Global decoupling of functional and phylogenetic diversity in plant communities

. 2025 Feb ; 9 (2) : 237-248. [epub] 20241203

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39627407

Grantová podpora
DFG FZT 118, 202548816 Deutsche Forschungsgemeinschaft (German Research Foundation)
IT1487-22 Eusko Jaurlaritza (Basque Government)
WAF KAW 2019.0202 Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
FFL21-0194 Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
P1-0236 The Slovenian Research and Innovation Agency (ARIS)
313315/2022-1 Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)
DNRF173 Danmarks Grundforskningsfond (Danish National Research Foundation)
16549 Villum Fonden (Villum Foundation)

Odkazy

PubMed 39627407
DOI 10.1038/s41559-024-02589-0
PII: 10.1038/s41559-024-02589-0
Knihovny.cz E-zdroje

Plant communities are composed of species that differ both in functional traits and evolutionary histories. As species' functional traits partly result from their individual evolutionary history, we expect the functional diversity of communities to increase with increasing phylogenetic diversity. This expectation has only been tested at local scales and generally for specific growth forms or specific habitat types, for example, grasslands. Here we compare standardized effect sizes for functional and phylogenetic diversity among 1,781,836 vegetation plots using the global sPlot database. In contrast to expectations, we find functional diversity and phylogenetic diversity to be only weakly and negatively correlated, implying a decoupling between these two facets of diversity. While phylogenetic diversity is higher in forests and reflects recent climatic conditions (1981 to 2010), functional diversity tends to reflect recent and past climatic conditions (21,000 years ago). The independent nature of functional and phylogenetic diversity makes it crucial to consider both aspects of diversity when analysing ecosystem functioning and prioritizing conservation efforts.

Bayreuth Center of Ecology and Environmental Research Department of Disturbance Ecology University of Bayreuth Bayreuth Germany

Bell Musuem University of Minnesota St Paul MN USA

Biodiversity Research Center Faculty of Health Natural Resources and Applied Sciences Namibia University of Science and Technology Windhoek Namibia

Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden

Biological and Environmental Sciences University of Siena Siena Italy

Botany and Microbiology Department College of Science King Saud University Riyadh Saudi Arabia

Botany Lab Universidad San Pablo CEU CEU Universities Madrid Spain

Branch of the M 5 Keldysh IAM RAS IMPB RAS Pushchino Russia

CEFE CNRS EPHE IRD University Montpellier Montpellier France

Center for Ecological Dynamics in a Novel Biosphere Department of Biology Aarhus University Aarhus C Denmark

CIRAD UPR Forêts et Sociétés Campus de Baillarguet Montpellier France

Colegio de Ciencias Biológicas y Ambientales Estación de Biodiversidad Tiputini Universidad San Francisco de Quito USFQ Quito Ecuador

College of Ecology and Environmental Science Institute of Ecology and Geobotany Yunnan University University Town China

College of Urban and Environmental Sciences Department of Ecology Peking University Beijing China

Department of Biodiversity Macroecology and Biogeography University of Göttingen Göttingen Germany

Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy

Department of Biology Santa Clara University Santa Clara CA USA

Department of Botany and Biodiversity Research University of Vienna Vienna Austria

Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic

Department of Botany University of Wisconsin Madison Madison WI USA

Department of Ecology Universidade Federal do Rio Grande do Sul Porto Alegro Brazil

Department of Ecoscience Aarhus University Aarhus C Denmark

Department of Environment Ghent University Gent Belgium

Department of Environmental Biology Sapienza University of Rome Rome Italy

Department of Environmental Sciences College of Science and Engineering University of Derby Derby UK

Department of Geography and Environmental Studies Addis Ababa University Addis Ababa Ethiopia

Department of Geography and Environmental Studies Stellenbosch University Matieland South Africa

Department of Plant Biology and Ecology University of the Basque Country UPV EHU Bilbao Spain

Department of Vegetation and Phytodiversity Analysis University of Göttingen Göttingen Germany

Escuela ECAPMA Universidad Nacional Abierta y a Distancia Bogotá Colombia

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic

Faculty of Geotechnical Engineering University of Zagreb Varaždin Croatia

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Gothenburg Global Biodiversity Centre Gothenburg Sweden

Great Lakes Forestry Centre Canadian Forest Service Sault Ste Marie Ontario Canada

Harry Butler Institute Perth Western Australia Australia

Hungarian Department of Biology and Ecology Faculty of Biology and Geology Babeș Bolyai University Cluj Napoca Romania

Institut de Recerca de la Biodiversitat Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Universitat de Barcelona Barcelona Spain

Institute of Biology Faculty of Natural Sciences and Mathematics University of Ss Cyril and Methodius Skopje North Macedonia

Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

Institute of Botany Czech Academy of Science Trebon Czechia

Institute of Ecology and Botany Centre for Ecological Research Vácrátót Hungary

Institute of Ecology of the Volga River Basin Samara Federal Research Scientific Center Togliatti Russia

Institute of Ecology School of Sustainability Leuphana University of Lüneburg Lüneburg Germany

Institute of Plant Science and Microbiology University of Hamburg Hamburg Germany

Jovan Hadži Institute of Biology Research Centre of the Slovenian Academy of Sciences and Arts Ljubljana Slovenia

Marquette University Milwaukee WI USA

Max Planck Institute for Biogeochemistry Jena Germany

MINES Paris PSL ISIGE Fontainebleau France

Palmengarten der Stadt Frankfurt Germany

Plant Ecology and Nature Conservation Group Environmental Sciences Department Wageningen University Wageningen the Netherlands

Resource Management HAWK Goettingen Goettingen Germany

Sanya Nanfan Research Institute Hainan University Sanya China

School for Viticulture and Enology University of Nova Gorica Nova Gorica Slovenia

Senckenberg Research Institute and Natural History Museum Frankfurt and Department Botany and Molecular Evolution Goethe University Frankfurt Germany

Systematic and Evolutionary Botany University of Zurich Zurich Switzerland

The School of Biological Sciences University of Adelaide Glen Osmond South Australia Australia

UMR CNRS 7058 Ecologie et Dynamique des Systèmes Anthropisés Université de Picardie Jules Verne Amiens France

Universidade Regional de Blumenau Blumenau Brazil

University Montpellier Montpellier France

University of Leeds Leeds UK

University of Nottingham Nottingham UK

University of Rostock Rostock Germany

Zurich University of Applied Sciences Wädenswil Switzerland

Zobrazit více v PubMed

O’Connor, B., Bojinski, S., Röösli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).

Anwar, M. R., Liu, D. L., Macadam, I. & Kelly, G. Adapting agriculture to climate change: a review. Theor. Appl. Climatol. 113, 225–245 (2013). DOI

Benevolenza, M. A. & DeRigne, L. The impact of climate change and natural disasters on vulnerable populations: a systematic review of literature. J. Hum. Behav. Soc. Environ. 29, 266–281 (2019). DOI

IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).

Fahad, S. et al. Climate Change and Plants: Biodiversity, Growth and Interactions (CRC, 2021).

Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013). PubMed DOI

Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009). PubMed DOI

Götzenberger, L. et al. Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol. Rev. 87, 111–127 (2012). PubMed DOI

Rieseberg, L. H., Wood, T. E. & Baack, E. J. The nature of plant species. Nature 440, 524–527 (2006). PubMed DOI PMC

Verdú, M. & Pausas, J. G. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J. Ecol. 95, 1316–1323 (2007). DOI

Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87, 50–61 (2006). DOI

Pillar, V. D., Duarte, L. d. S., Sosinski, E. E. & Joner, F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20, 334–348 (2009). DOI

Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S. & Bruelheide, H. Revealing the functional traits linked to hidden environmental factors in community assembly. J. Veg. Sci. 32, e12976 (2021). DOI

Pillar, V. D. Trait divergence in plant community assembly is generated by environmental factor interactions. J. Veg. Sci. 35, e13259 (2024). DOI

Ackerly, D. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106, 19699–19706 (2009). PubMed DOI PMC

Ávila-Lovera, E., Winter, K. & Goldsmith, G. R. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol. 237, 392–407 (2023). PubMed DOI

Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012). DOI

Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).

Melzer, R., Wang, Y.-Q. & Theißen, G. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin. Cell Dev. Biol. 21, 118–128 (2010). PubMed DOI

Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004). PubMed DOI

Cadotte, M., Albert, C. H. & Walker, S. C. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol. Lett. 16, 1234–1244 (2013). PubMed DOI

Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012). PubMed DOI

Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145–155 (2000). PubMed DOI

Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity—ecosystem–function relationships. Ecology 92, 1573–1581 (2011). PubMed DOI

Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018). PubMed DOI

Večeřa, M. et al. Decoupled phylogenetic and functional diversity in European grasslands. Preslia 95, 413–445 (2023). DOI

Prinzing, A. et al. Less lineages—more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819 (2008). PubMed DOI

Kluge, J. & Kessler, M. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeogr. 38, 394–405 (2011). DOI

Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019). DOI

Castagneyrol, B., Jactel, H., Vacher, C., Brockerhoff, E. G. & Koricheva, J. Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J. Appl. Ecol. 51, 134–141 (2014). DOI

Qian, H., Hao, Z. & Zhang, J. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J. Plant Ecol. 7, 154–165 (2014). DOI

Honorio Coronado, E. N. et al. Phylogenetic diversity of Amazonian tree communities. Divers. Distrib. 21, 1295–1307 (2015). DOI

Mastrogianni, A., Kallimanis, A. S., Chytrý, M. & Tsiripidis, I. Phylogenetic diversity patterns in forests of a putative refugial area in Greece: a community level analysis. For. Ecol. Manag. 446, 226–237 (2019). DOI

Klimeš, A., Šímová, I., Zizka, A., Antonelli, A. & Herben, T. The ecological drivers of growth form evolution in flowering plants. J. Ecol. 110, 1525–1536 (2022). DOI

Chai, Y. et al. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Sci. Rep. 6, 27087 (2016). PubMed DOI PMC

Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016). PubMed DOI

Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42–59 (2021). PubMed DOI

Carta, A., Peruzzi, L. & Ramírez-Barahona, S. A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas. New Phytol. 233, 1494–1504 (2022). PubMed DOI

Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021). DOI

Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, 143–164 (2003). DOI

Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010). PubMed DOI

Pigot, A. L. & Etienne, R. S. A new dynamic null model for phylogenetic community structure. Ecol. Lett. 18, 153–163 (2015). PubMed DOI PMC

Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014). PubMed DOI

Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015). PubMed DOI PMC

de Bello, F. et al. Handbook of Trait-Based Ecology: From Theory to R Tools (Cambridge Univ. Press, 2021).

Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019). PubMed DOI PMC

Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015). DOI

Zuo, X. et al. Functional diversity response to geographic and experimental precipitation gradients varies with plant community type. Funct. Ecol. 35, 2119–2132 (2021). DOI

Massante, J. C. et al. Contrasting latitudinal patterns in phylogenetic diversity between woody and herbaceous communities. Sci. Rep. 9, 6443 (2019). PubMed DOI PMC

Cai, H. et al. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Divers. Distrib. 27, 179–194 (2021). DOI

Tietje, M. et al. Global hotspots of plant phylogenetic diversity. New Phytol. 240, 1636–1646 (2023). PubMed DOI

Qian, H., Zhang, J. & Jiang, M. Global patterns of taxonomic and phylogenetic diversity of flowering plants: biodiversity hotspots and coldspots. Plant Divers. 45, 265–271 (2023). PubMed DOI PMC

De Pauw, K. et al. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J. Ecol. 109, 2629–2648 (2021). DOI

Kambach, S. et al. Climate–trait relationships exhibit strong habitat specificity in plant communities across Europe. Nat. Commun. 14, 712 (2023). PubMed DOI PMC

Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409, 618–622 (2001). PubMed DOI

Rothfels, C. J. et al. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Am. J. Bot. 102, 1089–1107 (2015). PubMed DOI

De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021). DOI

Kovács, B., Tinya, F. & Ódor, P. Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 234–235, 11–21 (2017). DOI

Swenson, N. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4, e4390 (2009). PubMed DOI PMC

Sessa, E. B. et al. Community assembly of the ferns of Florida. Am. J. Bot. 105, 549–564 (2018). PubMed DOI

Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020). DOI

Shan, H. et al. Gap filling in the plant kingdom: trait prediction using hierarchical probabilistic matrix factorization. Preprint at https://arxiv.org/abs/1206.6439 (2012).

Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using bayesian hierarchical matrix factorization. In 2014 13th International Conference on Machine Learning and Applications (eds Chen, X.-w. et al.) 312–317 (IEEE, 2014).

Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015). DOI

Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982). DOI

Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010). PubMed DOI

Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014).

Walker, A. P., McCormack, M. L., Messier, J., Myers-Smith, I. H. & Wullschleger, S. D. Trait covariance: the functional warp of plant diversity? New Phytol. 216, 976–980 (2017). PubMed DOI

Kembel, S. W. et al. picante: integrating phylogenies and ecology. R package version 1.8.2 (2020).

Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019). DOI

Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed DOI

Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). PubMed DOI

Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016). DOI

Revell, L. J. phytools: phylogenetic tools for comparative biology (and other things). R package version 2.1-1 (2023).

Letten, A. D. & Cornwell, W. K. Trees, branches and (square) roots: why evolutionary relatedness is not linearly related to functional distance. Methods Ecol. Evol. 6, 439–444 (2015). DOI

de Bello, F., Carmona, C. P., Lepš, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016). PubMed DOI

Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002). DOI

Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010). PubMed DOI

Gotelli, N. J. & McCabe, D. J. Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096 (2002). DOI

Schultz, J. The Ecozones of the World: The Ecological Division of the Geosphere (Springer Nature, 2005).

Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017). PubMed DOI PMC

Karger, D. N. et al. Data from: Climatologies at high resolution for the Earth’s land surface areas. Dryad https://doi.org/10.5061/DRYAD.KD1D4 (2018).

Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L. & Fordham, D. A. StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales. Sci. Data 7, 335 (2020). PubMed DOI PMC

Renssen, H. & Isarin, R. F. B. The two major warming phases of the last deglaciation at ∼14.7 and ∼11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Glob. Planet. Change 30, 117–153 (2001). DOI

Hijmans, R. J. Raster: Geographic data analysis and modeling. R package version 3.6-30 (2023).

Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.9-1 (2023).

Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011). DOI

Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004). DOI

Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003). DOI

Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016). DOI

Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling. R package version 1.3-14 (2022).

Arel-Bundock, V. marginaleffects: predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 0.18.0 (2023).

R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

Hähn, G. J. A., Damasceno, G., Sabatini, F. M. & Bruelheide, H. Global decoupling of functional and phylogenetic diversity in plant communities (version 1.0). iDiv https://doi.org/10.25829/idiv.3574-mpmk21 (2024).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...