Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36759605
PubMed Central
PMC9911725
DOI
10.1038/s41467-023-36240-6
PII: 10.1038/s41467-023-36240-6
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- rostliny * MeSH
- semena rostlinná MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Ecological theory predicts close relationships between macroclimate and functional traits. Yet, global climatic gradients correlate only weakly with the trait composition of local plant communities, suggesting that important factors have been ignored. Here, we investigate the consistency of climate-trait relationships for plant communities in European habitats. Assuming that local factors are better accounted for in more narrowly defined habitats, we assigned > 300,000 vegetation plots to hierarchically classified habitats and modelled the effects of climate on the community-weighted means of four key functional traits using generalized additive models. We found that the predictive power of climate increased from broadly to narrowly defined habitats for specific leaf area and root length, but not for plant height and seed mass. Although macroclimate generally predicted the distribution of all traits, its effects varied, with habitat-specificity increasing toward more narrowly defined habitats. We conclude that macroclimate is an important determinant of terrestrial plant communities, but future predictions of climatic effects must consider how habitats are defined.
Biology Education Dokuz Eylul University Izmir Turkey
Botanical Garden Institute Ufa Scientific Centre Russian Academy of Sciences Ufa Russia
Climpact Data Science Nova Sophia Regus Nova Sophia Antipolis Cedex France
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Ecology and Physiology Faculty of Science Radboud University Nijmegen the Netherlands
Department of Environmental Biology Sapienza University of Rome Roma Italy
Department of Forest Biodiversity University of Agriculture in Krakow Kraków Poland
Envixlab Department of Biosciences and Territory University of Molise Pesche Italy
Faculty of Geography and Earth Sciences University of Latvia Riga Latvia
Faculty of Geotechnical Engineering University of Zagreb Zagreb Croatia
Faculty of Science and Technology Free University of Bozen Bolzano Bolzano Italy
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
IMIB Biodiversity Research Institute University of Oviedo Oviedo Spain
Institute of Botany Nature Research Centre Vilnius Lithuania
Max Planck Institute for Biogeochemistry Jena Germany
Section for Biodiversity Department of Bioscience Aarhus University Aarhus Denmark
Swiss Federal Research Institute WSL Birmensdorf Switzerland
University of Nova Gorica School for Viticulture and Enology Nova Gorica Slovenia
Vegetation Ecology Research Group Institute of Natural Resource Sciences Wädenswil Switzerland
Zobrazit více v PubMed
Bjorkman AD, et al. Plant functional trait change across a warming tundra biome. Nature. 2018;562:57–62. PubMed
Sabatini FM, et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 2022;13:4683. PubMed PMC
Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 2002;16:545–556.
Chapin FS, III, et al. Consequences of changing biodiversity. Nature. 2000;405:234–242. PubMed
Garnier, E., Navas, M.-L. & Grigulis, K. Plant functional diversity. Organism traits, community structure, and ecosystem properties (Oxford University Press, Oxford, New York, NY, 2016).
Funk JL, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 2017;92:1156–1173. PubMed
Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. PubMed
Adler PB, et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. 2014;111:740–745. PubMed PMC
Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. PubMed
Salguero-Gómez R, et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A. 2016;113:230–235. PubMed PMC
Bergmann J, et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 2020;6:eaba3756. PubMed PMC
Shipley B, et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia. 2016;180:923–931. PubMed
Bruelheide H, et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2018;2:1906–1917. PubMed
McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006;21:178–185. PubMed
Miller JED, Damschen EI, Ives AR. Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 2019;10:415–425.
Guerin GR, et al. Environmental associations of abundance-weighted functional traits in Australian plant communities. Basic Appl. Ecol. 2021;58:98–109.
Walter, H. Vegetation of the earth and ecological systems of the geo-biosphere (Springer-Verlag, Berlin, Germany, 1985).
Ordoñez JC, et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 2009;18:137–149.
Simpson AH, Richardson SJ, Laughlin DC. Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 2016;25:964–978.
Cubino JP, et al. The leaf economic and plant size spectra of European forest understory vegetation. Ecography. 2021;44:1311–1324.
Garnier E, et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 2007;99:967–985. PubMed PMC
Herben T, Klimešová J, Chytrý M. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Funct. Ecol. 2018;32:799–808.
Linder HP, et al. Biotic modifiers, environmental modulation and species distribution models. J. Biogeogr. 2012;39:2179–2190.
Gross N, et al. Linking individual response to biotic interactions with community structure: a trait-based framework. Funct. Ecol. 2009;23:1167–1178.
Ordonez A, Svenning J-C. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Sci. Rep. 2017;7:42988. PubMed PMC
Kemppinen J, et al. Consistent trait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 2021;5:458–467. PubMed
Chytrý M, et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 2016;19:173–180.
Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. EnviDat, 10.16904/envidat.228 (2018). PubMed PMC
Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. PubMed PMC
Kattge J, et al. TRY plant trait database - enhanced coverage and open access. Glob. Change. Biol. 2020;26:119–188. PubMed
Laughlin DC, Leppert JJ, Moore MM, Sieg CH. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 2010;24:493–501.
Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency, European Topic Centre on Nature Protection and Biodiversity, 2004.
Chytrý M, et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 2020;23:648–675.
Pausas JG, Bond WJ. Humboldt and the reinvention of nature. J. Ecol. 2019;107:1031–1037.
Meng T-T, et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences. 2015;12:5339–5352.
Fang J, et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 2005;32:81.
Butler EE, et al. Mapping local and global variability in plant trait distributions. Proc. Natl. Acad. Sci. U.S.A. 2017;114:E10937–E10946. PubMed PMC
Gong H, Gao J. Soil and climatic drivers of plant SLA (specific leaf area) Glob. Ecol. Conserv. 2019;20:e00696.
Laughlin DC, et al. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 2021;5:1–12. PubMed
Carmona CP, et al. Fine-root traits in the global spectrum of plant form and function. Nature. 2021;597:683–687. PubMed
Ding J, Travers SK, Eldridge DJ. Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. J. Veg. Sci. 2021;32:e13095.
Falster DS, Westoby M. Plant height and evolutionary games. Trends Ecol. Evol. 2003;18:337–343.
Kunstler G, et al. Plant functional traits have globally consistent effects on competition. Nature. 2016;529:204–207. PubMed
McLachlan, A. & Brown, A. C. Coastal Dune Ecosystems and Dune/Beach Interactions. In The Ecology of Sandy Shores (Elsevier), 251–271 (2006).
Cui E, Weng E, Yan E, Xia J. Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 2020;11:1–9. PubMed PMC
Cain SA. Life-Forms and Phytoclimate. Bot. Rev. 1950;16:1–32.
Yu S, et al. Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry. Biogeosciences. 2021;18:655–667.
Murray BR, Brown AHD, Dickman CR, Crowther MS. Geographical gradients in seed mass in relation to climate. J. Biogeogr. 2004;31:379–388.
Metz J, et al. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 2010;98:697–704.
Tao S, Guo Q, Li C, Wang Z, Fang J. Global patterns and determinants of forest canopy height. Ecology. 2016;97:3265–3270. PubMed
Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010;19:755–768.
Feeley KJ, Bravo-Avila C, Fadrique B, Perez TM, Zuleta D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 2020;10:965–970.
Bruelheide H, et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 2019;30:161–186.
Schrodt F, et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 2015;24:1510–1521.
Shan, H. et al. Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization (Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012).
Chytrý, M. et al. EUNIS-ESy, version 2021-06-01, 10.5281/zenodo.4812736 (2021).
Wood SN, Pya N, Säfken B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 2016;111:1548–1563.
Wood, S. N. Generalized Additive Models. An Introduction with R, Second Edition (CRC Press, Portland, Oregon, USA, 2017).
Nakagawa S, Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013;4:133–142.
Johnson PC. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 2014;5:944–946. PubMed PMC
R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).
Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means; R package version 1.6.2-1 (2021).
Lüdecke D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 2018;3:772.
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modelling; R package version 1.3-3 (2020).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).
Kambach, S. Habitat-specificity of climate-trait relationships in plant communities across Europe. github.com/StephanKambach, version 1.0; 10.5281/zenodo.7404176 (2022).
Moles AT, et al. Global patterns in plant height. J. Ecol. 2009;97:923–932.
Moles AT, et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 2007;16:109–116.
Zheng J, Guo Z, Wang X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 2017;7:2741. PubMed PMC
Saatkamp A, et al. A research agenda for seed-trait functional ecology. N. Phytol. 2019;221:1764–1775. PubMed
Freschet GT, et al. Climate, soil and plant functional types as drivers of global fine‐root trait variation. J. Ecol. 2017;105:1182–1196.
Weigelt A, et al. An integrated framework of plant form and function: The belowground perspective. N. Phytol. 2021;232:42–59. PubMed
Global decoupling of functional and phylogenetic diversity in plant communities