Isolation of Mycosporine-like Amino Acids from Red Macroalgae and a Marine Lichen by High-Performance Countercurrent Chromatography: A Strategy to Obtain Biological UV-Filters

. 2023 Jun 10 ; 21 (6) : . [epub] 20230610

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37367682

Grantová podpora
Project Blue Nutricosmeceutics with Cyanobacteria and Algae; NAZCA, PY20-00458 Junta de Andalucía
ALGA-HUB project; TED2021-131555B-C22 Ministry of Science and Innovation of Spain
NCK grant TN010000048/03 Technology Agency of the Czech Republic

Marine organisms have gained considerable biotechnological interest in recent years due to their wide variety of bioactive compounds with potential applications. Mycosporine-like amino acids (MAAs) are UV-absorbing secondary metabolites with antioxidant and photoprotective capacity, mainly found in organisms living under stress conditions (e.g., cyanobacteria, red algae, or lichens). In this work, five MAAs were isolated from two red macroalgae (Pyropia columbina and Gelidium corneum) and one marine lichen (Lichina pygmaea) by high-performance countercurrent chromatography (HPCCC). The selected biphasic solvent system consisted of ethanol, acetonitrile, saturated ammonium sulphate solution, and water (1:1:0.5:1; v:v:v:v). The HPCCC process for P. columbina and G. corneum consisted of eight separation cycles (1 g and 200 mg of extract per cycle, respectively), whereas three cycles were performed for of L. pygmaea (1.2 g extract per cycle). The separation process resulted in fractions enriched with palythine (2.3 mg), asterina-330 (3.3 mg), shinorine (14.8 mg), porphyra-334 (203.5 mg) and mycosporine-serinol (46.6 mg), which were subsequently desalted by using precipitation with methanol and permeation on a Sephadex G-10 column. Target molecules were identified by HPLC, MS, and NMR.

Zobrazit více v PubMed

Bais A.F., Bernhard G., McKenzie R.L., Aucamp P.J., Young P.J., Ilyas M., Jöckel P., Deushi M. Ozone–Climate Interactions and Effects on Solar Ultraviolet Radiation. Photochem. Photobiol. Sci. 2019;18:602–640. doi: 10.1039/c8pp90059k. PubMed DOI

Juzeniene A., Moan J. Beneficial Effects of UV Radiation Other than via Vitamin D Production. Dermatoendocrinology. 2012;4:109–117. doi: 10.4161/derm.20013. PubMed DOI PMC

Trummer C., Pandis M., Verheyen N., Grübler M.R., Gaksch M., Obermayer-Pietsch B., Tomaschitz A., Pieber T.R., Pilz S., Schwetz V. Beneficial Effects of UV-Radiation: Vitamin D and Beyond. Int. J. Environ. Res. Public Health. 2016;13:1028. doi: 10.3390/ijerph13101028. PubMed DOI PMC

Ferguson A.L., Kok L.F., Luong J.K., van den Bergh M., Bell-Anderson K.S., Fazakerley D.J., Byrne S.N. Exposure to Solar Ultraviolet Radiation Limits Diet-Induced Weight Gain, Increases Liver Triglycerides and Prevents the Early Signs of Cardiovascular Disease in Mice. Nutr. Metab. Cardiovasc. Dis. 2019;29:633–638. doi: 10.1016/j.numecd.2019.02.006. PubMed DOI

Holick M.F. Sunlight, UV-Radiation, Vitamin D and Skin Cancer: How Much Sunlight Do We Need? Adv. Exp. Med. Biol. 2008;624:1–15. doi: 10.1007/978-0-387-77574-6_1. PubMed DOI

Ichihashi M., Ueda M., Budiyanto A., Bito T., Oka M., Fukunaga M., Tsuru K., Horikawa T. UV-Induced Skin Damage. Toxicology. 2003;189:21–39. doi: 10.1016/S0300-483X(03)00150-1. PubMed DOI

Matsumura Y., Ananthaswamy H.N. Toxic Effects of Ultraviolet Radiation on the Skin. Toxicol. Appl. Pharmacol. 2004;195:298–308. doi: 10.1016/j.taap.2003.08.019. PubMed DOI

Wölfle U., Seelinger G., Bauer G., Meinke M.C., Lademann J., Schempp C.M. Reactive Molecule Species and Antioxidative Mechanisms in Normal Skin and Skin Aging. Skin Pharmacol. Physiol. 2014;27:316–332. doi: 10.1159/000360092. PubMed DOI

Narayanan D.L., Saladi R.N., Fox J.L. Ultraviolet Radiation and Skin Cancer. Int. J. Dermatol. 2010;49:978–986. doi: 10.1111/j.1365-4632.2010.04474.x. PubMed DOI

Shaath N.A. Ultraviolet Filters. Photochem. Photobiol. Sci. 2010;9:464–469. doi: 10.1039/b9pp00174c. PubMed DOI

Sánchez-Quiles D., Tovar-Sánchez A. Sunscreens as a Source of Hydrogen Peroxide Production in Coastal Waters. Environ. Sci. Technol. 2014;48:9037–9042. doi: 10.1021/es5020696. PubMed DOI

Gago-Ferrero P., Alonso M.B., Bertozzi C.P., Marigo J., Barbosa L., Cremer M., Secchi E.R., Azevedo A., Lailson-Brito J., Torres J.P.M., et al. First Determination of UV Filters in Marine Mammals. Octocrylene Levels in Franciscana Dolphins. Environ. Sci. Technol. 2013;47:5619–5625. doi: 10.1021/es400675y. PubMed DOI

Tsui M.M.P., Lam J.C.W., Ng T.Y., Ang P.O., Murphy M.B., Lam P.K.S. Occurrence, Distribution, and Fate of Organic UV Filters in Coral Communities. Environ. Sci. Technol. 2017;51:4182–4190. doi: 10.1021/acs.est.6b05211. PubMed DOI

Miller I.B., Pawlowski S., Kellermann M.Y., Petersen-Thiery M., Moeller M., Nietzer S., Schupp P.J. Toxic Effects of UV Filters from Sunscreens on Coral Reefs Revisited: Regulatory Aspects for “Reef Safe” Products. Environ. Sci. Eur. 2021;33:74. doi: 10.1186/s12302-021-00515-w. DOI

Avenel-Audran M., Dutartre H., Goossens A., Jeanmougin M., Comte C., Bernier C., Benkalfate L., Michel M., Ferrier-Lebouëdec M.C., Vigan M., et al. Octocrylene, an Emerging Photoallergen. Arch. Dermatol. 2010;146:753–757. doi: 10.1001/archdermatol.2010.132. PubMed DOI

Krause M., Klit A., Blomberg Jensen M., Søeborg T., Frederiksen H., Schlumpf M., Lichtensteiger W., Skakkebaek N.E., Drzewiecki K.T. Sunscreens: Are They Beneficial for Health? An Overview of Endocrine Disrupting Properties of UV-Filters. Int. J. Androl. 2012;35:424–436. doi: 10.1111/j.1365-2605.2012.01280.x. PubMed DOI

Kockler J., Oelgemöller M., Robertson S., Glass B.D. Photostability of Sunscreens. J. Photochem. Photobiol. C Photochem. Rev. 2012;13:91–110. doi: 10.1016/j.jphotochemrev.2011.12.001. DOI

Sun Y., Zhang N., Zhou J., Dong S., Zhang X., Guo L., Guo G. Distribution, Contents, and Types of Mycosporine-like Amino Acids (MAAs) in Marine Macroalgae and a Database for Maas Based on These Characteristics. Mar. Drugs. 2020;18:43. doi: 10.3390/md18010043. PubMed DOI PMC

Sinha R.P., Häder D.P. UV-Protectants in Cyanobacteria. Plant Sci. 2008;174:278–289. doi: 10.1016/j.plantsci.2007.12.004. DOI

Wada N., Sakamoto T., Matsugo S. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants. Antioxidants. 2015;4:603–646. doi: 10.3390/antiox4030603. PubMed DOI PMC

Chrapusta E., Kaminski A., Duchnik K., Bober B., Adamski M., Bialczyk J. Mycosporine-Like Amino Acids: Potential Health and Beauty Ingredients. Mar. Drugs. 2017;15:326. doi: 10.3390/md15100326. PubMed DOI PMC

Navarro N., Figueroa F., Korbee N., Bonomi J., Álvarez Gómez F., de la Coba F. Mycosporine-like Amino Acids from Red Algae to Develop Natural UV Sunscreens. In: Rastogi R.P., editor. Sunscreens: Source, Formulations, Efficacy and Recommendations. Nova Science Publishers, Inc.; New York, NY, USA: 2018. pp. 99–129.

Vega J., Schneider G., Moreira B.R., Herrera C., Bonomi-Barufi J., Figueroa F.L. Mycosporine-Like Amino Acids from Red Macroalgae: UV-Photoprotectors with Potential Cosmeceutical Applications. Appl. Sci. 2021;11:5112. doi: 10.3390/app11115112. DOI

Conde F.R., Churio M.S., Previtali C.M. The Photoprotector Mechanism of Mycosporine-like Amino Acids. Excited-State Properties and Photostability of Porphyra-334 in Aqueous Solution. J. Photochem. Photobiol. B. 2000;56:139–144. doi: 10.1016/S1011-1344(00)00066-X. PubMed DOI

Schmid D., Schurch C., Zulli F., Nissen H.P., Prieur H. Mycosporine-like Amino Acids: Natural UV-Screening Compounds from Red Algae to Protect the Skin against Photoaging. SÖFW-J. 2003;129:38–42.

Torres A., Enk C.D., Hochberg M., Srebnik M. Porphyra-334, a Potential Natural Source for UVA Protective Sunscreens. Photochem. Photobiol. Sci. 2006;5:432–435. doi: 10.1039/b517330m. PubMed DOI

de La Coba F., Aguilera J., Figueroa F.L., de Gálvez M.V., Herrera E. Antioxidant Activity of Mycosporine-like Amino Acids Isolated from Three Red Macroalgae and One Marine Lichen. J. Appl. Phycol. 2009;21:161–169. doi: 10.1007/s10811-008-9345-1. DOI

Hartmann A., Gostner J., Fuchs J.E., Chaita E., Aligiannis N., Skaltsounis L., Ganzera M. Inhibition of Collagenase by Mycosporine-like Amino Acids from Marine Sources. Planta Med. 2015;81:813–820. doi: 10.1055/s-0035-1546105. PubMed DOI PMC

Choi Y.H., Yang D.J., Kulkarni A., Moh S.H., Kim K.W. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes. Mar. Drugs. 2015;13:7055–7066. doi: 10.3390/md13127056. PubMed DOI PMC

Becker K., Hartmann A., Ganzera M., Fuchs D., Gostner J. Immunomodulatory Effects of the Mycosporine-Like Amino Acids Shinorine and Porphyra-334. Mar. Drugs. 2016;14:119. doi: 10.3390/md14060119. PubMed DOI PMC

de la Coba F., Aguilera J., Korbee N., de Gálvez M.V., Herrera-Ceballos E., Álvarez-Gómez F., Figueroa F.L. UVA and UVB Photoprotective Capabilities of Topical Formulations Containing Mycosporine-like Amino Acids (Maas) through Different Biological Effective Protection Factors (BEPFs) Mar. Drugs. 2019;17:55. doi: 10.3390/md17010055. PubMed DOI PMC

Orfanoudaki M., Hartmann A., Alilou M., Gelbrich T., Planchenault P., Derbré S., Schinkovitz A., Richomme P., Hensel A., Ganzera M. Absolute Configuration of Mycosporine-Like Amino Acids, Their Wound Healing Properties and In Vitro Anti-Aging Effects. Mar. Drugs. 2019;18:35. doi: 10.3390/md18010035. PubMed DOI PMC

Geraldes V., de Medeiros L.S., Jacinavicius F.R., Long P.F., Pinto E. Development and Validation of a Rapid LC-MS/MS Method for the Quantification of Mycosporines and Mycosporine-like Amino Acids (MAAs) from Cyanobacteria. Algal Res. 2020;46:101796. doi: 10.1016/j.algal.2020.101796. DOI

Ito Y. Countercurrent Chromatography. J. Biochem. Biophys. 1981;5:105–129. doi: 10.1016/0165-022X(81)90011-7. PubMed DOI

Marston A., Hostettmann K. Developments in the Application of Counter-Current Chromatography to Plant Analysis. J. Chromatogr. A. 2006;1112:181–194. doi: 10.1016/j.chroma.2005.10.018. PubMed DOI

Winterhalter P. Application of Countercurrent Chromatography (CCC) to the Analysis of Natural Pigments. Trends Food Sci. Technol. 2007;18:507–513. doi: 10.1016/j.tifs.2007.04.013. DOI

Skalicka-Woźniak K., Garrard I. Counter-Current Chromatography for the Separation of Terpenoids: A Comprehensive Review with Respect to the Solvent Systems Employed. Phytochem. Rev. 2014;13:547–572. doi: 10.1007/s11101-014-9348-2. PubMed DOI PMC

Fábryová T., Cheel J., Kubáč D., Hrouzek P., Vu D.L., Tůmová L., Kopecký J. Purification of Lutein from the Green Microalgae Chlorella Vulgaris by Integrated Use of a New Extraction Protocol and a Multi-Injection High Performance Counter-Current Chromatography (HPCCC) Algal Res. 2019;41:101574. doi: 10.1016/j.algal.2019.101574. DOI

Gong Y., Huang X.Y., Pei D., da Duan W., Zhang X., Sun X., Di D.L. The Applicability of High-Speed Counter Current Chromatography to the Separation of Natural Antioxidants. J. Chromatogr. A. 2020;1623:461150. doi: 10.1016/j.chroma.2020.461150. PubMed DOI

Bárcenas-Pérez D., Lukeš M., Hrouzek P., Kubáč D., Kopecký J., Kaštánek P., Cheel J. A Biorefinery Approach to Obtain Docosahexaenoic Acid and Docosapentaenoic Acid N-6 from Schizochytrium Using High Performance Countercurrent Chromatography. Algal Res. 2021;55:102241. doi: 10.1016/j.algal.2021.102241. DOI

Li L., Zhao J., Yang T., Sun B. High-Speed Countercurrent Chromatography as an Efficient Technique for Large Separation of Plant Polyphenols: A Review. Food Res. Int. 2022;153:110956. doi: 10.1016/j.foodres.2022.110956. PubMed DOI

DeAmicis C., Edwards N.A., Giles M.B., Harris G.H., Hewitson P., Janaway L., Ignatova S. Comparison of Preparative Reversed Phase Liquid Chromatography and Countercurrent Chromatography for the Kilogram Scale Purification of Crude Spinetoram Insecticide. J. Chromatogr. A. 2011;1218:6122–6127. doi: 10.1016/j.chroma.2011.06.073. PubMed DOI

Roullier C., Chollet-Krugler M., Bernard A., Boustie J. Multiple Dual-Mode Centrifugal Partition Chromatography as an Efficient Method for the Purification of a Mycosporine from a Crude Methanolic Extract of Lichina Pygmaea. J. Chromatogr. B. 2009;877:2067–2073. doi: 10.1016/j.jchromb.2009.05.040. PubMed DOI

Orfanoudaki M., Hartmann A., Karsten U., Ganzera M. Chemical Profiling of Mycosporine-like Amino Acids in Twenty-three Red Algal Species. J. Phycol. 2019;55:393–403. doi: 10.1111/jpy.12827. PubMed DOI PMC

Zwerger M., Schwaiger S., Ganzera M. Efficient Isolation of Mycosporine-Like Amino Acids from Marine Red Algae by Fast Centrifugal Partition Chromatography. Mar. Drugs. 2022;20:106. doi: 10.3390/md20020106. PubMed DOI PMC

Huovinen P., Gómez I., Figueroa F.L., Ulloa N., Morales V., Lovengreen C. Ultraviolet-Absorbing Mycosporine-like Amino Acids in Red Macroalgae from Chile. Bot. Mar. 2004;47:21–29. doi: 10.1515/BOT.2004.003. DOI

Briani B., Sissini M.N., Lucena L.A., Batista M.B., Costa I.O., Nunes J.M.C., Schmitz C., Ramlov F., Maraschin M., Korbee N., et al. The Influence of Environmental Features in the Content of Mycosporine-like Amino Acids in Red Marine Algae along the Brazilian Coast. J. Phycol. 2018;54:380–390. doi: 10.1111/jpy.12640. PubMed DOI

Schneider G., Figueroa F.L., Vega J., Chaves P., Álvarez-Gómez F., Korbee N., Bonomi-Barufi J. Photoprotection Properties of Marine Photosynthetic Organisms Grown in High Ultraviolet Exposure Areas: Cosmeceutical Applications. Algal Res. 2020;49:101956. doi: 10.1016/j.algal.2020.101956. DOI

Vega J., Bonomi-Barufi J., Gómez-Pinchetti J.L., Figueroa F.L. Cyanobacteria and Red Macroalgae as Potential Sources of Antioxidants and UV Radiation-Absorbing Compounds for Cosmeceutical Applications. Mar. Drugs. 2020;18:659. doi: 10.3390/md18120659. PubMed DOI PMC

Álvarez-Gómez F., Korbee N., Figueroa F.L. Analysis of Antioxidant Capacity and Bioactive Compounds in Marine Macroalgal and Lichenic Extracts Using Different Solvents and Evaluation Methods. Cienc. Mar. 2016;42:271–288. doi: 10.7773/cm.v42i4.2677. DOI

Ito Y. Golden Rules and Pitfalls in Selecting Optimum Conditions for High-Speed Counter-Current Chromatography. J. Chromatogr. A. 2005;1065:145–168. doi: 10.1016/j.chroma.2004.12.044. PubMed DOI

Ito Y., Conway W.D. Experimental Observations of the Hydrodynamic Behavior of Solvent Systems in High-Speed Counter-Current Chromatography: III. Effects of Physical Properties of the Solvent Systems and Operating Temperature on the Distribution of Two-Phase Solvent Systems. J. Chromatogr. A. 1984;301:405–414. doi: 10.1016/S0021-9673(01)89214-1. PubMed DOI

Mohammad A.W., Teow Y.H., Ang W.L., Chung Y.T., Oatley-Radcliffe D.L., Hilal N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination. 2015;356:226–254. doi: 10.1016/J.DESAL.2014.10.043. DOI

Karsten U., Escoubeyrou K., Charles F. The Effect of Re-Dissolution Solvents and HPLC Columns on the Analysis of Mycosporine-like Amino Acids in the Eulittoral Macroalgae Prasiola Crispa and Porphyra Umbilicalis. Helgol. Mar. Res. 2009;63:231–238. doi: 10.1007/s10152-009-0152-0. DOI

Chaves-Peña P., De La Coba F., Figueroa F.L., Korbee N. Quantitative and Qualitative HPLC Analysis of Mycosporine-like Amino Acids Extracted in Distilled Water for Cosmetical Uses in Four Rhodophyta. Mar. Drugs. 2020;18:27. doi: 10.3390/md18010027. PubMed DOI PMC

Zwerger M., Ganzera M. Fast and Efficient Separation of Eleven Mycosporine-like Amino Acids by UHPLC-DAD and Their Quantification in Diverse Red Algae. Mar. Drugs. 2022;20:395. doi: 10.3390/md20060395. PubMed DOI PMC

Suau R., Rico R., López-Romero J.M., Nájera F., Ruiz A., Ortiz-López F.J. Synthesis of 3,4-Dioxocularine and Aristocularine Alkaloids in Aconvergentroute from Aryloxy-Phenyl Acetamides Involving Oxalyl Chloride-Lewisacid. Arkivoc. 2002;2002:62–72. doi: 10.3998/ark.5550190.0003.508. DOI

Sutherland I., Thickitt C., Douillet N., Freebairn K., Johns D., Mountain C., Wood P., Edwards N., Rooke D., Harris G., et al. Scalable Technology for the Extraction of Pharmaceutics: Outcomes from a 3 Year Collaborative Industry/Academia Research Programme. J. Chromatogr. A. 2013;1282:84–94. doi: 10.1016/j.chroma.2013.01.049. PubMed DOI

de la Coba F., Aguilera J., de Gálvez M., Álvarez M., Gallego E., Figueroa F.L., Herrera E. Prevention of the Ultraviolet Effects on Clinical and Histopathological Changes, as Well as the Heat Shock Protein-70 Expression in Mouse Skin by Topical Application of Algal UV-Absorbing Compounds. J. Dermatol. Sci. 2009;55:161–169. doi: 10.1016/j.jdermsci.2009.06.004. PubMed DOI

Mercurio D.G., Wagemaker T.A.L., Alves V.M., Benevenuto C.G., Gaspar L.R., Maia Campos P.M.B.G. In Vivo Photoprotective Effects of Cosmetic Formulations Containing UV Filters, Vitamins, Ginkgo Biloba and Red Algae Extracts. J. Photochem. Photobiol. B. 2015;153:121–126. doi: 10.1016/j.jphotobiol.2015.09.016. PubMed DOI

Rui Y., Zhaohui Z., Wenshan S., Bafang L., Hu H. Protective Effect of MAAs Extracted from Porphyra Tenera against UV Irradiation-Induced Photoaging in Mouse Skin. J. Photochem. Photobiol. B. 2019;192:26–33. doi: 10.1016/j.jphotobiol.2018.12.009. PubMed DOI

Ying R., Zhang Z., Zhu H., Li B., Hou H. The Protective Effect of Mycosporine-Like Amino Acids (MAAs) from Porphyra Yezoensis in a Mouse Model of UV Irradiation-Induced Photoaging. Mar. Drugs. 2019;17:470. doi: 10.3390/md17080470. PubMed DOI PMC

Ryu J., Park S.J., Kim I.H., Choi Y.H., Nam T.J. Protective Effect of Porphyra-334 on UVA-Induced Photoaging in Human Skin Fibroblasts. Int. J. Mol. Med. 2014;34:796–803. doi: 10.3892/ijmm.2014.1815. PubMed DOI PMC

Moreira B.R., Vega J., Sisa A.D.A., Bernal J.S.B., Abdala-Díaz R.T., Maraschin M., Figueroa F.L., Bonomi-Barufi J. Antioxidant and Anti-Photoaging Properties of Red Marine Macroalgae: Screening of Bioactive Molecules for Cosmeceutical Applications. Algal Res. 2022;68:102893. doi: 10.1016/j.algal.2022.102893. DOI

Suh S.-S., Hwang J., Park M., Seo H., Kim H.-S., Lee J., Moh S., Lee T.-K. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity. Mar. Drugs. 2014;12:5174–5187. doi: 10.3390/md12105174. PubMed DOI PMC

Lawrence K.P., Gacesa R., Long P.F., Young A.R. Molecular Photoprotection of Human Keratinocytes in Vitro by the Naturally Occurring Mycosporine-like Amino Acid Palythine. Br. J. Dermatol. 2018;178:1353–1363. doi: 10.1111/bjd.16125. PubMed DOI PMC

Misonou T., Saitoh J., Oshiba S., Tokitomo Y., Maegawa M., Inoue Y., Hori H., Sakurai T. UV-Absorbing Substance in the Red Alga Porphyra Yezoensis (Bangiales, Rhodophyta) Block Thymine Photodimer Production. Mar. Biotechnol. 2003;5:194–200. doi: 10.1007/s10126-002-0065-2. PubMed DOI

Fernandes S.C.M., Alonso-Varona A., Palomares T., Zubillaga V., Labidi J., Bulone V. Exploiting Mycosporines as Natural Molecular Sunscreens for the Fabrication of UV-Absorbing Green Materials. ACS Appl. Mater. 2015;7:16558–16564. doi: 10.1021/acsami.5b04064. PubMed DOI

Korbee-Peinado N., Abdala Díaz R.T., Figueroa F.L., Helbling E.W. Ammonium and UV Radiation Stimulate the Accumulation of Mycosporine-like Amino Acids in Porphyra Columbina (Rhodophyta) from Patagonia, Argentina. J. Phycol. 2004;40:248–259. doi: 10.1046/j.1529-8817.2004.03013.x. DOI

Karsten U., Sawall T., Hanelt D., Bischof K., Figueroa F.L., Flores-Moya A., Wiencke C. An Inventory of UV-Absorbing Mycosporine-like Amino Acids in Macroalgae from Polar to Warm-Temperate Regions. Bot. Mar. 1998;41:443–453. doi: 10.1515/botm.1998.41.1-6.443. DOI

La Barre S., Roullier C., Boustie J. Outstanding Marine Molecules. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2014. Mycosporine-Like Amino Acids (MAAs) in Biological Photosystems; pp. 333–360.

Sutherland I.A. Liquid Stationary Phase Retention and Resolution in Hydrodynamic CCC. Compr. Anal. Chem. 2002;38:159–176. doi: 10.1016/S0166-526X(02)80009-5. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...