel multiscale reinforced by glass fibers and SiC nanowhiskers for thermal insulation. J. Porous Mater. 2023;30:1587–1596. doi: 10.1007/s10934-023-01432-4. DOI

Cherunova I., Kornev N., Jia G., Richter K., Plentz J. Development of Infrared Reflective Textiles and Simulation of Their Effect in Cold-Protection Garments. Appl. Sci. 2023;13:4043. doi: 10.3390/app13064043. DOI

Lee K.H., Arshad Z., Dahshan A., Alshareef M., Alsulami Q.A., Bibi A., Lee E.-J., Nawaz M., Zubair U., Javid A. Porous Aerogel Structures as Promising Materials for Photocatalysis, Thermal Insulation Textiles, and Technical Applications: A Review. Catalysts. 2023;13:1286. doi: 10.3390/catal13091286. DOI

Yang J., Wu H., He S., Wang M. Prediction of Thermal Conductivity of Fiber/Aerogel Composites for Optimal Thermal Insulation. JPM. 2015;18:971–984. doi: 10.1615/JPorMedia.2015013550. DOI

Gurav J.L., Rao A.V., Rao A.P., Nadargi D.Y., Bhagat S.D. Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure. J. Alloys Compd. 2009;476:397–402. doi: 10.1016/j.jallcom.2008.09.029. DOI

Li Z., Wang Y., Wu X., Liu Q., Li M., Shi L., Cheng X. Surface chemistry, skeleton structure and thermal safety of methylsilyl modified silica aerogels by heat treatment in an argon atmosphere. J. Non-Cryst. Solids. 2023;611:122335. doi: 10.1016/j.jnoncrysol.2023.122335. DOI

Li Z., Shen K., Hu M., Shulga Y.M., Chen Z., Liu Q., Li M., Wu X. Heat-Treated Aramid Pulp/Silica Aerogel Composites with Improved Thermal Stability and Thermal Insulation. Gels. 2023;9:749. doi: 10.3390/gels9090749. PubMed DOI PMC

Cuce E., Cuce P.M., Wood C.J., Riffat S.B. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014;34:273–299. doi: 10.1016/j.rser.2014.03.017. DOI

Sozcu S., Frajova J., Wiener J., Venkataraman M., Tomkova B., Militky J. Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel. Gels. 2024;10:474. doi: 10.3390/gels10070474. PubMed DOI PMC

Wang Z., Yang H., Li Y., Zheng X. Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles. ACS Appl. Mater. Interfaces. 2020;12:15726–15736. doi: 10.1021/acsami.0c01330. PubMed DOI

Sun X., Tang H., Yuan G. Anomalous diffraction approximation method for retrieval of spherical and spheroidal particle size distributions in total light scattering. J. Quant. Spectrosc. Radiat. Transf. 2008;109:89–106. doi: 10.1016/j.jqsrt.2007.07.017. DOI

Zhang B.-M., Zhao S.-Y., He X.-D. Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. J. Quant. Spectrosc. Radiat. Transf. 2008;109:1309–1324. doi: 10.1016/j.jqsrt.2007.10.008. DOI

Lind A.C., Greenberg J.M. Electromagnetic Scattering by Obliquely Oriented Cylinders. J. Appl. Phys. 1966;37:3195–3203. doi: 10.1063/1.1703184. DOI

Han M., Hao M., Li Z., Jian S., Ma C., Miao Y. Ultra-light, flame-retardant nano-TiO2 coated silica-zirconia ceramic fiber aerogel for thermal insulation. J. Porous Mater. 2025:1–13. doi: 10.1007/s10934-025-01777-y. DOI

Hoseini A., McCague C., Andisheh-Tadbir M., Bahrami M. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis. Int. J. Heat Mass Transf. 2016;93:1124–1131. doi: 10.1016/j.ijheatmasstransfer.2015.11.030. DOI

Ablaoui E.M., Malendowski M., Szymkuc W., Pozorski Z. Determination of Thermal Properties of Mineral Wool Required for the Safety Analysis of Sandwich Panels Subjected to Fire Loads. Materials. 2023;16:5852. doi: 10.3390/ma16175852. PubMed DOI PMC

Choudhary M.K., Eastes W. Effective thermal conductivity of fiberglass insulation. Int. J. Appl. Glass Sci. 2024;15:307–316. doi: 10.1111/ijag.16652. DOI

Zhang H., Fang W.-Z., Li Y.-M., Tao W.-Q. Experimental study of the thermal conductivity of polyurethane foams. Appl. Therm. Eng. 2017;115:528–538. doi: 10.1016/j.applthermaleng.2016.12.057. DOI

Li X., Peng C., Liu L. Experimental study of the thermal performance of a building wall with vacuum insulation panels and extruded polystyrene foams. Appl. Therm. Eng. 2020;180:115801. doi: 10.1016/j.applthermaleng.2020.115801. DOI

Meliță L., Croitoru C. Aerogel, a high performance material for thermal insulation—A brief overview of the building applications. E3S Web Conf. 2019;111:06069. doi: 10.1051/e3sconf/201911106069. DOI

Jelle B.P., Baetens R., Gustavsen A. The Sol-Gel Handbook. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2015. Aerogel Insulation for Building Applications; pp. 1385–1412. DOI

Nannan Z., Chinese Academy of Sciences Advanced Aerogel Composite Developed for Extreme Thermal Environments. [(accessed on 8 June 2025)]. Available online: https://phys.org/news/2025-04-advanced-aerogel-composite-extreme-thermal.html.

Shang L., Lyu Y., Han W. Microstructure and Thermal Insulation Property of Silica Composite Aerogel. Materials. 2019;12:993. doi: 10.3390/ma12060993. PubMed DOI PMC

Liu R., Dong X., Xie S., Jia T., Xue Y., Liu J., Jing W., Guo A. Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem. Eng. J. 2019;360:464–472. doi: 10.1016/j.cej.2018.12.018. DOI

Nocentini K., Ibrahim M., Biwole P.H., Achard P. Multi-scale thermal, energetic and economic analysis of composite insulating materials made of silica aerogel in a fibrous inorganic mat. Energy Build. 2022;272:112365. doi: 10.1016/j.enbuild.2022.112365. DOI

Lakatos Á., Trník A. Thermal Diffusion in Fibrous Aerogel Blankets. Energies. 2020;13:823. doi: 10.3390/en13040823. DOI

Kovács Z., Csík A., Lakatos Á. Thermal stability investigations of different aerogel insulation materials at elevated temperature. Therm. Sci. Eng. Prog. 2023;42:101906. doi: 10.1016/j.tsep.2023.101906. DOI

Yue J., Qin M., Yu H., He Q., Feng W. Superelastic Graphene-Based Composite Aerogel for Thermal and Electromagnetic Protection in Extreme Temperature Environments. Adv. Funct. Mater. 2025:2508319. doi: 10.1002/adfm.202508319. DOI

Yu D., Xue T., Ma Z., Hu Z., Long L., Miao Y.-E., Fan W., Liu T. 3D Printed Polyimide/Silica Composite Aerogels for Customizable Thermal Insulation from −50 °C to 1300 °C. Chin. J. Polym. Sci. 2024;42:936–945. doi: 10.1007/s10118-024-3130-8. DOI

Zhao G., Shi L., Yang G., Zhuang X., Cheng B. 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. J. Mater. Chem. A. 2023;11:512–547. doi: 10.1039/D2TA05984C. DOI

Wang Z., Huang C., Han X., Li S., Wang Z., Huang J., Liu H., Chen Z. Fabrication of aerogel scaffolds with adjustable macro/micro-pore structure through 3D printing and sacrificial template method for tissue engineering. Mater. Des. 2022;217:110662. doi: 10.1016/j.matdes.2022.110662. DOI

Liu C., Wang S., Wang N., Yu J., Liu Y.-T., Ding B. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO2 Nanofibers for Emerging Applications. Nano-Micro Lett. 2022;14:194. doi: 10.1007/s40820-022-00937-y. PubMed DOI PMC

Si Q.L., Tang G.H., Yang M.Y., Yang R., Hu Y., Du M., Zhang H. Ambient-dried hydrophobic silica aerogels for both enhanced transparency and thermal insulation. Ceram. Int. 2024;50:48680–48691. doi: 10.1016/j.ceramint.2024.09.218. DOI

Ren S. Scalable and Cost-Effective Roll-to-Roll Additive Manufacturing of Highly Durable and Thermal Insulating Silica-Carbon Aerogel. State University of New York SUNY; Buffalo, NY, USA: 2023. Final Report. DOI

Zhao X., Yang F., Wang Z., Ma P., Dong W., Hou H., Fan W., Liu T. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos. Part B Eng. 2020;182:107624. doi: 10.1016/j.compositesb.2019.107624. DOI

Yang M., Lixia Y., Chen Z., Qiong W., Wang Y., Liu T., Li M. Flexible Electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation. Ceram. Int. 2023;49:9165–9172. doi: 10.1016/j.ceramint.2022.11.076. DOI

He Y., Wu S., Yuen A.C.Y., Huang F., Boyer C., Wang C.H., Zhang J. Scalable Manufacturing Process and Multifunctional Performance of Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Bio-Composites Coated by Graphene Oxide. Polymers. 2022;14:3946. doi: 10.3390/polym14193946. PubMed DOI PMC

Lu L., Wang H., Yun S., Hu J., Wang M. A state-of-the-art review of novel aerogel insulation materials for building exterior walls. Energy Sources Part A Recovery Util. Environ. Eff. 2024;46:16231–16252. doi: 10.1080/15567036.2024.2424915. DOI

Illera D., Mesa J., Gomez H., Maury H. Cellulose Aerogels for Thermal Insulation in Buildings: Trends and Challenges. Coatings. 2018;8:345. doi: 10.3390/coatings8100345. DOI

Koh C.H., Schollbach K., Gauvin F., Brouwers H.J.H. Aerogel composite for cavity wall rehabilitation in the Netherlands: Material characterization and thermal comfort assessment. Build. Environ. 2022;224:109535. doi: 10.1016/j.buildenv.2022.109535. DOI

Yang W., Wang Y., Liu J. Optimization of the thermal conductivity test for building insulation materials under multifactor impact. Constr. Build. Mater. 2022;332:127380. doi: 10.1016/j.conbuildmat.2022.127380. DOI

Sambucci M., Savoni F., Valente M. Aerogel Technology for Thermal Insulation of Cryogenic Tanks—Numerical Analysis for Comparison with Traditional Insulating Materials. Gels. 2023;9:307. doi: 10.3390/gels9040307. PubMed DOI PMC

Park M. Recent Advances in Wearable Thermal Devices for Virtual and Augmented Reality. Micromachines. 2025;16:383. doi: 10.3390/mi16040383. PubMed DOI PMC

Chen L., Yu X., Gao M., Xu C., Zhang J., Zhang X., Zhu M., Cheng Y. Renewable biomass-based aerogels: From structural design to functional regulation. Chem. Soc. Rev. 2024;53:7489–7530. doi: 10.1039/D3CS01014G. PubMed DOI

Pyrogel X.T.E. Aspen Aerogels. [(accessed on 28 June 2025)]. Available online: https://www.aerogel.com/product/pyrogel-xte/

High Performance Thermal Insulation—Thermablok Aerogel, Thermablok–Intelligent Insulation—High Performance Thermal Insulation. [(accessed on 28 June 2025)]. Available online: https://www.thermablok.co.uk/

Aerogel Technologies, LLC|Classic Aerogel Products. [(accessed on 28 June 2025)]. Available online: https://www.aerogeltechnologies.com/classic-aerogels/classic-aerogel-products/

Trifu R., Begag R., Gould G., White S. Aerogel Composites Having Thermal Storage Capacity. 11130895B2. [(accessed on 28 June 2025)];U.S. Patent. 2021 September 28; Available online: https://patents.google.com/patent/US11130895B2/en?q=(US+Patent+Aerogel+Composites+Enhanced+Thermal+Stability)&oq=US+Patent+Aerogel+Composites+with+Enhanced+Thermal+Stability.

Ristic-Lehmann C., Farnworth B., Dutta A. Aerogel/PTFE Composite Insulating Material. 7226969B2. [(accessed on 28 June 2025)];U.S. Patent. 2007 June 5; Available online: https://patents.google.com/patent/US7226969B2/en.

Liao Y., Wu H., Ding Y., Yin S., Wang M., Cao A. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. J. Sol-Gel Sci. Technol. 2012;63:445–456. doi: 10.1007/s10971-012-2806-7. DOI

Song Z., Lei Y., Ran W., Yuan M., Shang S., Cui S. Structural properties and barrier performance of low-cost aerogel composites for building insulation. J. Build. Eng. 2024;90:109485. doi: 10.1016/j.jobe.2024.109485. DOI

Wang H., Huang Y., Liu S., Gao Y., Cheng X., Meng C. A review of silica fiber-based aerogels: Composition, construction methods, mechanical enhancement strategies and applications. Eur. Polym. J. 2024;220:113367. doi: 10.1016/j.eurpolymj.2024.113367. DOI

Wu Q., Yang M., Chen Z., Lu L., Ma Z., Ding Y., Yin L., Liu T., Li M., Yang L., et al. A layered aerogel composite with silica fibers, SiC nanowires, and silica aerogels ternary networks for thermal insulation at high-temperature. J. Mater. Sci. Technol. 2025;204:71–80. doi: 10.1016/j.jmst.2024.03.031. DOI

Zhu Z., Zhang W., Huang H., Li W., Ling H., Zhang H. A Review of High-Temperature Resistant Silica Aerogels: Structural Evolution and Thermal Stability Optimization. Gels. 2025;11:357. doi: 10.3390/gels11050357. PubMed DOI PMC

Huang W., Yang Y., Gu H., Yu W., Shao G. A core–shell carbon–ceramic fibrous aerogel derived from aramid-polysilsesquioxane for broadband electromagnetic wave absorption. J. Mater. Chem. C. 2025;13:10658–10670. doi: 10.1039/D5TC01397F. DOI

Zhang W., Wang Y., Li J. Sustainable 3D Printing Aerogel Materials and Application: A Review. IFFTI Annu. Proc. 2024;3:306–312.

Chen Y., Shafiq M., Liu M., Morsi Y., Mo X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact. Mater. 2020;5:963–979. doi: 10.1016/j.bioactmat.2020.06.023. PubMed DOI PMC

RMishra, Behera B.K., Muller M., Petru M. Finite element modeling based thermodynamic simulation of aerogel embedded nonwoven thermal insulation material. Int. J. Therm. Sci. 2021;164:106898. doi: 10.1016/j.ijthermalsci.2021.106898. DOI

Wang M. A Multiscale Method Across Three Length Scales for Progressive Damage Analysis of Plain Woven Composites. Appl Compos. Mater. 2021;28:1919–1944. doi: 10.1007/s10443-021-09917-8. DOI

Karaaslan M.A., Kadla J.F., Ko F.K. 5-Lignin-Based Aerogels. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. William Andrew Publishing; Norwich, NY, USA: 2016. pp. 67–93. DOI

Zhang R., Gu H., Hou X., Zhou P. High-temperature resistant Y2SiO5–TiO2 aerogel composite for efficient thermal insulation. J. Porous Mater. 2021;28:57–64. doi: 10.1007/s10934-020-00935-8. DOI

Li L., Lyu J., Cheng Q., Fu C., Zhang X. Versatile Recyclable Kevlar Nanofibrous Aerogels Enabled by Destabilizing Dynamic Balance Strategy. Adv. Fiber Mater. 2023;5:1050–1062. doi: 10.1007/s42765-023-00273-9. DOI

García-González C.A., Blanco-Vales M., Barros J., Boccia A.C., Budtova T., Durães L., Erkey C., Gallo M., Herman P., Kalmár J., et al. Review and Perspectives on the Sustainability of Organic Aerogels. ACS Sustain. Chem. Eng. 2025;13:6469–6492. doi: 10.1021/acssuschemeng.4c09747. PubMed DOI PMC

An L., Wang J., Petit D., Armstrong J.N., Li C., Hu Y., Huang Y., Shao Z., Ren S. A scalable crosslinked fiberglass-aerogel thermal insulation composite. Appl. Mater. Today. 2020;21:100843. doi: 10.1016/j.apmt.2020.100843. DOI

Maleki H., Durães L., Portugal A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater. 2014;197:116–129. doi: 10.1016/j.micromeso.2014.06.003. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...