Temporal turnover of the soil microbiome composition is guild-specific

. 2021 Dec ; 24 (12) : 2726-2738. [epub] 20210930

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34595822

Grantová podpora
LTC20073 Ministerstvo Školství, Mládeže a Tělovýchovy
18-26191S Grantová Agentura České Republiky
21-17749S Grantová Agentura České Republiky
18-26191S Czech Science Foundation
21-17749S Czech Science Foundation
LTC20073 Ministry of Education, Youth and Sports of the Czech Republic
309581 Academy of Finland
Jane and Aatos Erkko Foundation
Research Council of Norway
223257 Centres of Excellence Funding Scheme

Although spatial and temporal variation are both important components structuring microbial communities, the exact quantification of temporal turnover rates of fungi and bacteria has not been performed to date. In this study, we utilised repeated resampling of bacterial and fungal communities at specific locations across multiple years to describe their patterns and rates of temporal turnover. Our results show that microbial communities undergo temporal change at a rate of 0.010-0.025 per year (in units of Sorensen similarity), and the change in soil is slightly faster in fungi than in bacteria, with bacterial communities changing more rapidly in litter than soil. Importantly, temporal development differs across fungal guilds and bacterial phyla with different ecologies. While some microbial guilds show consistent responses across regional locations, others show site-specific development with weak general patterns. These results indicate that guild-level resolution is important for understanding microbial community assembly, dynamics and responses to environmental factors.

Zobrazit více v PubMed

Aronesty, E. (2013) Comparison of sequencing utility programs. The Open Bioinformatics Journal, 7, 1-8.

Averill, C., Cates, L.L., Dietze, M.C. & Bhatnagar, J.M. (2019) Spatial vs. temporal controls over soil fungal community similarity at continental and global scales. ISME Journal, 13, 2082-2093.

Averill, C., Turner, B.L. & Finzi, A.C. (2014) Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature, 505, 543-545.

Bahnmann, B., Mašínová, T., Halvorsen, R., Davey, M.L., Sedlák, P., Tomšovský, M. et al. (2018) Effects of oak, beech and spruce on the distribution and community structure of fungi in litter and soils across a temperate forest. Soil Biology and Biochemistry, 119, 162-173.

Bahram, M., Kohout, P., Anslan, S., Harend, H., Abarenkov, K. & Tedersoo, L. (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. ISME Journal, 10, 885-896.

Baldrian, P. (2017a) Forest microbiome: diversity, complexity and dynamics. FEMS Microbiology Reviews, 41, 109-130.

Baldrian, P. (2017b) Microbial activity and the dynamics of ecosystem processes in forest soils. Current Opinion in Microbiology, 37, 128-134.

Baldrian, P., Větrovský, T., Lepinay, C. & Kohout, P. (2021) High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity, https://doi.org/10.1007/s13225-021-00472-y.

Bates, D., Mächler, M., Bolker, B. & Walker, S. (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48.

Blazewicz, S.J., Hungate, B.A., Koch, B.J., Nuccio, E.E., Morrissey, E., Brodie, E.L. et al. (2020) Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME Journal, 14, 1520-1532.

Boutin, M., Corcket, E., Alard, D., Villar, L., Jiménez, J.-J., Blaix, C. et al. (2017) Nitrogen deposition and climate change have increased vascular plant species richness and altered the composition of grazed subalpine grasslands. Journal of Ecology, 105, 1199-1209.

Brown, J.H., Ernest, S.K.M., Parody, J.M. & Haskell, J.P. (2001) Regulation of diversity: maintenance of species richness in changing environments. Oecologia, 126, 321-332.

Burke, D.J., Carrino-Kyker, S.R. & Burns, J.H. (2019) Is it climate or chemistry? Soil fungal communities respond to soil nutrients in a multi-year high-resolution analysis. Ecosphere, 10, e02896.

Buscardo, E., Geml, J., Schmidt, S.K., Freitas, H., da Cunha, H.B. & Nagy, L. (2018) Spatio-temporal dynamics of soil bacterial communities as a function of Amazon forest phenology. Scientific Reports, 8, 4382.

Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N. et al. (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME Journal, 6, 1621-1624.

Cardoso, P., Mammola, S., Rigal, F. & Carvalho, J. (2021) BAT: Biodiversity assessment tools. https://CRAN.R-project.org/package=BAT.

Carvalho, J.C., Cardoso, P., Borges, P.A.V., Schmera, D. & Podani, J. (2013) Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos, 122, 825-834.

Chase, J.M. (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391.

Cole, J.R., Wang, Q., Fish, J.A., Chai, B.L., McGarrell, D.M., Sun, Y.N. et al. (2014) Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Research, 42, D633-D642.

Crowther, T.W., van den Hoogen, J., Wan, J., Mayes, M.A., Keiser, A.D., Mo, L. et al. (2019) The global soil community and its influence on biogeochemistry. Science, 365, eaav0550.

Dumbrell, A.J., Ashton, P.D., Aziz, N., Feng, G., Nelson, M., Dytham, C. et al. (2011) Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytologist, 190, 794-804.

Edgar, R.C. (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26, 2460-2461.

Edgar, R.C. (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998.

Goldmann, K., Ammerschubert, S., Pena, R., Polle, A., Wu, B.W., Wubet, T. et al. (2020a) Early stage root-associated fungi show a high temporal turnover, but are independent of beech progeny. Microorganisms, 8, 210.

Goldmann, K., Boeddinghaus, R.S., Klemmer, S., Regan, K.M., Heintz-Buschart, A., Fischer, M. et al. (2020b) Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 22, 873-888.

Ihrmark, K., Bodeker, I.T.M., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J. et al. (2012) New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology, 82, 666-677.

in ‘t Zandt, D., Herben, T., Brink, A., Visser, E.J.W. & Kroon, H. (2021) Species abundance fluctuations over 31 years are associated with plant-soil feedback in a species-rich mountain meadow. Journal of Ecology, 109, 1511-1523.

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A. & Kopriva, S. (2017) The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions. Frontiers in Plant Science, 8, 1617.

Jansson, J.K. & Hofmockel, K.S. (2020) Soil microbiomes and climate change. Nature Reviews Microbiology, 18, 35-46.

Jumpponen, A., Jones, K.L. & Blair, J. (2010) Vertical distribution of fungal communities in tallgrass prairie soil. Mycologia, 102, 1027-1041.

Kadowaki, K., Sato, H., Yamamoto, S., Tanabe, A.S., Hidaka, A. & Toju, H. (2014) Detection of the horizontal spatial structure of soil fungal communities in a natural forest. Population Ecology, 56, 301-310.

Karimi, B., Terrat, S., Dequiedt, S., Saby, N.P.A., Horrigue, W., Lelièvre, M. et al. (2018) Biogeography of soil bacteria and archaea across France. Science Advances, 4, eaat1808.

Kennedy, P.G., Peay, K.G. & Bruns, T.D. (2009) Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception? Ecology, 90, 2098-2107.

Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A. & Kuramae, E.E. (2016) The ecology of acidobacteria: moving beyond genes and genomes. Frontiers in Microbiology, 7, 744.

Kivlin, S.N. & Hawkes, C.V. (2016) Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environmental Microbiology, 18, 4662-4673.

Kivlin, S.N. & Hawkes, C.V. (2020) Spatial and temporal turnover of soil microbial communities is not linked to function in a primary tropical forest. Ecology, 101, e02985.

Koch, B.J., McHugh, T.A., Hayer, M., Schwartz, E., Blazewicz, S.J., Dijkstra, P. et al. (2018) Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere, 9, e02090.

Leibold, M.A. & Chase, J.M. (2018) Metacommunity ecology. Princeton monographs in population biology 59. Princeton, NJ: Princeton University Press.

Lennon, J.T. & Jones, S.E. (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nature Reviews Microbiology, 9, 119-130.

Lindahl, B.D., Ihrmark, K., Boberg, J., Trumbore, S.E., Hogberg, P., Stenlid, J. et al. (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611-620.

Livne-Luzon, S., Ovadia, O., Weber, G., Avidan, Y., Migael, H., Glassman, S.I. et al. (2017) Small-scale spatial variability in the distribution of ectomycorrhizal fungi affects plant performance and fungal diversity. Ecology Letters, 20, 1192-1202.

Lladó, S., López-Mondéjar, R. & Baldrian, P. (2017) Forest soil bacteria: diversity, involvement in ecosystem processes, and response to global change. Microbiology and Molecular Biology Reviews, 81, 00063-16.

Lladó, S., Větrovský, T. & Baldrian, P. (2019) Tracking of the activity of individual bacteria in temperate forest soils shows guild-specific responses to seasonality. Soil Biology and Biochemistry, 135, 275-282.

Locey, K.J., Muscarella, M.E., Larsen, M.L., Bray, S.R., Jones, S.E. & Lennon, J.T. (2020) Dormancy dampens the microbial distance-decay relationship. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, 20190243.

López-Mondéjar, R., Voříšková, J., Větrovský, T. & Baldrian, P. (2015) The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biology and Biochemistry, 87, 43-50.

Lozupone, C.A. & Knight, R. (2007) Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 104, 11436-11440.

Lü, X.-T., Reed, S., Hou, S.-L., Hu, Y.-Y., Wei, H.-W., Lü, F.-M. et al. (2017) Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe. Biogeochemistry, 133, 295-305.

Lu, X., Vitousek, P.M., Mao, Q., Gilliam, F.S., Luo, Y., Zhou, G. et al. (2018) Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences, 115, 5187-5192.

Martiny, J.B.H., Jones, S.E., Lennon, J.T. & Martiny, A.C. (2015) Microbiomes in light of traits: a phylogenetic perspective. Science, 350, aac9323.

Mašínová, T., Bahnmann, B.D., Větrovský, T., Tomšovský, M., Merunková, K. & Baldrian, P. (2017) Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiology Ecology, 93, fiw223.

Mašínová, T., Yurkov, A. & Baldrian, P. (2018) Forest soil yeasts: decomposition potential and the utilization of carbon sources. Fungal Ecology, 34, 10-19.

Mummey, D.L. & Rillig, M.C. (2008) Spatial characterization of arbuscular mycorrhizal fungal molecular diversity at the submetre scale in a temperate grassland. FEMS Microbiology Ecology, 64, 260-270.

Navrátilová, D., Větrovský, T. & Baldrian, P. (2017) Spatial heterogeneity of cellulolytic activity and fungal communities within individual decomposing Quercus petraea leaves. Fungal Ecology, 27, 125-133.

Nekola, J.C. & White, P.S. (1999) The distance decay of similarity in biogeography and ecology. Journal of Biogeography, 26, 867-878.

Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D. et al. (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research, 47, D259-D264.

Nilsson, R.H., Veldre, V., Hartmann, M., Unterseher, M., Amend, A., Bergsten, J. et al. (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecology, 3, 284-287.

Nunan, N., Wu, K., Young, I.M., Crawford, J.W. & Ritz, K. (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiology Ecology, 44, 203-215.

Oksanen, J., Blanchet, F.G., Friendly, P., Kindt, R., Legendre, P., McGlinn, D. et al. (2018) vegan: Community ecology package. R package version 2.5-2.

Peay, K.G., Kennedy, P.G. & Talbot, J.M. (2016) Dimensions of biodiversity in the Earth mycobiome. Nature Reviews Microbiology, 14, 434-447.

Põlme, S., Abarenkov, K., Henrik Nilsson, R., Lindahl, B.D., Clemmensen, K.E., Kauserud, H. et al. (2020) FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Diversity, 105, 1-16.

Põlme, S., Bahram, M., Kõljalg, U. & Tedersoo, L. (2014) Global biogeography of Alnus-associated Frankia actinobacteria. New Phytologist, 204, 979-988.

Rillig, M.C., Muller, L.A.H. & Lehmann, A. (2017) Soil aggregates as massively concurrent evolutionary incubators. ISME Journal, 11, 1943-1948.

Sagova-Mareckova, M., Cermak, L., Novotna, J., Plhackova, K., Forstova, J. & Kopecky, J. (2008) Innovative methods for soil DNA purification tested in soils with widely differing characteristics. Applied and Environmental Microbiology, 74, 2902-2907.

Santonja, M., Foucault, Q., Rancon, A., Gauquelin, T., Fernandez, C., Baldy, V. et al. (2018) Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biology and Biochemistry, 125, 27-36.

Shade, A., Gregory Caporaso, J., Handelsman, J., Knight, R. & Fierer, N. (2013) A meta-analysis of changes in bacterial and archaeal communities with time. ISME Journal, 7, 1493-1506.

Šnajdr, J., Valášková, V., Merhautová, Veˇra, Herinková, J., Cajthaml, T. & Baldrian, P. (2008) Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Biochemistry, 40, 2068-2075.

Stevenson, B.A., Hunter, D.W.F. & Rhodes, P.L. (2014) Temporal and seasonal change in microbial community structure of an undisturbed, disturbed, and carbon-amended pasture soil. Soil Biology and Biochemistry, 75, 175-185.

Štursová, M., Bárta, J., Šantručková, H. & Baldrian, P. (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil. FEMS Microbiology Ecology, 92, fiw185.

Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou Nourou, S., Wijesundera, R. et al. (2014) Global diversity and geography of soil fungi. Science, 346, 1256688. https://doi.org/10.1126/science.1256688

Tedersoo, L., Koljalg, U., Hallenberg, N. & Larsson, K.H. (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytologist, 159, 153-165.

Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J. et al. (2017) A communal catalogue reveals Earth’s multiscale microbial diversity. Nature, 551, 457-463.

Vellend, M. (2010) Conceptual synthesis in community ecology. Quarterly Review of Biology, 85, 183-206.

Verstraeten, G., Baeten, L., Van den Broeck, T., De Frenne, P., Demey, A., Tack, W. et al. (2013) Temporal changes in forest plant communities at different site types. Applied Vegetation Science, 16, 237-247.

Větrovský, T., Baldrian, P. & Morais, D. (2018) SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics, 34, 2292-2294.

Větrovský, T., Kohout, P., Kopecký, M., Machac, A., Man, M., Bahnmann, B.D. et al. (2019) A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications, 10, 5142.

Voříšková, J., Brabcová, V., Cajthaml, T. & Baldrian, P. (2014) Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytologist, 201, 269-278.

Wang, J., Liu, G., Zhang, C., Wang, G., Fang, L. & Cui, Y. (2019) Higher temporal turnover of soil fungi than bacteria during long-term secondary succession in a semiarid abandoned farmland. Soil and Tillage Research, 194, 104305.

Zhang, K., Delgado-Baquerizo, M., Zhu, Y.-G. & Chu, H. (2020) Space is more important than season when shaping soil microbial communities at a large spatial scale. mSystems 5, e00783-e719.

Žifčáková, L., Větrovský, T., Howe, A. & Baldrian, P. (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology, 18, 288-301.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Disentangling drivers behind fungal diversity gradients along altitude and latitude

. 2025 Jul ; 247 (1) : 295-308. [epub] 20250225

Forest microbiome and global change

. 2023 Aug ; 21 (8) : 487-501. [epub] 20230320

Regional biogeography versus intra-annual dynamics of the root and soil microbiome

. 2023 Jun 07 ; 18 (1) : 50. [epub] 20230607

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...