-
Je něco špatně v tomto záznamu ?
Network Inference and Maximum Entropy Estimation on Information Diagrams
Elliot A Martin, Jaroslav Hlinka, Alexander Meinke, Filip Děchtěrenko, Jaroslav Tintěra, Isaura Oliver, Jörn Davidsen
Jazyk angličtina Země Velká Británie
Typ dokumentu práce podpořená grantem
Grantová podpora
NV15-29835A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
Zdroj
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- entropie MeSH
- informační systémy * MeSH
- lidé MeSH
- nervová síť MeSH
- teoretické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we show how this can be used to estimate the direct network connectivity between interacting units from observed activity. As a generic example, we consider phase oscillators and show that our approach is typically superior to simply using the mutual information. In addition, we propose a nonparametric formulation of connected informations, used to test the explanatory power of a network description in general. We give an illustrative example showing how this agrees with the existing parametric formulation, and demonstrate its applicability and advantages for resting-state human brain networks, for which we also discuss its direct effective connectivity. Finally, we generalize to continuous random variables and vastly expand the types of information-theoretic quantities one can condition on. This allows us to establish significant advantages of this approach over existing ones. Not only does our method perform favorably in the undersampled regime, where existing methods fail, but it also can be dramatically less computationally expensive as the cardinality of the variables increases.
Institute for Clinical and Experimental Medicine Videnska 1958 9 140 21 Prague Czech Republic
Institute of Psychology The Czech Academy of Sciences Prague Czech Republic
National Institute of Mental Health Topolová 748 250 67 Klecany Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20017150
- 003
- CZ-PrNML
- 005
- 20240612132533.0
- 007
- ta
- 008
- 201101s2017 xxk f 000 0|eng||
- 009
- AR
- 024 0_
- $a 10.1038/s41598-017-06208-w $2 DOI
- 035 __
- $a (Pubmed)28765522
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Martin, Elliot A . $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- 245 10
- $a Network Inference and Maximum Entropy Estimation on Information Diagrams / $c Elliot A Martin, Jaroslav Hlinka, Alexander Meinke, Filip Děchtěrenko, Jaroslav Tintěra, Isaura Oliver, Jörn Davidsen
- 520 9_
- $a Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we show how this can be used to estimate the direct network connectivity between interacting units from observed activity. As a generic example, we consider phase oscillators and show that our approach is typically superior to simply using the mutual information. In addition, we propose a nonparametric formulation of connected informations, used to test the explanatory power of a network description in general. We give an illustrative example showing how this agrees with the existing parametric formulation, and demonstrate its applicability and advantages for resting-state human brain networks, for which we also discuss its direct effective connectivity. Finally, we generalize to continuous random variables and vastly expand the types of information-theoretic quantities one can condition on. This allows us to establish significant advantages of this approach over existing ones. Not only does our method perform favorably in the undersampled regime, where existing methods fail, but it also can be dramatically less computationally expensive as the cardinality of the variables increases.
- 650 17
- $a informační systémy $7 D007256 $2 czmesh
- 650 _7
- $a entropie $7 D019277 $2 czmesh
- 650 _7
- $a teoretické modely $7 D008962 $2 czmesh
- 650 _7
- $a nervová síť $7 D009415 $2 czmesh
- 650 _7
- $a lidé $7 D006801 $2 czmesh
- 655 _7
- $a práce podpořená grantem $7 D013485 $2 czmesh
- 700 1_
- $a Hlinka, Jaroslav $7 xx0228167 $u Institute of Computer Science, The Czech Academy of Sciences, Pod vodarenskou vezi 2, 18207, Prague, Czech Republic ; National Institute of Mental Health, Topolová, 748, 250 67, Klecany, Czech Republic
- 700 1_
- $a Meinke, Alexander $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- 700 1_
- $a Děchtěrenko, Filip $u Institute of Computer Science, The Czech Academy of Sciences, Pod vodarenskou vezi 2, 18207, Prague, Czech Republic ; Institute of Psychology, The Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Tintěra, Jaroslav, $d 1957- $7 xx0061376 $u National Institute of Mental Health, Topolová, 748, 250 67, Klecany, Czech Republic ; Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
- 700 1_
- $a Oliver, Isaura $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- 700 1_
- $a Davidsen, Jörn $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
- 773 0_
- $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 7062 $w MED00182195
- 910 __
- $a ABA008 $y 0 $z 0
- 990 __
- $a 20201101103113 $b ABA008
- 991 __
- $a 20240612132533 $b ABA008
- 999 __
- $a kom $b bmc $g 1578144 $s 1107336
- BAS __
- $a 3
- BMC __
- $a 2017 $b 7 $c 1 $d 7062 $x MED00182195 $i 2045-2322 $m Scientific reports
- GRA __
- $a NV15-29835A $p MZ0
- LZP __
- $c NLK120 $d 20240612 $a 2020-grant