Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Network Inference and Maximum Entropy Estimation on Information Diagrams

Elliot A Martin, Jaroslav Hlinka, Alexander Meinke, Filip Děchtěrenko, Jaroslav Tintěra, Isaura Oliver, Jörn Davidsen

. 2017 ; 7 (1) : 7062.

Jazyk angličtina Země Velká Británie

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20017150

Grantová podpora
NV15-29835A MZ0 CEP - Centrální evidence projektů

Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we show how this can be used to estimate the direct network connectivity between interacting units from observed activity. As a generic example, we consider phase oscillators and show that our approach is typically superior to simply using the mutual information. In addition, we propose a nonparametric formulation of connected informations, used to test the explanatory power of a network description in general. We give an illustrative example showing how this agrees with the existing parametric formulation, and demonstrate its applicability and advantages for resting-state human brain networks, for which we also discuss its direct effective connectivity. Finally, we generalize to continuous random variables and vastly expand the types of information-theoretic quantities one can condition on. This allows us to establish significant advantages of this approach over existing ones. Not only does our method perform favorably in the undersampled regime, where existing methods fail, but it also can be dramatically less computationally expensive as the cardinality of the variables increases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20017150
003      
CZ-PrNML
005      
20240612132533.0
007      
ta
008      
201101s2017 xxk f 000 0|eng||
009      
AR
024    0_
$a 10.1038/s41598-017-06208-w $2 DOI
035    __
$a (Pubmed)28765522
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Martin, Elliot A . $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
245    10
$a Network Inference and Maximum Entropy Estimation on Information Diagrams / $c Elliot A Martin, Jaroslav Hlinka, Alexander Meinke, Filip Děchtěrenko, Jaroslav Tintěra, Isaura Oliver, Jörn Davidsen
520    9_
$a Maximum entropy estimation is of broad interest for inferring properties of systems across many disciplines. Using a recently introduced technique for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies, we show how this can be used to estimate the direct network connectivity between interacting units from observed activity. As a generic example, we consider phase oscillators and show that our approach is typically superior to simply using the mutual information. In addition, we propose a nonparametric formulation of connected informations, used to test the explanatory power of a network description in general. We give an illustrative example showing how this agrees with the existing parametric formulation, and demonstrate its applicability and advantages for resting-state human brain networks, for which we also discuss its direct effective connectivity. Finally, we generalize to continuous random variables and vastly expand the types of information-theoretic quantities one can condition on. This allows us to establish significant advantages of this approach over existing ones. Not only does our method perform favorably in the undersampled regime, where existing methods fail, but it also can be dramatically less computationally expensive as the cardinality of the variables increases.
650    17
$a informační systémy $7 D007256 $2 czmesh
650    _7
$a entropie $7 D019277 $2 czmesh
650    _7
$a teoretické modely $7 D008962 $2 czmesh
650    _7
$a nervová síť $7 D009415 $2 czmesh
650    _7
$a lidé $7 D006801 $2 czmesh
655    _7
$a práce podpořená grantem $7 D013485 $2 czmesh
700    1_
$a Hlinka, Jaroslav $7 xx0228167 $u Institute of Computer Science, The Czech Academy of Sciences, Pod vodarenskou vezi 2, 18207, Prague, Czech Republic ; National Institute of Mental Health, Topolová, 748, 250 67, Klecany, Czech Republic
700    1_
$a Meinke, Alexander $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
700    1_
$a Děchtěrenko, Filip $u Institute of Computer Science, The Czech Academy of Sciences, Pod vodarenskou vezi 2, 18207, Prague, Czech Republic ; Institute of Psychology, The Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Tintěra, Jaroslav, $d 1957- $7 xx0061376 $u National Institute of Mental Health, Topolová, 748, 250 67, Klecany, Czech Republic ; Institute for Clinical and Experimental Medicine, Videnska 1958/9, 140 21, Prague, Czech Republic
700    1_
$a Oliver, Isaura $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
700    1_
$a Davidsen, Jörn $u Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
773    0_
$t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 7062 $w MED00182195
910    __
$a ABA008 $y 0 $z 0
990    __
$a 20201101103113 $b ABA008
991    __
$a 20240612132533 $b ABA008
999    __
$a kom $b bmc $g 1578144 $s 1107336
BAS    __
$a 3
BMC    __
$a 2017 $b 7 $c 1 $d 7062 $x MED00182195 $i 2045-2322 $m Scientific reports
GRA    __
$a NV15-29835A $p MZ0
LZP    __
$c NLK120 $d 20240612 $a 2020-grant

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...