Global decoupling of functional and phylogenetic diversity in plant communities
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
DFG FZT 118, 202548816
Deutsche Forschungsgemeinschaft (German Research Foundation)
IT1487-22
Eusko Jaurlaritza (Basque Government)
WAF KAW 2019.0202
Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
FFL21-0194
Stiftelsen för Strategisk Forskning (Swedish Foundation for Strategic Research)
P1-0236
The Slovenian Research and Innovation Agency (ARIS)
313315/2022-1
Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)
DNRF173
Danmarks Grundforskningsfond (Danish National Research Foundation)
16549
Villum Fonden (Villum Foundation)
PubMed
39627407
DOI
10.1038/s41559-024-02589-0
PII: 10.1038/s41559-024-02589-0
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- ekosystém MeSH
- fylogeneze * MeSH
- fyziologie rostlin * MeSH
- lesy MeSH
- podnebí MeSH
- rostliny * klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
Plant communities are composed of species that differ both in functional traits and evolutionary histories. As species' functional traits partly result from their individual evolutionary history, we expect the functional diversity of communities to increase with increasing phylogenetic diversity. This expectation has only been tested at local scales and generally for specific growth forms or specific habitat types, for example, grasslands. Here we compare standardized effect sizes for functional and phylogenetic diversity among 1,781,836 vegetation plots using the global sPlot database. In contrast to expectations, we find functional diversity and phylogenetic diversity to be only weakly and negatively correlated, implying a decoupling between these two facets of diversity. While phylogenetic diversity is higher in forests and reflects recent climatic conditions (1981 to 2010), functional diversity tends to reflect recent and past climatic conditions (21,000 years ago). The independent nature of functional and phylogenetic diversity makes it crucial to consider both aspects of diversity when analysing ecosystem functioning and prioritizing conservation efforts.
Bell Musuem University of Minnesota St Paul MN USA
Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Biological and Environmental Sciences University of Siena Siena Italy
Botany and Microbiology Department College of Science King Saud University Riyadh Saudi Arabia
Botany Lab Universidad San Pablo CEU CEU Universities Madrid Spain
Branch of the M 5 Keldysh IAM RAS IMPB RAS Pushchino Russia
CEFE CNRS EPHE IRD University Montpellier Montpellier France
CIRAD UPR Forêts et Sociétés Campus de Baillarguet Montpellier France
College of Urban and Environmental Sciences Department of Ecology Peking University Beijing China
Department of Biodiversity Macroecology and Biogeography University of Göttingen Göttingen Germany
Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy
Department of Biology Santa Clara University Santa Clara CA USA
Department of Botany and Biodiversity Research University of Vienna Vienna Austria
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Botany University of Wisconsin Madison Madison WI USA
Department of Ecology Universidade Federal do Rio Grande do Sul Porto Alegro Brazil
Department of Ecoscience Aarhus University Aarhus C Denmark
Department of Environment Ghent University Gent Belgium
Department of Environmental Biology Sapienza University of Rome Rome Italy
Department of Environmental Sciences College of Science and Engineering University of Derby Derby UK
Department of Geography and Environmental Studies Addis Ababa University Addis Ababa Ethiopia
Department of Geography and Environmental Studies Stellenbosch University Matieland South Africa
Department of Plant Biology and Ecology University of the Basque Country UPV EHU Bilbao Spain
Department of Vegetation and Phytodiversity Analysis University of Göttingen Göttingen Germany
Escuela ECAPMA Universidad Nacional Abierta y a Distancia Bogotá Colombia
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czech Republic
Faculty of Geotechnical Engineering University of Zagreb Varaždin Croatia
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Gothenburg Global Biodiversity Centre Gothenburg Sweden
Great Lakes Forestry Centre Canadian Forest Service Sault Ste Marie Ontario Canada
Harry Butler Institute Perth Western Australia Australia
Institute of Botany Czech Academy of Science Trebon Czechia
Institute of Ecology and Botany Centre for Ecological Research Vácrátót Hungary
Institute of Ecology School of Sustainability Leuphana University of Lüneburg Lüneburg Germany
Institute of Plant Science and Microbiology University of Hamburg Hamburg Germany
Marquette University Milwaukee WI USA
Max Planck Institute for Biogeochemistry Jena Germany
MINES Paris PSL ISIGE Fontainebleau France
Palmengarten der Stadt Frankfurt Germany
Resource Management HAWK Goettingen Goettingen Germany
Sanya Nanfan Research Institute Hainan University Sanya China
School for Viticulture and Enology University of Nova Gorica Nova Gorica Slovenia
Systematic and Evolutionary Botany University of Zurich Zurich Switzerland
The School of Biological Sciences University of Adelaide Glen Osmond South Australia Australia
Universidade Regional de Blumenau Blumenau Brazil
University Montpellier Montpellier France
University of Nottingham Nottingham UK
Zobrazit více v PubMed
O’Connor, B., Bojinski, S., Röösli, C. & Schaepman, M. E. Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies. Ecol. Inform. 55, 101033 (2020).
Anwar, M. R., Liu, D. L., Macadam, I. & Kelly, G. Adapting agriculture to climate change: a review. Theor. Appl. Climatol. 113, 225–245 (2013). DOI
Benevolenza, M. A. & DeRigne, L. The impact of climate change and natural disasters on vulnerable populations: a systematic review of literature. J. Hum. Behav. Soc. Environ. 29, 266–281 (2019). DOI
IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).
Fahad, S. et al. Climate Change and Plants: Biodiversity, Growth and Interactions (CRC, 2021).
Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013). PubMed DOI
Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. W. The merging of community ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009). PubMed DOI
Götzenberger, L. et al. Ecological assembly rules in plant communities—approaches, patterns and prospects. Biol. Rev. 87, 111–127 (2012). PubMed DOI
Rieseberg, L. H., Wood, T. E. & Baack, E. J. The nature of plant species. Nature 440, 524–527 (2006). PubMed DOI PMC
Verdú, M. & Pausas, J. G. Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. J. Ecol. 95, 1316–1323 (2007). DOI
Ackerly, D. D., Schwilk, D. W. & Webb, C. O. Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87, 50–61 (2006). DOI
Pillar, V. D., Duarte, L. d. S., Sosinski, E. E. & Joner, F. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. J. Veg. Sci. 20, 334–348 (2009). DOI
Pillar, V. D., Sabatini, F. M., Jandt, U., Camiz, S. & Bruelheide, H. Revealing the functional traits linked to hidden environmental factors in community assembly. J. Veg. Sci. 32, e12976 (2021). DOI
Pillar, V. D. Trait divergence in plant community assembly is generated by environmental factor interactions. J. Veg. Sci. 35, e13259 (2024). DOI
Ackerly, D. Conservatism and diversification of plant functional traits: evolutionary rates versus phylogenetic signal. Proc. Natl Acad. Sci. USA 106, 19699–19706 (2009). PubMed DOI PMC
Ávila-Lovera, E., Winter, K. & Goldsmith, G. R. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol. 237, 392–407 (2023). PubMed DOI
Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012). DOI
Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).
Melzer, R., Wang, Y.-Q. & Theißen, G. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin. Cell Dev. Biol. 21, 118–128 (2010). PubMed DOI
Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004). PubMed DOI
Cadotte, M., Albert, C. H. & Walker, S. C. The ecology of differences: assessing community assembly with trait and evolutionary distances. Ecol. Lett. 16, 1234–1244 (2013). PubMed DOI
Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012). PubMed DOI
Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Nat. 156, 145–155 (2000). PubMed DOI
Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity—ecosystem–function relationships. Ecology 92, 1573–1581 (2011). PubMed DOI
Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018). PubMed DOI
Večeřa, M. et al. Decoupled phylogenetic and functional diversity in European grasslands. Preslia 95, 413–445 (2023). DOI
Prinzing, A. et al. Less lineages—more trait variation: phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819 (2008). PubMed DOI
Kluge, J. & Kessler, M. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient. J. Biogeogr. 38, 394–405 (2011). DOI
Bruelheide, H. et al. sPlot—a new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019). DOI
Castagneyrol, B., Jactel, H., Vacher, C., Brockerhoff, E. G. & Koricheva, J. Effects of plant phylogenetic diversity on herbivory depend on herbivore specialization. J. Appl. Ecol. 51, 134–141 (2014). DOI
Qian, H., Hao, Z. & Zhang, J. Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. J. Plant Ecol. 7, 154–165 (2014). DOI
Honorio Coronado, E. N. et al. Phylogenetic diversity of Amazonian tree communities. Divers. Distrib. 21, 1295–1307 (2015). DOI
Mastrogianni, A., Kallimanis, A. S., Chytrý, M. & Tsiripidis, I. Phylogenetic diversity patterns in forests of a putative refugial area in Greece: a community level analysis. For. Ecol. Manag. 446, 226–237 (2019). DOI
Klimeš, A., Šímová, I., Zizka, A., Antonelli, A. & Herben, T. The ecological drivers of growth form evolution in flowering plants. J. Ecol. 110, 1525–1536 (2022). DOI
Chai, Y. et al. Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Sci. Rep. 6, 27087 (2016). PubMed DOI PMC
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016). PubMed DOI
Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. New Phytol. 232, 42–59 (2021). PubMed DOI
Carta, A., Peruzzi, L. & Ramírez-Barahona, S. A global phylogenetic regionalization of vascular plants reveals a deep split between Gondwanan and Laurasian biotas. New Phytol. 233, 1494–1504 (2022). PubMed DOI
Sabatini, F. M. et al. sPlotOpen—an environmentally balanced, open-access, global dataset of vegetation plots. Glob. Ecol. Biogeogr. 30, 1740–1764 (2021). DOI
Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, 143–164 (2003). DOI
Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010). PubMed DOI
Pigot, A. L. & Etienne, R. S. A new dynamic null model for phylogenetic community structure. Ecol. Lett. 18, 153–163 (2015). PubMed DOI PMC
Godoy, O., Kraft, N. J. B. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014). PubMed DOI
Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015). PubMed DOI PMC
de Bello, F. et al. Handbook of Trait-Based Ecology: From Theory to R Tools (Cambridge Univ. Press, 2021).
Owen, N. R., Gumbs, R., Gray, C. L. & Faith, D. P. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 10, 859 (2019). PubMed DOI PMC
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015). DOI
Zuo, X. et al. Functional diversity response to geographic and experimental precipitation gradients varies with plant community type. Funct. Ecol. 35, 2119–2132 (2021). DOI
Massante, J. C. et al. Contrasting latitudinal patterns in phylogenetic diversity between woody and herbaceous communities. Sci. Rep. 9, 6443 (2019). PubMed DOI PMC
Cai, H. et al. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Divers. Distrib. 27, 179–194 (2021). DOI
Tietje, M. et al. Global hotspots of plant phylogenetic diversity. New Phytol. 240, 1636–1646 (2023). PubMed DOI
Qian, H., Zhang, J. & Jiang, M. Global patterns of taxonomic and phylogenetic diversity of flowering plants: biodiversity hotspots and coldspots. Plant Divers. 45, 265–271 (2023). PubMed DOI PMC
De Pauw, K. et al. Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J. Ecol. 109, 2629–2648 (2021). DOI
Kambach, S. et al. Climate–trait relationships exhibit strong habitat specificity in plant communities across Europe. Nat. Commun. 14, 712 (2023). PubMed DOI PMC
Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409, 618–622 (2001). PubMed DOI
Rothfels, C. J. et al. The evolutionary history of ferns inferred from 25 low-copy nuclear genes. Am. J. Bot. 102, 1089–1107 (2015). PubMed DOI
De Frenne, P. et al. Forest microclimates and climate change: importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021). DOI
Kovács, B., Tinya, F. & Ódor, P. Stand structural drivers of microclimate in mature temperate mixed forests. Agric. For. Meteorol. 234–235, 11–21 (2017). DOI
Swenson, N. Phylogenetic resolution and quantifying the phylogenetic diversity and dispersion of communities. PLoS ONE 4, e4390 (2009). PubMed DOI PMC
Sessa, E. B. et al. Community assembly of the ferns of Florida. Am. J. Bot. 105, 549–564 (2018). PubMed DOI
Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020). DOI
Shan, H. et al. Gap filling in the plant kingdom: trait prediction using hierarchical probabilistic matrix factorization. Preprint at https://arxiv.org/abs/1206.6439 (2012).
Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using bayesian hierarchical matrix factorization. In 2014 13th International Conference on Machine Learning and Applications (eds Chen, X.-w. et al.) 312–317 (IEEE, 2014).
Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015). DOI
Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982). DOI
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010). PubMed DOI
Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12 (2014).
Walker, A. P., McCormack, M. L., Messier, J., Myers-Smith, I. H. & Wullschleger, S. D. Trait covariance: the functional warp of plant diversity? New Phytol. 216, 976–980 (2017). PubMed DOI
Kembel, S. W. et al. picante: integrating phylogenies and ecology. R package version 1.8.2 (2020).
Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019). DOI
Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed DOI
Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). PubMed DOI
Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016). DOI
Revell, L. J. phytools: phylogenetic tools for comparative biology (and other things). R package version 2.1-1 (2023).
Letten, A. D. & Cornwell, W. K. Trees, branches and (square) roots: why evolutionary relatedness is not linearly related to functional distance. Methods Ecol. Evol. 6, 439–444 (2015). DOI
de Bello, F., Carmona, C. P., Lepš, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016). PubMed DOI
Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B 269, 1721–1727 (2002). DOI
Cadotte, M. W. et al. Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecol. Lett. 13, 96–105 (2010). PubMed DOI
Gotelli, N. J. & McCabe, D. J. Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096 (2002). DOI
Schultz, J. The Ecozones of the World: The Ecological Division of the Geosphere (Springer Nature, 2005).
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017). PubMed DOI PMC
Karger, D. N. et al. Data from: Climatologies at high resolution for the Earth’s land surface areas. Dryad https://doi.org/10.5061/DRYAD.KD1D4 (2018).
Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L. & Fordham, D. A. StableClim, continuous projections of climate stability from 21000 BP to 2100 CE at multiple spatial scales. Sci. Data 7, 335 (2020). PubMed DOI PMC
Renssen, H. & Isarin, R. F. B. The two major warming phases of the last deglaciation at ∼14.7 and ∼11.5 ka cal BP in Europe: climate reconstructions and AGCM experiments. Glob. Planet. Change 30, 117–153 (2001). DOI
Hijmans, R. J. Raster: Geographic data analysis and modeling. R package version 3.6-30 (2023).
Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.9-1 (2023).
Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011). DOI
Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004). DOI
Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).
Wood, S. N. Thin-plate regression splines. J. R. Stat. Soc. B 65, 95–114 (2003). DOI
Wood, S. N., Pya, N. & Säfken, B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 111, 1548–1563 (2016). DOI
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modeling. R package version 1.3-14 (2022).
Arel-Bundock, V. marginaleffects: predictions, comparisons, slopes, marginal means, and hypothesis tests. R package version 0.18.0 (2023).
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Hähn, G. J. A., Damasceno, G., Sabatini, F. M. & Bruelheide, H. Global decoupling of functional and phylogenetic diversity in plant communities (version 1.0). iDiv https://doi.org/10.25829/idiv.3574-mpmk21 (2024).