Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe

. 2023 Feb 09 ; 14 (1) : 712. [epub] 20230209

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36759605
Odkazy

PubMed 36759605
PubMed Central PMC9911725
DOI 10.1038/s41467-023-36240-6
PII: 10.1038/s41467-023-36240-6
Knihovny.cz E-zdroje

Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.

Biology Education Dokuz Eylul University Izmir Turkey

BIOME Lab Department of Biological Geological and Environmental Sciences Alma Mater Studiorum University of Bologna Bologna Italy

Botanical Garden Institute Ufa Scientific Centre Russian Academy of Sciences Ufa Russia

Center for Biodiversity Dynamics in a Changing World Department of Biology Aarhus University Aarhus C Denmark

Climpact Data Science Nova Sophia Regus Nova Sophia Antipolis Cedex France

Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic

Department of Ecology and Physiology Faculty of Science Radboud University Nijmegen the Netherlands

Department of Environmental Biology Sapienza University of Rome Roma Italy

Department of Forest Biodiversity University of Agriculture in Krakow Kraków Poland

Department of Plant Biology and Ecology Faculty of Science and Technology University of the Basque Country UPV EHU Bilbao Spain

Envixlab Department of Biosciences and Territory University of Molise Pesche Italy

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Suchdol Czech Republic

Faculty of Geography and Earth Sciences University of Latvia Riga Latvia

Faculty of Geotechnical Engineering University of Zagreb Zagreb Croatia

Faculty of Science and Technology Free University of Bozen Bolzano Bolzano Italy

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

IMIB Biodiversity Research Institute University of Oviedo Oviedo Spain

Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

Institute of Botany Nature Research Centre Vilnius Lithuania

Institute of Botany Plant Science and Biodiversity Center Slovak Academy of Sciences Bratislava Slovakia

Max Planck Institute for Biogeochemistry Jena Germany

Plant Ecology Bayreuth Center for Ecology and Environmental Research University of Bayreuth Bayreuth Germany

Research Centre of the Slovenian Academy of Sciences and Arts Jovan Hadži Institute of Biology ZRC SAZU Ljubljana Slovenia

Samara Federal Research Scientific Center Institute of Ecology of the Volga River Basin Russian Academy of Sciences Togliatti Russia

Section for Biodiversity Department of Bioscience Aarhus University Aarhus Denmark

Swiss Federal Research Institute WSL Birmensdorf Switzerland

University of Nova Gorica School for Viticulture and Enology Nova Gorica Slovenia

Vegetation Ecology Research Group Institute of Natural Resource Sciences Wädenswil Switzerland

Zobrazit více v PubMed

Bjorkman AD, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. PubMed

Sabatini FM, et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 2022;13:4683. PubMed PMC

Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 2002;16:545–556.

Chapin FS, III, et al. Consequences of changing biodiversity. Nature. 2000;405:234–242. PubMed

Garnier, E., Navas, M.-L. & Grigulis, K. Plant functional diversity. Organism traits, community structure, and ecosystem properties (Oxford University Press, Oxford, New York, NY, 2016).

Funk JL, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 2017;92:1156–1173. PubMed

Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. PubMed

Adler PB, et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. 2014;111:740–745. PubMed PMC

Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. PubMed

Salguero-Gómez R, et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A. 2016;113:230–235. PubMed PMC

Bergmann J, et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 2020;6:eaba3756. PubMed PMC

Shipley B, et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia. 2016;180:923–931. PubMed

Bruelheide H, et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2018;2:1906–1917. PubMed

McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006;21:178–185. PubMed

Miller JED, Damschen EI, Ives AR. Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 2019;10:415–425.

Guerin GR, et al. Environmental associations of abundance-weighted functional traits in Australian plant communities. Basic Appl. Ecol. 2021;58:98–109.

Walter, H. Vegetation of the earth and ecological systems of the geo-biosphere (Springer-Verlag, Berlin, Germany, 1985).

Ordoñez JC, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009;18:137–149.

Simpson AH, Richardson SJ, Laughlin DC. Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 2016;25:964–978.

Cubino JP, et al. The leaf economic and plant size spectra of European forest understory vegetation. Ecography. 2021;44:1311–1324.

Garnier E, et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 2007;99:967–985. PubMed PMC

Herben T, Klimešová J, Chytrý M. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Funct. Ecol. 2018;32:799–808.

Linder HP, et al. Biotic modifiers, environmental modulation and species distribution models. J. Biogeogr. 2012;39:2179–2190.

Gross N, et al. Linking individual response to biotic interactions with community structure: a trait-based framework. Funct. Ecol. 2009;23:1167–1178.

Ordonez A, Svenning J-C. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Sci. Rep. 2017;7:42988. PubMed PMC

Kemppinen J, et al. Consistent trait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 2021;5:458–467. PubMed

Chytrý M, et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 2016;19:173–180.

Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. EnviDat, 10.16904/envidat.228 (2018). PubMed PMC

Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. PubMed PMC

Kattge J, et al. TRY plant trait database - enhanced coverage and open access. Glob. Change. Biol. 2020;26:119–188. PubMed

Laughlin DC, Leppert JJ, Moore MM, Sieg CH. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 2010;24:493–501.

Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency, European Topic Centre on Nature Protection and Biodiversity, 2004.

Chytrý M, et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 2020;23:648–675.

Pausas JG, Bond WJ. Humboldt and the reinvention of nature. J. Ecol. 2019;107:1031–1037.

Meng T-T, et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences. 2015;12:5339–5352.

Fang J, et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 2005;32:81.

Butler EE, et al. Mapping local and global variability in plant trait distributions. Proc. Natl. Acad. Sci. U.S.A. 2017;114:E10937–E10946. PubMed PMC

Gong H, Gao J. Soil and climatic drivers of plant SLA (specific leaf area) Glob. Ecol. Conserv. 2019;20:e00696.

Laughlin DC, et al. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 2021;5:1–12. PubMed

Carmona CP, et al. Fine-root traits in the global spectrum of plant form and function. Nature. 2021;597:683–687. PubMed

Ding J, Travers SK, Eldridge DJ. Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. J. Veg. Sci. 2021;32:e13095.

Falster DS, Westoby M. Plant height and evolutionary games. Trends Ecol. Evol. 2003;18:337–343.

Kunstler G, et al. Plant functional traits have globally consistent effects on competition. Nature. 2016;529:204–207. PubMed

McLachlan, A. & Brown, A. C. Coastal Dune Ecosystems and Dune/Beach Interactions. In The Ecology of Sandy Shores (Elsevier), 251–271 (2006).

Cui E, Weng E, Yan E, Xia J. Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 2020;11:1–9. PubMed PMC

Cain SA. Life-Forms and Phytoclimate. Bot. Rev. 1950;16:1–32.

Yu S, et al. Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry. Biogeosciences. 2021;18:655–667.

Murray BR, Brown AHD, Dickman CR, Crowther MS. Geographical gradients in seed mass in relation to climate. J. Biogeogr. 2004;31:379–388.

Metz J, et al. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 2010;98:697–704.

Tao S, Guo Q, Li C, Wang Z, Fang J. Global patterns and determinants of forest canopy height. Ecology. 2016;97:3265–3270. PubMed

Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010;19:755–768.

Feeley KJ, Bravo-Avila C, Fadrique B, Perez TM, Zuleta D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 2020;10:965–970.

Bruelheide H, et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 2019;30:161–186.

Schrodt F, et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 2015;24:1510–1521.

Shan, H. et al. Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization (Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012).

Chytrý, M. et al. EUNIS-ESy, version 2021-06-01, 10.5281/zenodo.4812736 (2021).

Wood SN, Pya N, Säfken B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016;111:1548–1563.

Wood, S. N. Generalized Additive Models. An Introduction with R, Second Edition (CRC Press, Portland, Oregon, USA, 2017).

Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142.

Johnson PC. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 2014;5:944–946. PubMed PMC

R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).

Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means; R package version 1.6.2-1 (2021).

Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3:772.

Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modelling; R package version 1.3-3 (2020).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).

Kambach, S. Habitat-specificity of climate-trait relationships in plant communities across Europe. github.com/StephanKambach, version 1.0; 10.5281/zenodo.7404176 (2022).

Moles AT, et al. Global patterns in plant height. J. Ecol. 2009;97:923–932.

Moles AT, et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 2007;16:109–116.

Zheng J, Guo Z, Wang X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 2017;7:2741. PubMed PMC

Saatkamp A, et al. A research agenda for seed-trait functional ecology. N. Phytol. 2019;221:1764–1775. PubMed

Freschet GT, et al. Climate, soil and plant functional types as drivers of global fine‐root trait variation. J. Ecol. 2017;105:1182–1196.

Weigelt A, et al. An integrated framework of plant form and function: The belowground perspective. N. Phytol. 2021;232:42–59. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Global decoupling of functional and phylogenetic diversity in plant communities

. 2025 Feb ; 9 (2) : 237-248. [epub] 20241203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...