Geography of Indian Butterflies: Patterns Revealed by Checklists of Federal States
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
100/2022/P
Grant Agency of the University of South Bohemia
PubMed
37367366
PubMed Central
PMC10299651
DOI
10.3390/insects14060549
PII: insects14060549
Knihovny.cz E-zdroje
- Klíčová slova
- Oriental realm, biogeographic elements, climate, faunal turnover, latitudinal gradient, peninsular effect,
- Publikační typ
- časopisecké články MeSH
Butterflies are widely used to analyze biogeographical patterns, both at the global and regional scales. Thus far, most of the latter originated from well-surveyed northern regions, while the species-rich tropical areas lag due to a lack of appropriate data. We used checklists of 1379 butterfly species recorded in 36 federal states of the Republic of India (1) to explore the basic macroecological rules, and (2) to relate species richness and the distribution of endemics and geographic elements to geography, climate, land covers and socioeconomic conditions of the states. The area, land covers diversity and latitude did not affect species richness, whereas topographic diversity and the precipitation/temperature ratio (energy availability) were positive predictors. This is due the geographic and climatic idiosyncrasies of the Indian subcontinent, with its highest species richness in the small, densely forested mountainous northeast that receives summer monsoons. The peninsular effect that decreases the richness towards the tip of subcontinent is counterbalanced by the mountainous forested Western Ghats. Afrotropical elements are associated with savannahs, while Palearctic elements are associated with treeless habitats. The bulk of Indian butterfly richness, and the highest conservation priorities, overlap with global biodiversity hotspots, but the mountainous states of the Western Himalayas and the savannah states of peninsular India host distinctive faunas.
Biology Centre CAS Institute of Entomology 370 05 České Budějovice Czech Republic
Faculty of Sciences University of South Bohemia 370 05 České Budějovice Czech Republic
Sphingidae Museum Orlov 261 01 Pribram Czech Republic
University of Chinese Academy of Sciences Beijing 101408 China
Zobrazit více v PubMed
Warren M.S., Hill J.K., Thomas J.A., Asher J., Fox R., Huntley B., Roy D.B., Telfer M.G., Jeffcoate S., Harding P., et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature. 2001;414:65–69. doi: 10.1038/35102054. PubMed DOI
Jetz W., Thomas G.H., Joy J.B., Hartmann K., Mooers A.O. The global diversity of birds in space and time. Nature. 2012;494:444–448. doi: 10.1038/nature11631. PubMed DOI
Kass J.M., Guénard B., Dudley K.L., Jenkins C.N., Azuma F., Fisher B.L., Parr C.L., Gibb H., Longino J.T., Ward P.S., et al. The global distribution of known and undiscovered ant biodiversity. Sci. Adv. 2022;8:eabp9908. doi: 10.1126/sciadv.abp9908. PubMed DOI PMC
Rangel T.F., Edwards N.R., Holden P.B., Diniz-Filho J.A.F., Gosling W.D., Coelho M.T.P., Cassemiro F.A.S., Rahbek C., Colwell R.K. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science. 2018;361:eaar5452. doi: 10.1126/science.aar5452. PubMed DOI
Biber M.F., Voskamp A., Niamir A., Hickler T., Hof C. A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. J. Biogeogr. 2020;47:114–129. doi: 10.1111/jbi.13696. DOI
Cox N., Young B.E., Bowles P., Fernandez M., Marin J., Rapacciuolo G., Böhm M., Brooks T.M., Hedges S.B., Hilton-Taylor C., et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature. 2022;605:285–290. doi: 10.1038/s41586-022-04664-7. PubMed DOI PMC
Sabatini F.M., Jiménez-Alfaro B., Jandt U., Chytrý M., Field R., Kessler M., Lenoir J., Schrodt F., Wiser S.K., Khan M.A.S.A., et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 2022;13:4683. doi: 10.1038/s41467-022-32063-z. PubMed DOI PMC
Tsianou M.A., Lazarina M., Michailidou D.-E., Andrikou-Charitidou A., Sgardelis S.P., Kallimanis A.S. The Effect of Climate and Human Pressures on Functional Diversity and Species Richness Patterns of Amphibians, Reptiles and Mammals in Europe. Diversity. 2021;13:275. doi: 10.3390/d13060275. DOI
Taheri S., Naimi B., Rahbek C., Araújo M.B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 2021;7:eabe1110. doi: 10.1126/sciadv.abe1110. PubMed DOI PMC
Večeřa M., Axmanová I., Cubino J.P., Lososová Z., Divíšek J., Knollová I., Aćić S., Biurrun I., Boch S., Bonari G., et al. Mapping species richness of plant families in European vegetation. J. Veg. Sci. 2021;32:e13035. doi: 10.1111/jvs.13035. DOI
Darroch S.A.F., Fraser D., Casey M.M. The preservation potential of terrestrial biogeographic patterns. Proc. R. Soc. B Boil. Sci. 2021;288:20202927. doi: 10.1098/rspb.2020.2927. PubMed DOI PMC
Whiting E.T., Fox D.L. Latitudinal and environmental patterns of species richness in lizards and snakes across continental North America. J. Biogeogr. 2021;48:291–304. doi: 10.1111/jbi.13996. DOI
Zhuang H., Yago M., Settele J., Li X., Ueshima R., Grishin N.V., Wang M. Species richness of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) with implications on historical biogeography: An NDM/VNDM approach. PLoS ONE. 2018;13:e0191049. doi: 10.1371/journal.pone.0191049. PubMed DOI PMC
Kramer-Schadt S., Niedballa J., Pilgrim J.D., Schröder B., Lindenborn J., Reinfelder V., Stillfried M., Heckmann I., Scharf A.K., Augeri D.M., et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 2013;19:1366–1379. doi: 10.1111/ddi.12096. DOI
Essl F., Rabitsch W., Dullinger S., Moser D., Milasowszky N. How well do we know species richness in a well-known continent? Temporal patterns of endemic and widespread species descriptions in the European fauna. Glob. Ecol. Biogeogr. 2013;22:29–39. doi: 10.1111/j.1466-8238.2012.00787.x. DOI
Heino J., Alahuhta J., Fattorini S. Macroecology of ground beetles: Species richness, range size and body size show different geographical patterns across a climatically heterogeneous area. J. Biogeogr. 2019;46:2548–2557. doi: 10.1111/jbi.13693. DOI
Zhang H.-H., Wang W.-L., Yu Q., Xing D.-H., Xu Z.-B., Duan K., Zhu J.-Q., Zhang X., Li Y.-P., Hu S.-J. Spatial Distribution of Pollinating Butterflies in Yunnan Province, Southwest China with Resource Conservation Implications. Insects. 2020;11:525. doi: 10.3390/insects11080525. PubMed DOI PMC
Pinkert S., Barve V., Guralnick R., Jetz W. Global geographical and latitudinal variation in butterfly species richness captured through a comprehensive country-level occurrence database. Glob. Ecol. Biogeogr. 2022;31:830–839. doi: 10.1111/geb.13475. DOI
Qian H., Qian S., Sandel B. Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Glob. Ecol. Biogeogr. 2022;31:1864–1876. doi: 10.1111/geb.13566. DOI
Konvicka M., Fric Z., Benes J. Butterfly extinctions in European states: Do socioeconomic conditions matter more than physical geography? Glob. Ecol. Biogeogr. 2006;15:82–92. doi: 10.1111/j.1466-822X.2006.00188.x. DOI
Marchese C. Biodiversity hotspots: A shortcut for a more complicated concept. Glob. Ecol. Conserv. 2015;3:297–309. doi: 10.1016/j.gecco.2014.12.008. DOI
Blanford W.T. The distribution of vertebrate animals in India, Ceylon, and Burma. Philos. Trans. R. Soc. B. 1901;194:335–436. doi: 10.1098/rstb.1901.0008. DOI
Hora S.L. The Satpura hypothesis. Sci. Prog. 1953;41:245–255.
Mani M.S. Ecology and Biogeography in India. Dr. W. Junk Publishers; The Hague, The Netherlands: 1974.
Tiwari S., Jassal G.S. Origin and evolution of the Garo-Rajmahal gap. J. Geol. Soc. India. 2001;57:389–403.
Yuan Z.-Y., Zhang B.-L., Raxworthy C.J., Weisrock D.W., Hime P.M., Jin J.-Q., Lemmon E.M., Lemmon A.R., Holland S.D., Kortyna M.L., et al. Natatanuran frogs used the Indian Plate to step-stone disperse and radiate across the Indian Ocean. Natl. Sci. Rev. 2019;6:10–14. doi: 10.1093/nsr/nwy092. PubMed DOI PMC
Gunnell Y. Relief and climate in South Asia: The influence of the western ghats on the current climate pattern of peninsular India. Int. J. Clim. 1997;17:1169–1182. doi: 10.1002/(SICI)1097-0088(199709)17:11<1169::AID-JOC189>3.0.CO;2-W. DOI
Kehimkar I. Butterflies of India. Bombay Natural History Society; Mumbai, India: 2016.
Moore F. Lepidoptera Indica. Volume I. (1890–1892); Volume II. (1893–1896); Volume III. (1896–1899); Volume IV. (1899–1900); Volume V. (1901–1903); Volume VI. (1903–1905) Rhopalocera. Reeve & Co.; London, UK: 1890–1905.
Swinhoe C. Lepidoptera Indica. Volume VII. (1905–1910); Volume VIII. (1910–1911); Volume IX. (1911–1912); Volume X. (1912–1913) Rhopalocera. Reeve & Co.; London, UK: 1905–1913.
Holloway J.D. A numerical investigation of the biogeography of the butterfly fauna of India, and its relation to continental drift. Biol. J. Linn. Soc. 1969;1:373–385. doi: 10.1111/j.1095-8312.1969.tb00127.x. DOI
Holloway J.D. The biogeography of Indian butterflies. In: Mani M.S., editor. Ecology and Biogeography in India. Dr. W. Junk Publishers; The Hague, The Netherlands: 1974. pp. 473–499.
Kunte K. Biogeographic origins and habitat use of the butterflies of the Western Ghats. In: Priyadarsanan D.M., Soubadra Devy M., Subramanian K.A., Aravind N.A., Seena N.K., editors. Invertebrate Diversity and Conservation in the Western Ghats, India. Ashoka Trust for Research in Ecology and the Environment; Bengaluru, India: 2016. pp. 1–21.
Dolia J., Devy M.S., Aravind N.A., Kumar A. Adult butterfly communities in coffee plantations around a protected area in the Western Ghats, India. Anim. Conserv. 2008;11:26–34. doi: 10.1111/j.1469-1795.2007.00143.x. DOI
Sharma K., Acharya B.K., Sharma G., Valente D., Pasimeni M.R., Petrosillo I., Selvan T. Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. Ecol. Indic. 2020;110:105605. doi: 10.1016/j.ecolind.2019.105605. DOI
Dewan S., Acharya B.K., Vetaas O.R., Ghatani S. Do sub-groups of butterflies display different elevational distribution patterns in the Eastern Himalaya, India? Front. Biogeogr. 2021;13:e49643. doi: 10.21425/F5FBG49643. DOI
Dewan S., Sanders N.J., Acharya B.K. Turnover in butterfly communities and traits along an elevational gradient in the eastern Himalaya, India. Ecosphere. 2022;13:e3984. doi: 10.1002/ecs2.3984. DOI
Naik D., Rao R.S.P., Kunte K., Mustak M.S. Ecological monitoring and indicator taxa: Butterfly communities in heterogeneous landscapes of the Western Ghats and Malabar coast, India. J. Insect Conserv. 2022;26:107–119. doi: 10.1007/s10841-022-00368-5. DOI
Varshney R.K., Smetacek P. A Synoptic Catalogue of the Butterflies of India. Butterfly Research Centre and Indinov Publishing; New Delhi, India: 2015.
Gasse P.V. Butterflies of the Indian Subcontinent Distributional Checklist. Tshikolovets Publications; Pardubice, Czech Republic: 2021.
Rosenzweig M.L. Species Diversity in Space and Time. Cambridge University Press; New York, NY, USA: 1995.
Willig M.R., Kaufman D.M., Stevens R.D. Latitudinal Gradients of Biodiversity: Pattern, Process, Scale, and Synthesis. Annu. Rev. Ecol. Evol. Syst. 2003;34:273–309. doi: 10.1146/annurev.ecolsys.34.012103.144032. DOI
Chazot N., Condamine F.L., Dudas G., Peña C., Kodandaramaiah U., Matos-Maraví P., Aduse-Poku K., Elias M., Warren A.D., Lohman D.J., et al. Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nat. Commun. 2021;12:5717. doi: 10.1038/s41467-021-25906-8. PubMed DOI PMC
Triantis K.A., Mylonas M., Lika K., Vardinoyannis K. A model for the species-area-habitat relationship. J. Biogeogr. 2003;30:19–27. doi: 10.1046/j.1365-2699.2003.00805.x. DOI
Stein A., Gerstner K., Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014;17:866–880. doi: 10.1111/ele.12277. PubMed DOI
Tukiainen H., Bailey J.J., Field R., Kangas K., Hjort J. Combining geodiversity with climate and topography to account for threatened species richness. Conserv. Biol. 2017;31:364–375. doi: 10.1111/cobi.12799. PubMed DOI
Jiménez-Alfaro B., Chytrý M., Mucina L., Grace J.B., Rejmánek M. Disentangling vegetation diversity from climate-energy and habitat heterogeneity for explaining animal geographic patterns. Ecol. Evol. 2016;6:1515–1526. doi: 10.1002/ece3.1972. PubMed DOI PMC
Kerr J.T., Vincent R., Currie D.J. Lepidopteran richness patterns in North America. Écoscience. 1998;5:448–453. doi: 10.1080/11956860.1998.11682483. DOI
Bonn A., Storch D., Gaston K.J. Structure of the species–energy relationship. Proc. R. Soc. B Boil. Sci. 2004;271:1685–1691. doi: 10.1098/rspb.2004.2745. PubMed DOI PMC
Craven D., van der Sande M.T., Meyer C., Gerstner K., Bennett J.M., Giling D.P., Hines J., Phillips H.R.P., May F., Bannar-Martin K.H., et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 2020;29:1940–1955. doi: 10.1111/geb.13165. DOI
Dennis R.L.H., Dapporto L., Shreeve T.G., John E., Coutsis J.G., Kudrna O., Saarinen K., Ryrholm N., Williams W.R. Butterflies of European islands: The implications of the geography and ecology of rarity and endemicity for conservation. In: New T.R., editor. Insect Conservation and Islands. Springer; Dordrecht, The Netherlands: 2008. pp. 11–42. DOI
de Queiroz L.J., Doenz C.J., Altermatt F., Alther R., Borko Š., Brodersen J., Gossner M.M., Graham C., Matthews B., McFadden I.R., et al. Climate, immigration and speciation shape terrestrial and aquatic biodiversity in the European Alps. Proc. R. Soc. B Boil. Sci. 2022;289:20221020. doi: 10.1098/rspb.2022.1020. PubMed DOI PMC
Pham N.T., To V.Q., Lohman D.J., Monastyrskii A.L. High Species Richness and Endemism Characterize the Butterfly Fauna of Vietnam’s Central Highlands (Lepidoptera, Papilionoidea) J. Lepid. Soc. 2022;76:60–82. doi: 10.18473/lepi.76i1.a8. DOI
Brown J.W. The Peninsular Effect in Baja California: An Entomological Assessment. J. Biogeogr. 1987;14:359–365. doi: 10.2307/2844943. DOI
Choi S.-W. Trends in butterfly species richness in response to the peninsular effect in South Korea. J. Biogeogr. 2004;31:587–592. doi: 10.1046/j.1365-2699.2003.01007.x. DOI
Dapporto L., Fattorini S., Vodă R., Dincă V., Vila R. Biogeography of western Mediterranean butterflies: Combining turnover and nestedness components of faunal dissimilarity. J. Biogeogr. 2014;41:1639–1650. doi: 10.1111/jbi.12315. DOI
Raven P.H., Gereau R.E., Phillipson P.B., Chatelain C., Jenkins C.N., Ulloa C.U. The distribution of biodiversity richness in the tropics. Sci. Adv. 2020;6:eabc6228. doi: 10.1126/sciadv.abc6228. PubMed DOI PMC
Karanth K.K. Patterns of mammal species richness in India. Curr. Sci. 2011;90:1824–1832.
eBird: An Online Database of Bird Distribution and Abundance—India, Cornell Lab of Ornithology. [(accessed on 6 February 2023)]. Available online: https://ebird.org/region/IN?yr=all.
Van Nieukerken E.J., Kaila L., Kitching I.J., Kristensen N.P., Lees D.C., Minet J., Mitter C., Mutanen M., Regier J.C., Simonsen T.J., et al. Order Lepidoptera Linnaeus, 1758. In: Zhang Z.-Q., editor. Animal Biodiversity: An Outline of Higher-Level Classification and Survey of Taxonomic Richness. Volume 3148. Zootaxa; Auckland, New Zealand: 2011. pp. 212–221. DOI
Eliot J.N. The higher classification of the Lycaenidae (Lepidoptera): A tentative arrangement. Bull. Br. Mus. Nat. Hist. Entomol. 1973;28:371–505. doi: 10.5962/bhl.part.11171. DOI
Ackery P.R. A guide to the genera and species of Parnassiinae (Lepidoptera: Papilionidae) Bull. Br. Mus. Nat. Hist. Entomol. 1975;31:71–105. doi: 10.5962/bhl.part.29484. DOI
Lang S.Y. The Nymphalidae of China (Lepidoptera, Rhopalocera), Part I. Tshikolovets Publications; Pardubice, Czech Republic: 2012.
Wahlberg N., Weingartner E., Warren A.D., Nylin S. Timing major conflict between mitochondrial and nuclear genes in species relationships of Polygonia butterflies (Nymphalidae: Nymphalini) BMC Evol. Biol. 2009;9:92. doi: 10.1186/1471-2148-9-92. PubMed DOI PMC
Wahlberg N., Rota J., Braby M.F., Pierce N.E., Wheat C.W. Revised systematics and higher classification of pierid butterflies (Lepidoptera: Pieridae) based on molecular data. Zool. Scr. 2014;43:641–650. doi: 10.1111/zsc.12075. DOI
Toussaint E.F.A., Breinholt J., Earl C., Warren A.D., Brower A., Yago M., Dexter K.M., Espeland M., Pierce N.E., Lohman D., et al. Anchored phylogenomics illuminates the skipper butterfly tree of life. BMC Evol. Biol. 2018;18:101. doi: 10.1186/s12862-018-1216-z. PubMed DOI PMC
Savela M. Lepidoptera and Some Other Life Forms. 2019. [(accessed on 6 February 2023)]. Available online: https://www.nic.funet.fi/pub/sci/bio/life/insecta/lepidoptera/ditrysia/
Bálint Z. Lycaenidae Part V, Subfamily Polyommatinae, Tribe Polyommatini, Genera Chilades, Lachides, Rueckbeilia, Patricius, Pamiria, Freyeria, Alpherakya, Glabroculus, Ariana. In: Bozano G.C., editor. Guide to the Butterflies of the Palearctic Region. Omnes Artes; Milano, Italy: 2022. pp. 1–106.
Inayoshi Y. A Check List of Butterflies in Indo-China, Chiefly from Thailand, Laos & Vietnam. 2023. [(accessed on 6 February 2023)]. Available online: http://yutaka.it-n.jp/index.html.
Oksanen J., Simpson G.L., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Solymos P., Stevens M.H.H., Szoecs E., et al. Vegan: Community Ecology Package. R Package Version 2.6-4. 2022. [(accessed on 10 January 2023)]. Available online: https://CRAN.R-project.org/package=vegan.
Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria-Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Forest Survey of India (FSI) Indian State of Forest Report 2021. Ministry of Environment Forest and Climate Change; Dehradun, India: 2021.
Reserve Bank of India . Handbook of Statistics on the Indian Economy. Reserve Bank of India; Mumbai, India: 2020–2021.
Ter Braak C.J.F., Šmilauer P. Canoco Reference Manual and User’s Guide: Software for Ordination. Microcomputer Power; Ithaca, NY, USA: 2018. Version 5.1x.
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2023.
Wynter-Blyth M.A. Butterflies of the Indian Region. The Bombay Natural History Society; Bombay, India: 1957.
Mani M.S. Butterflies of the Himalaya. Dr. W. Junk Publishers; Dordrecht, The Netherlands: 1986.
Kamalakannan M., Venkatraman C., Sharma L.K. Diversity and Distribution of Mammals in the Indian Himalayas. In: Sivaperuman C., Venkataraman K., editors. Indian Hotspots, Vertebrate Faunal Diversity, Conservation and Management. Volume 2. Springer; Singapore: 2018. pp. 177–204. DOI
Chandra K., Gupta D., Gopi K.C., Tripathy B., Kumar V. Faunal Diversity of Indian Himalaya. Zoological Survey of India; Kolkata, India: 2018.
Chandra K., Raghunathan C., Sureshan P.M., Subramanian K.A., Rizvi A.N. Faunal Diversity of Biogeographic Zones of India: Western Ghats. Zoological Survey of India; Kolkata, India: 2020.
Chandra K., Kosygin L., Raghunathan C., Gupta D. Faunal Diversity of Biogeographic Zones of India: North-East. Zoological Survey of India; Kolkata, India: 2021.
Chandra K., Gupta D., Raghunathan C. Faunal Diversity of Biogeographic Zones of India: Semi-Arid. Zoological Survey of India; Kolkata, India: 2021.
Chandra K., Gupta D., Raghunathan C., Kumar S., Saini J. Faunal Diversity of Biogeographic Zones of India: Desert. Zoological Survey of India; Kolkata, India: 2021.
Banerjee D., Chandra K., Raghunathan C., Singh N., Gupta D. Faunal Diversity of Biogeographic Zones of India: Deccan Peninsula. Zoological Survey of India; Kolkata, India: 2022.
Tshikolovets V.V. The Butterflies of Ladak (N.-W. India) Vadim, V. Tshikolovets; Brno-Kyiv, Ukraine: 2005.
Evans W.H. The butterflies of Baluchistan. J. Bombay Nat. Hist. Soc. 1932;36:196–209.
Tshikolovets V., Pagès J. The Butterflies of Pakistan. Tshikolovets Publications; Pardubice, Czech Republic: 2016.
Noor S., Ahmed H.A., Mengal F., Durrani S., Rasheed S., Abang F., Sani I.A. An annotated list of the butterfly fauna of Quetta, Pakistan. J. Entomol. Zool. 2018;6:771–777.
Basu D.N., Churi P., Soman A., Sengupta A., Bhakare M., Lokhande S., Bhoite S., Huertas B., Kunte K. The genus Tarucus Moore, [1881] (Lepidoptera: Lycaenidae) in the Indian Subcontinent. Trop. Lepid. Res. 2019;29:87–110.
Irungbam M., Irungbam J.S., Rindos M., Maresova J.P., Fric Z.F. Phylogeography of the small grass yellow Eurema brigitta (Lepidoptera: Pieridae) unveils the existence of distinct taxa within the Paleotropics. Austral. Entomol. 2023 accepted .
Prasad V., Farooqui A., Tripathi S.K.M., Garg R., Thakur B. Evidence of Late Palaeocene-Early Eocene equatorial rain forest refugia in southern Western Ghats, India. J. Biosci. 2009;34:777–797. doi: 10.1007/s12038-009-0062-y. PubMed DOI
Moore J.C. Squirrel Geography of the Indian Subregion. Syst. Zool. 1960;9:1–17. doi: 10.2307/2411536. DOI
Nameer P.O. JoTT Checklist of the Mammals of Western Ghats (v1.0), 1 January 2020. 2020. [(accessed on 10 January 2023)]. Available online: https://threatenedtaxa.org/index.php/JoTT/checklists/mammals/westernghats.
Ramesh V., Gopalakrishna T., Barve S., Melnick D.J. IUCN greatly underestimates threat levels of endemic birds in the Western Ghats. Biol. Conserv. 2017;210:205–221. doi: 10.1016/j.biocon.2017.03.019. DOI
Sivaperuman C., Venkataraman K. Indian Hotspots, Vertebrate Faunal Diversity, Conservation and Management. Volume 2. Springer; Singapore: 2018. Varadaraju Diversity of Reptiles in the Indian Biodiversity Hotspots; pp. 65–91. DOI
Dutta S.K., Vasudevan K., Chaitra M.S., Shanker K., Aggarwal R.K. Jurassic frogs and the evolution of amphibian endemism in the Western Ghats. Curr. Sci. 2004;86:211–216.
Subramanian K.A., Emiliyamma K.G., Babu R., Radhakrishnan C., Talmale S.S. Atlas of Odonata (Insecta) of the Western Ghats, India. Zoological Survey of India; Kolkata, India: 2018.
Bhakare M., Ogale H. A Guide to Butterflies of Western Ghats (India) Includes Butterflies of Kerala, Tamilnadu, Karnataka, Goa, Maha-rashtra and Gujarat States. Milind Bhakare (Privately Published); Mumbai, India: 2018.
Das G.N., Gayen S., Saito M., Chandra K. Notes on the hairstreak butterflies Euaspa Moore, 1884 (Lepidoptera: Lycaenidae) with new distribution records to the Indian eastern Himalaya. JoTT. 2019;11:14238–14241. doi: 10.11609/jott.4873.11.9.14238-14241. DOI
Das G.N., Singh N., Chandra K. Notes on the genus Cyllogenes Butler, 1868 (Lepidoptera: Nymphalidae: Satyrinae) from India. Trop. Lepid. Res. 2020;30:115–125. doi: 10.5281/zenodo.4317596. DOI
Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Datta-Roy A., Karanth K.P. The Out-of-India hypothesis: What do molecules suggest? J. Biosci. 2009;34:687–697. doi: 10.1007/s12038-009-0057-8. PubMed DOI
Karanth K.P. Out-of-India Gondwanan origin of some tropical Asian biota. Curr. Sci. 2006;100:789–792.
Klaus S., Morley R.J., Plath M., Zhang Y.-P., Li J.-T. Biotic interchange between the Indian subcontinent and mainland Asia through time. Nat. Commun. 2016;7:12132. doi: 10.1038/ncomms12132. PubMed DOI PMC
Jeanneret P., Schüpbach B., Luka H. Quantifying the impact of landscape and habitat features on biodiversity in cultivated landscapes. Agric. Ecosyst. Environ. 2003;98:311–320. doi: 10.1016/S0167-8809(03)00091-4. DOI
Mukherjee K., Mondal A. Butterfly diversity in heterogeneous habitat of Bankura, West Bengal, India. JoTT. 2020;12:15804–15816. doi: 10.11609/jott.5136.12.8.15804-15816. DOI
Šlancarová J., Benes J., Kristynek M., Kepka P., Konvicka M. Does the surrounding landscape heterogeneity affect the butterflies of insular grassland reserves? A contrast between composition and configuration. J. Insect Conserv. 2014;18:1–12. doi: 10.1007/s10841-013-9607-3. DOI
Dennis R.L.H. A Resource-Based Habitat View for Conservation: Butterflies in the British Landscape. Wiley Blackwell; Oxford, UK: 2010.
Corlett R.T., Primack R.B. Tropical Rain Forests: An Ecological and Biogeographical Comparison. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2011.
Ratnam J., Tomlinson K.W., Rasquinha D.N., Sankaran M. Savannahs of Asia: Antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B. 2016;371:20150305. doi: 10.1098/rstb.2015.0305. PubMed DOI PMC
Tshikolovets V.V. The Butterflies of Tajikistan. Vadim, V. Tshikolovets; Brno-Kyiv, Ukraine: 2003.
Mundhe N.N., Rokade P.D., Pawar D.B., Ade N.D. Regional disparities in human development: A case study of Maharashtra state in western India. Mukta Shabd. 2020;9:2528–2539.
Sherratt K. Social and Economic Characteristics of Ladakh, India. Geology for Global Development; London, UK: 2014.