Radiative Heat Transfer Properties of Fiber-Aerogel Composites for Thermal Insulation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-32510 M
The work was supported by the project 'Advanced structures for thermal insulation in extreme conditions' (Reg. No. 21-32510 M) granted by the Czech Science Foundation (GACR).
PubMed
40710700
PubMed Central
PMC12296195
DOI
10.3390/gels11070538
PII: gels11070538
Knihovny.cz E-zdroje
- Klíčová slova
- FTIR analysis, aerogel composites, fibrous aerogels, heat transfer, radiative heat transfer,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fiber-aerogel composites have gained significant attention as high-performance thermal insulation materials due to their unique microstructure, which suppresses conductive, convective, and radiative heat transfer. At room temperature, silica aerogels in particular exhibit ultralow thermal conductivity (<0.02 W/m·K), which is two to three times lower than that of still air (0.026 W/m·K). Their brittle skeleton and high infrared transparency, however, restrict how well they insulate, particularly at high temperatures (>300 °C). Incorporating microscale fibers into the aerogel matrix enhances mechanical strength and reduces radiative heat transfer by increasing scattering and absorption. For instance, it has been demonstrated that adding glass fibers reduces radiative heat transmission by around 40% because of increased infrared scattering. This review explores the fundamental mechanisms governing radiative heat transfer in fiber-aerogel composites, emphasizing absorption, scattering, and extinction coefficients. We discuss recent advancements in fiber-reinforced aerogels, focusing on material selection, structural modifications, and predictive heat transfer models. Recent studies indicate that incorporating fiber volume fractions as low as 10% can reduce the thermal conductivity of composites by up to 30%, without compromising their mechanical integrity. Key analytical and experimental methods for determining radiative properties, including Fourier transform infrared (FTIR) spectroscopy and numerical modeling approaches, are examined. The emissivity and transmittance of fiber-aerogel composites have been successfully measured using FTIR spectroscopy; tests show that fiber reinforcement at high temperatures reduces emissivity by about 15%. We conclude by outlining the present issues and potential avenues for future research to optimize fiber-aerogel composites for high-temperature applications, including energy-efficient buildings (where long-term thermal stability is necessary), electronics thermal management systems, and aerospace (where temperatures may surpass 1000 °C), with a focus on improving the materials' affordability and scalability for industrial applications.
Zobrazit více v PubMed
Kistler S.S. Coherent Expanded Aerogels and Jellies. Nature. 1931;127:741. doi: 10.1038/127741a0. DOI
Hrubesh L.W., Pekala R.W. Thermal properties of organic and inorganic aerogels. J. Mater. Res. 1994;9:731–738. doi: 10.1557/JMR.1994.0731. DOI
Lei J., Zheng S., Han Z., Niu Y., Pan D., Liu H., Liu C., Shen C. A Brief Review on the Preparation and Application of Silica Aerogel. Eng. Sci. 2024;30:1214. doi: 10.30919/es1214. DOI
Gurav J.L., Jung I.-K., Park H.-H., Kang E.S., Nadargi D.Y. Silica Aerogel: Synthesis and Applications. J. Nanomater. 2010;2010:409310. doi: 10.1155/2010/409310. DOI
Parale V.G., Kim T., Choi H., Phadtare V.D., Dhavale R.P., Kanamori K., Park H.-H. Mechanically Strengthened Aerogels Through Multiscale, Multicompositional, and Multidimensional Approaches: A Review. Adv. Mater. 2024;36:2307772. doi: 10.1002/adma.202307772. PubMed DOI
Zhao J.-J., Duan Y.-Y., Wang X.-D., Wang B.-X. Radiative properties and heat transfer characteristics of fiber-loaded silica aerogel composites for thermal insulation. Int. J. Heat Mass Transf. 2012;55:5196–5204. doi: 10.1016/j.ijheatmasstransfer.2012.05.022. DOI
Shklover V., Braginsky L., Mishrikey M., Hafner C. Radiative heat transport in porous materials. MRS Online Proc. Libr. 2009;1162:303. doi: 10.1557/PROC-1162-J03-03. DOI
Militký J., Křemenáková D., Venkataraman M., Večerník J., Martínková L., Marek J. Sandwich Structures Reflecting Thermal Radiation Produced by the Human Body. Polymers. 2021;13:3309. doi: 10.3390/polym13193309. PubMed DOI PMC
Venkataraman M., Mishra R., Militky J., Kremenakova D., Michal P. Aerogel Based High Performance Thermal Insulation Materials. IOP Conf. Ser. Mater. Sci. Eng. 2019;553:012043. doi: 10.1088/1757-899X/553/1/012043. DOI
Venkataraman M., Mishra R., Wiener J., Militky J., Kotresh T., Vaclavik M. Novel techniques to analyse thermal performance of aerogel-treated blankets under extreme temperatures. J. Text. Inst. 2015;106:736–747. doi: 10.1080/00405000.2014.939808. DOI
Tafreshi O.A., Mosanenzadeh S.G., Karamikamkar S., Saadatnia Z., Park C.B., Naguib H.E. A review on multifunctional aerogel fibers: Processing, fabrication, functionalization, and applications. Mater. Today Chem. 2022;23:100736. doi: 10.1016/j.mtchem.2021.100736. DOI
Ebert H.-P. Thermal Properties of Aerogels. In: Aegerter M.A., Leventis N., Koebel M.M., editors. Aerogels Handbook. Springer; New York, NY, USA: 2011. pp. 537–564. DOI
Militky J., Bajzík V. Surface roughness of heat protective clothing textiles. Int. J. Cloth. Sci. Technol. 2003;15:258–267. doi: 10.1108/09556220310478369. DOI
Sozcu S., Frajova J., Wiener J., Venkataraman M., Tomkova B., Militky J. Synthesis of Acetobacter xylinum Bacterial Cellulose Aerogels and Their Effect on the Selected Properties. Gels. 2025;11:272. doi: 10.3390/gels11040272. PubMed DOI PMC
He Y.-L., Xie T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material. Appl. Therm. Eng. 2015;81:28–50. doi: 10.1016/j.applthermaleng.2015.02.013. DOI
Villasmil W., Fischer L.J., Worlitschek J. A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sustain. Energy Rev. 2019;103:71–84. doi: 10.1016/j.rser.2018.12.040. DOI
Xue J., Han R., Li Y., Zhang J., Liu J., Yang Y. Advances in multiple reinforcement strategies and applications for silica aerogel. J. Mater. Sci. 2023;58:14255–14283. doi: 10.1007/s10853-023-08945-y. DOI
Wang L., Lian W., Yin B., Liu X., Tang S. Silica nanowires-reinforced silica aerogels with outstanding thermal insulation, thermal stability and mechanical properties. Ceram. Int. 2024;50:6693–6702. doi: 10.1016/j.ceramint.2023.12.008. DOI
Zhan W., Chen L., Kong Q., Li L., Chen M., Jiang J., Li W., Shi F., Xu Z. The Synthesis and Polymer-Reinforced Mechanical Properties of SiO2 Aerogels: A Review. Molecules. 2023;28:5534. doi: 10.3390/molecules28145534. PubMed DOI PMC
Deng Z., Wang J., Wu A., Shen J., Zhou B. High strength SiO2 aerogel insulation. J. Non-Cryst. Solids. 1998;225:101–104. doi: 10.1016/S0022-3093(98)00106-9. DOI
Merillas B., Almeida C.M.R., Álvarez-Arenas T.E.G., Rodríguez-Pérez M.Á., Durães L. Enhanced thermal insulation performance of silica aerogel composites through infrared opacifier integration for high-temperature applications. Compos. Part C Open Access. 2025;16:100573. doi: 10.1016/j.jcomc.2025.100573. DOI
Yu H., Tong Z., Zhang B., Chen Z., Li X., Su D., Ji H. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chem. Eng. J. 2021;418:129342. doi: 10.1016/j.cej.2021.129342. DOI
Liu F., He C., Jiang Y., Feng J., Li L., Tang G., Feng J. Ultralight Ceramic Fiber Aerogel for High-Temperature Thermal Superinsulation. Nanomaterials. 2023;13:1305. doi: 10.3390/nano13081305. PubMed DOI PMC
Fedyukhin A.V., Strogonov K.V., Soloveva O.V., Solovev S.A., Akhmetova I.G., Berardi U., Zaitsev M.D., Grigorev D.V. Aerogel Product Applications for High-Temperature Thermal Insulation. Energies. 2022;15:7792. doi: 10.3390/en15207792. DOI
Sozcu S., Venkataraman M., Wiener J., Tomkova B., Militky J., Mahmood A. Incorporation of Cellulose-Based Aerogels into the Textile Structure. Materials. 2024;17:27. doi: 10.3390/ma17010027. PubMed DOI PMC
Lee O.-J., Lee K.-H., Yim T.J., Kim S.Y., Yoo K.-P. Determination of mesopore size of aerogels from thermal conductivity measurements. J. Non-Cryst. Solids. 2002;298:287–292. doi: 10.1016/S0022-3093(01)01041-9. DOI
Wang J., Kuhn J., Lu X. Monolithic silica aerogel insulation doped with TiO2 powder and ceramic fibers. J. Non-Cryst. Solids. 1995;186:296–300. doi: 10.1016/0022-3093(95)00068-2. DOI
Daryabeigi K. Heat Transfer in High-Temperature Fibrous Insulation. J. Thermophys. Heat Transf. 2003;17:10–20. doi: 10.2514/2.6746. DOI
Wei G., Liu Y., Zhang X., Yu F., Du X. Thermal conductivities study on silica aerogel and its composite insulation materials. Int. J. Heat Mass Transf. 2011;54:2355–2366. doi: 10.1016/j.ijheatmasstransfer.2011.02.026. DOI
Lu G., Wang X.-D., Duan Y.-Y., Li X.-W. Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials. J. Non-Cryst. Solids. 2011;357:3822–3829. doi: 10.1016/j.jnoncrysol.2011.07.022. DOI
Zeng S.O., Hunt A., Greif R. Geometric structure and thermal conductivity of porous medium silica aerogel. J. Heat Transf. 1995;117:1055–1058. doi: 10.1115/1.2836281. DOI
Wei G., Liu Y., Zhang X., Du X. Radiative heat transfer study on silica aerogel and its composite insulation materials. J. Non-Cryst. Solids. 2013;362:231–236. doi: 10.1016/j.jnoncrysol.2012.11.041. DOI
Fu Z., Corker J., Papathanasiou T., Wang Y., Zhou Y., Madyan O.A., Liao F., Fan M. Critical review on the thermal conductivity modelling of silica aerogel composites. J. Build. Eng. 2022;57:104814. doi: 10.1016/j.jobe.2022.104814. DOI
Zhang H., Qiao Y., Zhang X., Fang S. Structural and thermal study of highly porous nanocomposite SiO2-based aerogels. J. Non-Cryst. Solids. 2010;356:879–883. doi: 10.1016/j.jnoncrysol.2010.01.003. DOI
Karadagli I., Schulz B., Schestakow M., Milow B., Gries T., Ratke L. Production of porous cellulose aerogel fibers by an extrusion process. J. Supercrit. Fluids. 2015;106:105–114. doi: 10.1016/j.supflu.2015.06.011. DOI
Xiao L., Grogan M.D., Leon-Saval S.G., Williams R., England R., Wadsworth W.J., Birks T.A. Tapered fibers embedded in silica aerogel. Opt. Lett. 2009;34:2724–2726. doi: 10.1364/OL.34.002724. PubMed DOI
Sheng Z., Liu Z., Hou Y., Jiang H., Li Y., Li G., Zhang X. The Rising Aerogel Fibers: Status, Challenges, and Opportunities. Adv. Sci. 2023;10:2205762. doi: 10.1002/advs.202205762. PubMed DOI PMC
Carvajal S.A., Daryabeigi K., Ramírez J.H. Predictive radiation heat transfer modeling in fibrous insulation at high temperature. Int. J. Therm. Sci. 2024;198:108897. doi: 10.1016/j.ijthermalsci.2024.108897. DOI
Carvajal S.A., Paulien L., Elniski A., Daryabeigi K., Berg M.J. Analytical models of radiative transfer in fibrous insulation under collimated irradiation. Int. J. Heat Mass Transf. 2025;244:126961. doi: 10.1016/j.ijheatmasstransfer.2025.126961. DOI
Padmanabhan S.K., Haq E.U., Licciulli A. Synthesis of silica cryogel-glass fiber blanket by vacuum drying. Ceram. Int. 2016;42:7216–7222. doi: 10.1016/j.ceramint.2016.01.113. DOI
Xue J., Han R., Ge Y., Liu L., Yang Y. Preparation, mechanical, acoustic and thermal properties of silica composite aerogel using wet-laid glass fiber felt as scaffold. Compos. Part A Appl. Sci. Manuf. 2024;179:108058. doi: 10.1016/j.compositesa.2024.108058. DOI
He S., Li H., Zhang Y., Huang Y., Pan Y. High accuracy heat transfer model for aerogel/fiber composite mats. Int. Commun. Heat Mass Transf. 2025;162:108584. doi: 10.1016/j.icheatmasstransfer.2025.108584. DOI
Bi C., Tang G.H., Hu Z.J., Yang H.L., Li J.N. Coupling model for heat transfer between solid and gas phases in aerogel and experimental investigation. Int. J. Heat Mass Transf. 2014;79:126–136. doi: 10.1016/j.ijheatmasstransfer.2014.07.098. DOI
Zhao J.-J., Duan Y.-Y., Wang X.-D., Wang B.-X. Effects of solid–gas coupling and pore and particle microstructures on the effective gaseous thermal conductivity in aerogels. J. Nanopart. Res. 2012;14:1024. doi: 10.1007/s11051-012-1024-0. DOI
Xie T., He Y.-L. Heat transfer characteristics of silica aerogel composite materials: Structure reconstruction and numerical modeling. Int. J. Heat Mass Transf. 2016;95:621–635. doi: 10.1016/j.ijheatmasstransfer.2015.12.025. DOI
Xu H.-B., Zhu C.-Y., Tian L., Li Z.-Y. Applicable scope of the Rosseland model in predicting the radiative thermal conductivity of silica aerogel. Int. J. Therm. Sci. 2025;215:109953. doi: 10.1016/j.ijthermalsci.2025.109953. DOI
Zhang H., Wang X., Li Y. Measuring radiative properties of silica aerogel composite from FTIR transmittance test using KBr as diluents. Exp. Therm. Fluid Sci. 2018;91:144–154. doi: 10.1016/j.expthermflusci.2017.10.010. DOI
Wei G., Liu Y., Zhang X., Du X. Thermal Radiation in Silica Aerogel and its Composite Insulation Materials; Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 10: Heat and Mass Transport Processes, Parts A and B; Denver, CO, USA. 11–17 November 2011; pp. 1223–1231. DOI
Huang R., Jiang Y., Feng J., Li L., Hu Y., Wang X., Feng J. Robust and exceptional thermal insulating alumina-silica aerogel composites reinforced by ultra IR-opacified ZrO2 nanofibers. Chem. Eng. J. 2024;498:155283. doi: 10.1016/j.cej.2024.155283. DOI
Yang Z., Su G., Sun F. Theoretical Modeling of the Radiative Properties and Effective Thermal Conductivity of the Opacified Silica Aerogel. CMC. 2013;36:271–292. doi: 10.3970/cmc.2013.036.271. DOI
Pang H.-Q., Fan T.-H., Zhu C.-Y., Liu T.-Y., Gao Y.-F. Representation of the Characteristic Temperature of Correlative Thermal Conductivity of Opacifier-Fiber Doped Silica Aerogel by Steady-State Method at Large Temperature Differences. Int. J. Thermophys. 2022;43:150. doi: 10.1007/s10765-022-03068-z. DOI
He S., Zhang X., Wu X., Li P., Xu L. Theoretical study of heat transfer model of silica aerogel based on the porous structure of secondary particles. Appl. Therm. Eng. 2024;238:121935. doi: 10.1016/j.applthermaleng.2023.121935. DOI
Xiong X., Venkataraman M., Jašíková D., Yang T., Mishra R., Militký J., Petrů M. An experimental evaluation of convective heat transfer in multi-layered fibrous materials composed by different middle layer structures. J. Ind. Text. 2021;51:362–379. doi: 10.1177/1528083719878845. DOI
Krzemińska S., Cieślak M., Kamińska I., Nejman A. Application of Silica Aerogel in Composites Protecting Against Thermal Radiation. Autex Res. J. 2020;20:274–287. doi: 10.2478/aut-2020-0008. DOI
Goryunova K.I., Gahramanli Y.N. Insulating materials based on silica aerogel composites: Synthesis, properties and application. RSC Adv. 2024;14:34690–34707. doi: 10.1039/D4RA04976D. PubMed DOI PMC
Xiaoman X., Venkataraman M., Jašíková D., Yang T., Rajesh M., Militky J., Petru M. Thermal Behavior of Aerogel-Embedded Nonwovens in Cross Airflow. Autex Res. J. 2021;21:115–124. doi: 10.2478/aut-2019-0082. DOI
Burgos M.I., Velasco M.I., Acosta R.H., Perillo M.A. Environmental Topology and Water Availability Modulates the Catalytic Activity of β-Galactosidase Entrapped in a Nanosporous Silicate Matrix. Sci. Rep. 2016;6:36593. doi: 10.1038/srep36593. PubMed DOI PMC
Venkataraman M., Militký J., Mishra R., Jandová S. Unconventional measurement methods and simulation of aerogel assisted thermoregulation. J. Mech. Eng. (JMechE) 2018;5:62–96.
Zhang H., Li Y., Tao W. Effect of radiative heat transfer on determining thermal conductivity of semi-transparent materials using transient plane source method. Appl. Therm. Eng. 2017;114:337–345. doi: 10.1016/j.applthermaleng.2016.11.208. DOI
Al-Homoud M.S. Performance characteristics and practical applications of common building thermal insulation materials. Build. Environ. 2005;40:353–366. doi: 10.1016/j.buildenv.2004.05.013. DOI
Smith D.S., Alzina A., Bourret J., Nait-Ali B., Pennec F., Tessier-Doyen N., Otsu K., Matsubara H., Elser P., Gonzenbach U.T. Thermal conductivity of porous materials. J. Mater. Res. 2013;28:2260–2272. doi: 10.1557/jmr.2013.179. DOI
Howell J.R., Menguc M.P., Siegel R. Thermal Radiation Heat Transfer. 6th ed. CRC Press; Boca Raton, FL, USA: 2015. DOI
Lee S.W., Lim C.H., Salleh E.@.I.B. Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation. Renew. Sustain. Energy Rev. 2016;65:643–661. doi: 10.1016/j.rser.2016.07.002. DOI
Malakooti S., Vivod S.L., Pereira M., Ruggeri C.R., Revilock D.M., Scheiman D.A., Guo H., Salem J.A., Benafan O., Johnston J.C., et al. Fabric reinforced polyimide aerogel matrix composites with low thermal conductivity, high flexural strength, and high sound absorption coefficient. Compos. Part B Eng. 2023;260:110751. doi: 10.1016/j.compositesb.2023.110751. DOI
Zhan C., Lu Q., Jiang H., Lu H., Liu Y. Facile preparation of lightweight high-elastic celluous/SiO2 composite aerogel with outstanding thermal insulation performance. J. Porous Mater. 2025:1–13. doi: 10.1007/s10934-025-01755-4. DOI
Cai H., Jiang Y., Feng J., Zhang S., Peng F., Xiao Y., Li L., Feng J. Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol. Mater. Des. 2020;191:108640. doi: 10.1016/j.matdes.2020.108640. DOI
Lee S.C. Effect of fiber orientation on thermal radiation in fibrous media. Int. J. Heat Mass Transf. 1989;32:311–319. doi: 10.1016/0017-9310(89)90178-6. DOI
Venkataraman M., Mishra R., Kotresh T.M., Sakoi T., Militky J. Effect of compressibility on heat transport phenomena in aerogel-treated nonwoven fabrics. J. Text. Inst. 2016;107:1150–1158. doi: 10.1080/00405000.2015.1097084. DOI
Ma Y., Tang G.H., Hu Y. Modelling of hollow-fiber doping in silica aerogel composites for radiative and conductive insulation under high temperatures. Appl. Therm. Eng. 2024;254:123917. doi: 10.1016/j.applthermaleng.2024.123917. DOI
Dai Y., He Y., Yu D., Dai J., Wang Y., Bai F. Study on the effect of semi-transparency on thermal insulation performance of silica aerogel composites. Case Stud. Therm. Eng. 2024;54:104010. doi: 10.1016/j.csite.2024.104010. DOI
Feng T., Nie Z., Guo X., Yang X., Su K., Qi S., Cheng B. Aramid nanofibrous aerogels and their phase-change composites for highly efficient thermal management. Compos. Commun. 2025;54:102271. doi: 10.1016/j.coco.2025.102271. DOI
Venkataraman M., Mishra R., Subramaniam V., Gnanamani A., Kotresh T.M., Militky J. Dynamic heat flux measurement for advanced insulation materials. Fibers Polym. 2016;17:925–931. doi: 10.1007/s12221-016-5882-4. DOI
5.3.4. Rosseland Radiation Model Theory. [(accessed on 21 May 2025)]. Available online: https://ansyshelp.ansys.com/public//Views/Secured/corp/v242/en/flu_th/flu_th_sec_mod_ross.html?utm_source=chatgpt.com.
Dombrovsky L.A. Diffusion Approximation in Multidimensional Radiative Transfer Problems. Thermopedia, Begel House Inc.; Danbury, CT, USA: 2011. DOI
Zhao S., Dong J., Monte C., Sun X., Zhang W. New phase function development and complete spectral radiative properties measurements of aerogel infused fibrous blanket based on simulated annealing algorithm. Int. J. Therm. Sci. 2020;154:106407. doi: 10.1016/j.ijthermalsci.2020.106407. DOI
Retailleau F., Allheily V., Merlat L., Henry J.-F., Randrianalisoa J.H. Experimental characterization of radiative transfer in semi-transparent composite materials with rough boundaries. J. Quant. Spectrosc. Radiat. Transf. 2020;256:107300. doi: 10.1016/j.jqsrt.2020.107300. DOI
Huang B., Li J., Gong L., Dai P., Zhu C. The Influence of Reinforced Fibers and Opacifiers on the Effective Thermal Conductivity of Silica Aerogels. Gels. 2024;10:300. doi: 10.3390/gels10050300. PubMed DOI PMC
Daoût C., Rozenbaum O., De Sousa Meneses D., Rochais D. Identification of the spectral complex refractive indices of micrometric phases within a semi-transparent medium up to elevated temperatures. Int. J. Heat Mass Transf. 2024;223:125272. doi: 10.1016/j.ijheatmasstransfer.2024.125272. DOI
Markevicius G., Ladj R., Niemeyer P., Budtova T., Rigacci A. Ambient-dried thermal superinsulating monolithic silica-based aerogels with short cellulosic fibers. J. Mater. Sci. 2017;52:2210–2221. doi: 10.1007/s10853-016-0514-3. DOI
Fan W., Zhang X., Zhang Y., Zhang Y., Liu T. Lightweight, strong, and super-thermal insulating polyimide composite aerogels under high temperature. Compos. Sci. Technol. 2019;173:47–52. doi: 10.1016/j.compscitech.2019.01.025. DOI
Hou X., Mao Y., Zhang R., Fang D. Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection. Chem. Eng. J. 2021;417:129341. doi: 10.1016/j.cej.2021.129341. DOI
Wang C., Bai L., Xu H., Qin S., Li Y., Zhang G. A Review of High-Temperature Aerogels: Composition, Mechanisms, and Properties. Gels. 2024;10:286. doi: 10.3390/gels10050286. PubMed DOI PMC
Krasnovskih M.P., Maksimovich N.G., Vaisman Y.I., Ketov A.A. Thermal stability of mineral-wool heat-insulating materials. Russ. J. Appl. Chem. 2014;87:1430–1434. doi: 10.1134/S1070427214100061. DOI
Zhou T., Cheng X., Pan Y., Li C., Gong L., Zhang H. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying. Appl. Surf. Sci. 2018;437:321–328. doi: 10.1016/j.apsusc.2017.12.146. DOI
Xia C., Hao M., Liu W., Zhang X., Miao Y., Ma C., Gao F. Synthesis of Al2O3-SiO2 aerogel from water glass with high thermal stability and low thermal conductivity. J. Sol-Gel Sci. Technol. 2023;106:561–571. doi: 10.1007/s10971-023-06085-y. DOI
Wang J., Zhang C., Deng Y., Zhang P. A Review of Research on the Effect of Temperature on the Properties of Polyurethane Foams. Polymers. 2022;14:4586. doi: 10.3390/polym14214586. PubMed DOI PMC
Lorenzati A., Fantucci S., Capozzoli A., Perino M. The Effect of Temperature on Thermal Performance of Fumed Silica Based Vacuum Insulation Panels for Buildings. Energy Procedia. 2017;111:490–499. doi: 10.1016/j.egypro.2017.03.211. DOI
Kaushik D., Singh H., Tassou S.A. Vacuum insulation panels for high-temperature applications—Design principles, challenges and pathways. Therm. Sci. Eng. Prog. 2024;48:102415. doi: 10.1016/j.tsep.2024.102415. DOI
Salosina M.O., Alifanov O.M., Nenarokomov A.V. Designing Thermal Shield with Choice of Structure Parameters of Composite Based on Carbon Aerogel. J. Engin. Thermophys. 2024;33:722–733. doi: 10.1134/S1810232824040052. DOI
Zhao J.-J., Duan Y.-Y., Wang X.-D., Wang B.-X. An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels. J. Non-Cryst. Solids. 2012;358:1303–1312. doi: 10.1016/j.jnoncrysol.2012.02.037. DOI
Aerogel: From the Nanomaze to Global Thermal Management—How the Microporous Structure Reinvents the Laws of Heat Transfer. [(accessed on 27 May 2025)]. Available online: https://insulatewool.com/news/aerogel-from-the-nanomaze-to-global-thermal-management-how-the-microporous-structure-reinvents-the-laws-of-heat-transfer?utm_source=chatgpt.com.
Arambakam R., Tafreshi H.V., Pourdeyhimi B. Dual-scale 3-D approach for modeling radiative heat transfer in fibrous insulations. Int. J. Heat Mass Transf. 2013;64:1109–1117. doi: 10.1016/j.ijheatmasstransfer.2013.05.047. DOI
Venkataraman M., Mishra R., Militky J., Behera B.K. Modelling and simulation of heat transfer by convection in aerogel treated nonwovens. J. Text. Inst. 2017;108:1442–1453. doi: 10.1080/00405000.2016.1255124. DOI
Dent R.W., Skelton J., Donovan J.G. Insulation Materials, Testing and Applications. ASTM International; West Conshohocken, PA, USA: 1990. Radiant Heat Transfer in Extremely Low Density Fibrous Assemblies; pp. 79–105. DOI
Li X. Doctoral Thesis. University of Notre Dame; Notre Dame, IN, USA: 2007. Radiative Heat Transfer Through Fibrous Materials. DOI
Yang F., Xie W., Meng S. Effect of porous microstructure and fiber arrangement of thermal protection composites on effective thermal conductivity. Mech. Mater. 2024;198:105147. doi: 10.1016/j.mechmat.2024.105147. DOI
Song W.F., Yu W.D. Study on radiative heat transfer property of fiber assemblies using FTIR. J. Therm. Anal. Calorim. 2011;103:785–790. doi: 10.1007/s10973-010-1025-0. DOI
Yuan H., Zhang H., Huang K., Cheng Y., Wang K., Cheng S., Li W., Jiang J., Li J., Tu C., et al. Dual-Emitter Graphene Glass Fiber Fabric for Radiant Heating. ACS Nano. 2022;16:2577–2584. doi: 10.1021/acsnano.1c09269. PubMed DOI
Wang F., Cheng L., Zhang Q., Zhang L. Effects of heat treatment and coatings on the infrared emissivity properties of carbon fibers. J. Mater. Res. 2014;29:1162–1167. doi: 10.1557/jmr.2014.106. DOI
Yang L., He X., He F. ITO coated quartz fibers for heat radiative applications. Mater. Lett. 2008;62:4539–4541. doi: 10.1016/j.matlet.2008.08.033. DOI
Veiseh S., Hakkaki-Fard A. Numerical Modeling of Combined Radiation and Conduction Heat Transfer in Mineral Wool Insulations. Heat Transf. Eng. 2009;30:477–486. doi: 10.1080/01457630802529065. DOI
Kang D., Jia S., Zhao C., Ni Y., Qi J., Kang Z., Sui Y., Wei F., Xiao B., Meng Q. High-temperature resistance performance of silica aerogel composites through fiber reinforcement. Ceram. Int. 2024;50:26829–26838. doi: 10.1016/j.ceramint.2024.04.411. DOI
Saleh M.H., Dhaef A.H. Heat Transfer in Inclined Enclosure of Silica Aerogel/Glass Fiber Composite Material. Int. J. Comput. Appl. 2015;117:5–12.
Liu H., Liu J., Tian Y., Wu X., Li Z. Investigation of high temperature thermal insulation performance of fiber-reinforced silica aerogel composites. Int. J. Therm. Sci. 2023;183:107827. doi: 10.1016/j.ijthermalsci.2022.107827. DOI
Zhang H., Fang W.-Z., Wang X., Li Y.-M., Tao W.-Q. Thermal conductivity of fiber and opacifier loaded silica aerogel composite. Int. J. Heat Mass Transf. 2017;115:21–31. doi: 10.1016/j.ijheatmasstransfer.2017.08.006. DOI
Wu Q., Yang L., Chen Z., Yang M., Liu T., Li M., Mukhopadhyaya P. SiO2 aerogel multiscale reinforced by glass fibers and SiC nanowhiskers for thermal insulation. J. Porous Mater. 2023;30:1587–1596. doi: 10.1007/s10934-023-01432-4. DOI
Cherunova I., Kornev N., Jia G., Richter K., Plentz J. Development of Infrared Reflective Textiles and Simulation of Their Effect in Cold-Protection Garments. Appl. Sci. 2023;13:4043. doi: 10.3390/app13064043. DOI
Lee K.H., Arshad Z., Dahshan A., Alshareef M., Alsulami Q.A., Bibi A., Lee E.-J., Nawaz M., Zubair U., Javid A. Porous Aerogel Structures as Promising Materials for Photocatalysis, Thermal Insulation Textiles, and Technical Applications: A Review. Catalysts. 2023;13:1286. doi: 10.3390/catal13091286. DOI
Yang J., Wu H., He S., Wang M. Prediction of Thermal Conductivity of Fiber/Aerogel Composites for Optimal Thermal Insulation. JPM. 2015;18:971–984. doi: 10.1615/JPorMedia.2015013550. DOI
Gurav J.L., Rao A.V., Rao A.P., Nadargi D.Y., Bhagat S.D. Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure. J. Alloys Compd. 2009;476:397–402. doi: 10.1016/j.jallcom.2008.09.029. DOI
Li Z., Wang Y., Wu X., Liu Q., Li M., Shi L., Cheng X. Surface chemistry, skeleton structure and thermal safety of methylsilyl modified silica aerogels by heat treatment in an argon atmosphere. J. Non-Cryst. Solids. 2023;611:122335. doi: 10.1016/j.jnoncrysol.2023.122335. DOI
Li Z., Shen K., Hu M., Shulga Y.M., Chen Z., Liu Q., Li M., Wu X. Heat-Treated Aramid Pulp/Silica Aerogel Composites with Improved Thermal Stability and Thermal Insulation. Gels. 2023;9:749. doi: 10.3390/gels9090749. PubMed DOI PMC
Cuce E., Cuce P.M., Wood C.J., Riffat S.B. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014;34:273–299. doi: 10.1016/j.rser.2014.03.017. DOI
Sozcu S., Frajova J., Wiener J., Venkataraman M., Tomkova B., Militky J. Effect of Drying Methods on the Thermal and Mechanical Behavior of Bacterial Cellulose Aerogel. Gels. 2024;10:474. doi: 10.3390/gels10070474. PubMed DOI PMC
Wang Z., Yang H., Li Y., Zheng X. Robust Silk Fibroin/Graphene Oxide Aerogel Fiber for Radiative Heating Textiles. ACS Appl. Mater. Interfaces. 2020;12:15726–15736. doi: 10.1021/acsami.0c01330. PubMed DOI
Sun X., Tang H., Yuan G. Anomalous diffraction approximation method for retrieval of spherical and spheroidal particle size distributions in total light scattering. J. Quant. Spectrosc. Radiat. Transf. 2008;109:89–106. doi: 10.1016/j.jqsrt.2007.07.017. DOI
Zhang B.-M., Zhao S.-Y., He X.-D. Experimental and theoretical studies on high-temperature thermal properties of fibrous insulation. J. Quant. Spectrosc. Radiat. Transf. 2008;109:1309–1324. doi: 10.1016/j.jqsrt.2007.10.008. DOI
Lind A.C., Greenberg J.M. Electromagnetic Scattering by Obliquely Oriented Cylinders. J. Appl. Phys. 1966;37:3195–3203. doi: 10.1063/1.1703184. DOI
Han M., Hao M., Li Z., Jian S., Ma C., Miao Y. Ultra-light, flame-retardant nano-TiO2 coated silica-zirconia ceramic fiber aerogel for thermal insulation. J. Porous Mater. 2025:1–13. doi: 10.1007/s10934-025-01777-y. DOI
Hoseini A., McCague C., Andisheh-Tadbir M., Bahrami M. Aerogel blankets: From mathematical modeling to material characterization and experimental analysis. Int. J. Heat Mass Transf. 2016;93:1124–1131. doi: 10.1016/j.ijheatmasstransfer.2015.11.030. DOI
Ablaoui E.M., Malendowski M., Szymkuc W., Pozorski Z. Determination of Thermal Properties of Mineral Wool Required for the Safety Analysis of Sandwich Panels Subjected to Fire Loads. Materials. 2023;16:5852. doi: 10.3390/ma16175852. PubMed DOI PMC
Choudhary M.K., Eastes W. Effective thermal conductivity of fiberglass insulation. Int. J. Appl. Glass Sci. 2024;15:307–316. doi: 10.1111/ijag.16652. DOI
Zhang H., Fang W.-Z., Li Y.-M., Tao W.-Q. Experimental study of the thermal conductivity of polyurethane foams. Appl. Therm. Eng. 2017;115:528–538. doi: 10.1016/j.applthermaleng.2016.12.057. DOI
Li X., Peng C., Liu L. Experimental study of the thermal performance of a building wall with vacuum insulation panels and extruded polystyrene foams. Appl. Therm. Eng. 2020;180:115801. doi: 10.1016/j.applthermaleng.2020.115801. DOI
Meliță L., Croitoru C. Aerogel, a high performance material for thermal insulation—A brief overview of the building applications. E3S Web Conf. 2019;111:06069. doi: 10.1051/e3sconf/201911106069. DOI
Jelle B.P., Baetens R., Gustavsen A. The Sol-Gel Handbook. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2015. Aerogel Insulation for Building Applications; pp. 1385–1412. DOI
Nannan Z., Chinese Academy of Sciences Advanced Aerogel Composite Developed for Extreme Thermal Environments. [(accessed on 8 June 2025)]. Available online: https://phys.org/news/2025-04-advanced-aerogel-composite-extreme-thermal.html.
Shang L., Lyu Y., Han W. Microstructure and Thermal Insulation Property of Silica Composite Aerogel. Materials. 2019;12:993. doi: 10.3390/ma12060993. PubMed DOI PMC
Liu R., Dong X., Xie S., Jia T., Xue Y., Liu J., Jing W., Guo A. Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels. Chem. Eng. J. 2019;360:464–472. doi: 10.1016/j.cej.2018.12.018. DOI
Nocentini K., Ibrahim M., Biwole P.H., Achard P. Multi-scale thermal, energetic and economic analysis of composite insulating materials made of silica aerogel in a fibrous inorganic mat. Energy Build. 2022;272:112365. doi: 10.1016/j.enbuild.2022.112365. DOI
Lakatos Á., Trník A. Thermal Diffusion in Fibrous Aerogel Blankets. Energies. 2020;13:823. doi: 10.3390/en13040823. DOI
Kovács Z., Csík A., Lakatos Á. Thermal stability investigations of different aerogel insulation materials at elevated temperature. Therm. Sci. Eng. Prog. 2023;42:101906. doi: 10.1016/j.tsep.2023.101906. DOI
Yue J., Qin M., Yu H., He Q., Feng W. Superelastic Graphene-Based Composite Aerogel for Thermal and Electromagnetic Protection in Extreme Temperature Environments. Adv. Funct. Mater. 2025:2508319. doi: 10.1002/adfm.202508319. DOI
Yu D., Xue T., Ma Z., Hu Z., Long L., Miao Y.-E., Fan W., Liu T. 3D Printed Polyimide/Silica Composite Aerogels for Customizable Thermal Insulation from −50 °C to 1300 °C. Chin. J. Polym. Sci. 2024;42:936–945. doi: 10.1007/s10118-024-3130-8. DOI
Zhao G., Shi L., Yang G., Zhuang X., Cheng B. 3D fibrous aerogels from 1D polymer nanofibers for energy and environmental applications. J. Mater. Chem. A. 2023;11:512–547. doi: 10.1039/D2TA05984C. DOI
Wang Z., Huang C., Han X., Li S., Wang Z., Huang J., Liu H., Chen Z. Fabrication of aerogel scaffolds with adjustable macro/micro-pore structure through 3D printing and sacrificial template method for tissue engineering. Mater. Des. 2022;217:110662. doi: 10.1016/j.matdes.2022.110662. DOI
Liu C., Wang S., Wang N., Yu J., Liu Y.-T., Ding B. From 1D Nanofibers to 3D Nanofibrous Aerogels: A Marvellous Evolution of Electrospun SiO2 Nanofibers for Emerging Applications. Nano-Micro Lett. 2022;14:194. doi: 10.1007/s40820-022-00937-y. PubMed DOI PMC
Si Q.L., Tang G.H., Yang M.Y., Yang R., Hu Y., Du M., Zhang H. Ambient-dried hydrophobic silica aerogels for both enhanced transparency and thermal insulation. Ceram. Int. 2024;50:48680–48691. doi: 10.1016/j.ceramint.2024.09.218. DOI
Ren S. Scalable and Cost-Effective Roll-to-Roll Additive Manufacturing of Highly Durable and Thermal Insulating Silica-Carbon Aerogel. State University of New York SUNY; Buffalo, NY, USA: 2023. Final Report. DOI
Zhao X., Yang F., Wang Z., Ma P., Dong W., Hou H., Fan W., Liu T. Mechanically strong and thermally insulating polyimide aerogels by homogeneity reinforcement of electrospun nanofibers. Compos. Part B Eng. 2020;182:107624. doi: 10.1016/j.compositesb.2019.107624. DOI
Yang M., Lixia Y., Chen Z., Qiong W., Wang Y., Liu T., Li M. Flexible Electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation. Ceram. Int. 2023;49:9165–9172. doi: 10.1016/j.ceramint.2022.11.076. DOI
He Y., Wu S., Yuen A.C.Y., Huang F., Boyer C., Wang C.H., Zhang J. Scalable Manufacturing Process and Multifunctional Performance of Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Bio-Composites Coated by Graphene Oxide. Polymers. 2022;14:3946. doi: 10.3390/polym14193946. PubMed DOI PMC
Lu L., Wang H., Yun S., Hu J., Wang M. A state-of-the-art review of novel aerogel insulation materials for building exterior walls. Energy Sources Part A Recovery Util. Environ. Eff. 2024;46:16231–16252. doi: 10.1080/15567036.2024.2424915. DOI
Illera D., Mesa J., Gomez H., Maury H. Cellulose Aerogels for Thermal Insulation in Buildings: Trends and Challenges. Coatings. 2018;8:345. doi: 10.3390/coatings8100345. DOI
Koh C.H., Schollbach K., Gauvin F., Brouwers H.J.H. Aerogel composite for cavity wall rehabilitation in the Netherlands: Material characterization and thermal comfort assessment. Build. Environ. 2022;224:109535. doi: 10.1016/j.buildenv.2022.109535. DOI
Yang W., Wang Y., Liu J. Optimization of the thermal conductivity test for building insulation materials under multifactor impact. Constr. Build. Mater. 2022;332:127380. doi: 10.1016/j.conbuildmat.2022.127380. DOI
Sambucci M., Savoni F., Valente M. Aerogel Technology for Thermal Insulation of Cryogenic Tanks—Numerical Analysis for Comparison with Traditional Insulating Materials. Gels. 2023;9:307. doi: 10.3390/gels9040307. PubMed DOI PMC
Park M. Recent Advances in Wearable Thermal Devices for Virtual and Augmented Reality. Micromachines. 2025;16:383. doi: 10.3390/mi16040383. PubMed DOI PMC
Chen L., Yu X., Gao M., Xu C., Zhang J., Zhang X., Zhu M., Cheng Y. Renewable biomass-based aerogels: From structural design to functional regulation. Chem. Soc. Rev. 2024;53:7489–7530. doi: 10.1039/D3CS01014G. PubMed DOI
Pyrogel X.T.E. Aspen Aerogels. [(accessed on 28 June 2025)]. Available online: https://www.aerogel.com/product/pyrogel-xte/
High Performance Thermal Insulation—Thermablok Aerogel, Thermablok–Intelligent Insulation—High Performance Thermal Insulation. [(accessed on 28 June 2025)]. Available online: https://www.thermablok.co.uk/
Aerogel Technologies, LLC|Classic Aerogel Products. [(accessed on 28 June 2025)]. Available online: https://www.aerogeltechnologies.com/classic-aerogels/classic-aerogel-products/
Trifu R., Begag R., Gould G., White S. Aerogel Composites Having Thermal Storage Capacity. 11130895B2. [(accessed on 28 June 2025)];U.S. Patent. 2021 September 28; Available online: https://patents.google.com/patent/US11130895B2/en?q=(US+Patent+Aerogel+Composites+Enhanced+Thermal+Stability)&oq=US+Patent+Aerogel+Composites+with+Enhanced+Thermal+Stability.
Ristic-Lehmann C., Farnworth B., Dutta A. Aerogel/PTFE Composite Insulating Material. 7226969B2. [(accessed on 28 June 2025)];U.S. Patent. 2007 June 5; Available online: https://patents.google.com/patent/US7226969B2/en.
Liao Y., Wu H., Ding Y., Yin S., Wang M., Cao A. Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites. J. Sol-Gel Sci. Technol. 2012;63:445–456. doi: 10.1007/s10971-012-2806-7. DOI
Song Z., Lei Y., Ran W., Yuan M., Shang S., Cui S. Structural properties and barrier performance of low-cost aerogel composites for building insulation. J. Build. Eng. 2024;90:109485. doi: 10.1016/j.jobe.2024.109485. DOI
Wang H., Huang Y., Liu S., Gao Y., Cheng X., Meng C. A review of silica fiber-based aerogels: Composition, construction methods, mechanical enhancement strategies and applications. Eur. Polym. J. 2024;220:113367. doi: 10.1016/j.eurpolymj.2024.113367. DOI
Wu Q., Yang M., Chen Z., Lu L., Ma Z., Ding Y., Yin L., Liu T., Li M., Yang L., et al. A layered aerogel composite with silica fibers, SiC nanowires, and silica aerogels ternary networks for thermal insulation at high-temperature. J. Mater. Sci. Technol. 2025;204:71–80. doi: 10.1016/j.jmst.2024.03.031. DOI
Zhu Z., Zhang W., Huang H., Li W., Ling H., Zhang H. A Review of High-Temperature Resistant Silica Aerogels: Structural Evolution and Thermal Stability Optimization. Gels. 2025;11:357. doi: 10.3390/gels11050357. PubMed DOI PMC
Huang W., Yang Y., Gu H., Yu W., Shao G. A core–shell carbon–ceramic fibrous aerogel derived from aramid-polysilsesquioxane for broadband electromagnetic wave absorption. J. Mater. Chem. C. 2025;13:10658–10670. doi: 10.1039/D5TC01397F. DOI
Zhang W., Wang Y., Li J. Sustainable 3D Printing Aerogel Materials and Application: A Review. IFFTI Annu. Proc. 2024;3:306–312.
Chen Y., Shafiq M., Liu M., Morsi Y., Mo X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact. Mater. 2020;5:963–979. doi: 10.1016/j.bioactmat.2020.06.023. PubMed DOI PMC
RMishra, Behera B.K., Muller M., Petru M. Finite element modeling based thermodynamic simulation of aerogel embedded nonwoven thermal insulation material. Int. J. Therm. Sci. 2021;164:106898. doi: 10.1016/j.ijthermalsci.2021.106898. DOI
Wang M. A Multiscale Method Across Three Length Scales for Progressive Damage Analysis of Plain Woven Composites. Appl Compos. Mater. 2021;28:1919–1944. doi: 10.1007/s10443-021-09917-8. DOI
Karaaslan M.A., Kadla J.F., Ko F.K. 5-Lignin-Based Aerogels. In: Faruk O., Sain M., editors. Lignin in Polymer Composites. William Andrew Publishing; Norwich, NY, USA: 2016. pp. 67–93. DOI
Zhang R., Gu H., Hou X., Zhou P. High-temperature resistant Y2SiO5–TiO2 aerogel composite for efficient thermal insulation. J. Porous Mater. 2021;28:57–64. doi: 10.1007/s10934-020-00935-8. DOI
Li L., Lyu J., Cheng Q., Fu C., Zhang X. Versatile Recyclable Kevlar Nanofibrous Aerogels Enabled by Destabilizing Dynamic Balance Strategy. Adv. Fiber Mater. 2023;5:1050–1062. doi: 10.1007/s42765-023-00273-9. DOI
García-González C.A., Blanco-Vales M., Barros J., Boccia A.C., Budtova T., Durães L., Erkey C., Gallo M., Herman P., Kalmár J., et al. Review and Perspectives on the Sustainability of Organic Aerogels. ACS Sustain. Chem. Eng. 2025;13:6469–6492. doi: 10.1021/acssuschemeng.4c09747. PubMed DOI PMC
An L., Wang J., Petit D., Armstrong J.N., Li C., Hu Y., Huang Y., Shao Z., Ren S. A scalable crosslinked fiberglass-aerogel thermal insulation composite. Appl. Mater. Today. 2020;21:100843. doi: 10.1016/j.apmt.2020.100843. DOI
Maleki H., Durães L., Portugal A. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications. Microporous Mesoporous Mater. 2014;197:116–129. doi: 10.1016/j.micromeso.2014.06.003. DOI