Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34666524
PubMed Central
PMC8527197
DOI
10.1098/rspb.2021.1631
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity conservation, carbon sequestration, carbon storage, climate change, historical disturbance, primary forest,
- MeSH
- biodiverzita MeSH
- klimatické změny * MeSH
- lesy MeSH
- sekvestrace uhlíku MeSH
- stromy MeSH
- uhlík * analýza MeSH
- zachování přírodních zdrojů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhlík * MeSH
With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises.
Department of Biology Minot State University Minot ND USA
Department of Natural Resources Washington State 1111 Washington Street SE Olympia WA 98504 USA
Faculty of Forestry Ukrainian National Forestry University Gen Chuprynka 103 Lviv 790 57 Ukraine
Martin Luther University Halle Wittenberg Institute of Biology Am Kirchtor 1 Halle 06108 Germany
Zobrazit více v PubMed
Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J. 2008. Old-growth forests as global carbon sinks. Nature 455, 213-215. (10.1038/nature07276) PubMed DOI
Howard C, Flather CH, Stephens PA. 2020. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 1-10. (10.1038/s41467-020-14771-6) PubMed DOI PMC
Friedlingstein P, et al. 2019. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783-1838. (10.5194/essd-11-1783-2019) DOI
Griscom BW, et al. 2017. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11 645-11 650. (10.1073/pnas.1710465114) PubMed DOI PMC
Parrish JD, Braun D, Unnasch RS. 2003. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53, 851-860. (10.1641/0006-3568(2003)053[0851:AWCWWS]2.0.CO;2) DOI
Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Butchart SHM, Levi T. 2017. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441-444. (10.1038/nature23285) PubMed DOI
Buotte PC, Law BE, Ripple WJ, Berner TL. 2020. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 30, 1-11. (10.1002/eap.2039) PubMed DOI PMC
Mammola S, Riccardi N, Prié V, Correia R, Cardoso P, Lopes-Lima M, Sousa R. 2020. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B 287, 20202166. (10.1098/rspb.2020.2166) PubMed DOI PMC
Thom D, Seidl R. 2016. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760-781. (10.1111/brv.12193) PubMed DOI PMC
Sabatini FM, et al. 2019. Trade-offs between carbon stocks and biodiversity in European temperate forests. Glob. Change Biol. 25, 536-548. (10.1111/gcb.14503) PubMed DOI
Thom D, Golivets M, Edling L, Meigs GW, Gourevitch JD, Sonter L, Galford GL, Keeton WS. 2019. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal–temperate North America. Glob. Change Biol. 25, 2446-2458. (10.1111/gcb.14656) PubMed DOI
Lennox GD, et al. 2018. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Change Biol. 24, 5680-5694. (10.1111/gcb.14443) PubMed DOI
Lecina-Diaz J, Alvarez A, Regos A, Drapeau P, Paquette A, Messier C, Javier R. 2018. The positive carbon stocks-biodiversity relationship in forests: co-occurrence and drivers across five sub-climates. Ecol. Appl. 28, 1481-1493. (10.1002/eap.1749) PubMed DOI
Di Marco M, Watson JE, Currie DJ, Possingham HP, Venter O. 2018. The extent and predictability of the biodiversity-carbon correlation. Ecol. Lett. 21, 365-375. (10.1111/ele.12903) PubMed DOI
Ferreira J, et al. 2018. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Change 8, 744-749. (10.1038/s41558-018-0225-7) DOI
Asbeck T, Sabatini F, Augustynczik ALD, Basile M, Helbach J, Jonker M, Knuff A, Bauhus J. 2021. Biodiversity response to forest management intensity, carbon stocks and net primary production in temperate montane forests. Sci. Rep. 11, 1625. (10.1038/s41598-020-80499-4) PubMed DOI PMC
Seidl R, et al. 2017. Forest disturbances under climate change. Nat. Clim. Change 7, 395-402. (10.1038/NCLIMATE3303) PubMed DOI PMC
Kurz WA, Stinson G, Rampley G. 2008. Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Phil. Trans. R. Soc. B 363, 2259-2268. (10.1098/rstb.2007.2198) PubMed DOI PMC
Turner MG, et al. 2020. Climate change, ecosystems and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105. (10.1098/rstb.2019.0105) PubMed DOI PMC
Case MJ, Johnson BG, Bartowitz KJ, Hudiburg TW. 2021. Forests of the future: climate change impacts and implications for carbon storage in the Pacific Northwest, USA. For. Ecol. Manag. 482, 118886. (10.1016/j.foreco.2020.118886) DOI
Schurman JS, et al. 2018. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Change Biol. 24, 2169-2181. (10.1111/gcb.14041) PubMed DOI
Mori AS. 2011. Ecosystem management based on natural disturbances: hierarchical context and non-equilibrium paradigm. J. Appl. Ecol. 48, 280-292. (10.1111/j.1365-2664.2010.01956.x) DOI
Harmon ME, Pabst RJ. 2015. Testing predictions of forest succession using long-term measurements: 100 yrs of observations in the Oregon Cascades. J. Veg. Sci. 26, 722-732. (10.1111/jvs.12273) DOI
Druckenbrod DL, Martin-Benito D, Orwig DA, Pederson N, Poulter B, Renwick KM, Shugart HH. 2019. Redefining temperate forest responses to climate and disturbance in the eastern United States: new insights at the mesoscale. Glob. Ecol. Biogeogr. 28, 557-575. (10.1111/geb.12876) DOI
Food and Agricultural Organization (FAO). 2020. Global Forest Resource Assessment 2020 – key findings. Rome. Published online May 2020. See 10.4060/ca8753en (retrieved in June 2021). DOI
Meigs R, et al. 2017. More ways than one: mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. For. Ecol. Manag. 406, 410-426. (10.1016/j.foreco.2017.07.051) DOI
IUCN. 2020. Policy statement on primary forests including intact forest landscapes. See https://www.iucn.org/sites/dev/files/content/documents/iucn_pf-ifl_policy_2020_approved_version.pdf.
Keeton WS. 2018. Source or sink? Carbon dynamics in old-growth forests and their role in climate change mitigation. In Ecology and recovery of eastern old-growth forests (eds Barton A, Keeton WS), pp. 267-288. Washington, DC: Island Press.
Sabatini FM, et al. 2018. Where are Europe's last primary forests? Divers. Distrib. 24, 1426-1439. (10.1111/ddi.12778) DOI
Remote Primary Forests. 2021. REMOTE primary forests: research on mountain temperate primary forests. Prague, Czech Republic: Remote Primary Forests. See www.remoteforests.org/.
Mikoláš M, et al. 2019. Primary forest distribution and representation in a Central European landscape: results of a large-scale field-based census. For. Ecol. Manag. 449, 117466. (10.1016/j.foreco.2019.117466) DOI
Čada V, et al. 2020. Quantifying natural disturbances using a large-scale dendrochronological reconstruction to guide forest management. Ecol. Appl. 30, e02189. (10.1002/eap.2189) PubMed DOI
Harmon ME, Sexton J. 1996. Guidelines for measurements of woody detritus in forest ecosystems, 73p. Seattle, WA: LTER Network Office, University of Washington.
Lorimer CG, Frelich LE. 1989. A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Can. J. For. Res. 19, 651-663. (10.1139/x89-102) DOI
Burrascano S, et al. 2018. Congruence across taxa and spatial scales: are we asking too much of species data? Glob. Ecol. Biogeogr. 27, 980-990. (10.1111/geb.12766) DOI
Bače R, et al. . Submitted. Long-term response of habitat quality to disturbance of varying time and severity across the European spruce forests.
Suter W, Graf RF, Hess R. 2002. Capercaillie (Tetrao urogallus) and avian biodiversity: testing the umbrella-species concept. Conserv. Biol. 16, 778-788. (10.1046/j.1523-1739.2002.01129.x) DOI
Gao T, Nielsen A, Hedblom M. 2015. Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. Ecol. Indic. 57, 420-434. (10.1016/j.ecolind.2015.05.028) DOI
Mikoláš M, et al. . 2021. Data from: Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Dryad Digital Repository. (10.5061/dryad.0k6djhb13) PubMed DOI PMC
Hilmers T, Nicolas Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J. 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55, 2756-2766. (10.1111/1365-2664.13238) DOI
Wegge P, Rolstad J. 2017. Climate change and bird reproduction: warmer springs benefit breeding success in boreal forest grouse. Proc. R. Soc. B 284, 20171528. (10.1098/rspb.2017.1528) PubMed DOI PMC
Mikoláš M, et al. 2017. Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For. Ecol. Manag. 405, 210-218. (10.1016/j.foreco.2017.09.006) DOI
Forrester DI, et al. 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 396, 160-175. (10.1016/j.foreco.2017.04.011) DOI
Kublin E, Breidenbach J, Kändler G. 2015. TapeR: flexible tree taper curves based on semiparametric mixed models. R package version 0.3.3. See https://CRAN.R-project.org/package=TapeR.
Teodosiu M, Bouriaud OB. 2012. Deadwood specific density and its influential factors: a case study from a pure Norway spruce old-growth forest in the Eastern Carpathians. For. Ecol. Manag. 283, 77-85. (10.1016/j.foreco.2012.06.050) DOI
Kobler J, Zehetgruber B, Dirnböck T, Jandl R, Mirtl M, Schindlbacher A. 2019. Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment. Landsc. Ecol. 34, 325-340. (10.1007/s10980-019-00769-z) DOI
Trotsiuk V, et al. 2016. The legacy of disturbance on individual tree and stand-level aboveground biomass accumulation and stocks in primary mountain Picea abies forests. Forest Ecol. Manag. 373, 108-115. (10.1016/j.foreco.2016.04.038) DOI
Woodwell G, Whittaker RH. 1968. Primary production in terrestrial ecosystems. Am. Zool. 8, 19-30. (10.1093/icb/8.1.19) DOI
Wood SN. 2017. Generalized additive models: an introduction with R, 2nd edn, 496p. Boca Raton: Chapman and Hall/CRC.
Marra G, Wood SN. 2011. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55, 2372-2387. (10.1016/j.csda.2011.02.004) DOI
Baayen H, Vasishth S, Kliegl R, Bates D. 2017. The cave of shadows: addressing the human factor with generalized additive mixed models. J. Mem. Lang. 94, 206-234. (10.1016/j.jml.2016.11.006) DOI
Van Rij J, Wieling M, Baayen R, Van Rijn H. 2017. itsadug: Interpreting time series and autocorrelated data using GAMMs. R package version 2, 3. See https://CRAN.R-project.org/package=itsadug.
Bjørnstad ON, Falck W. 2001. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8, 53-70. (10.1023/A:1009601932481) DOI
Wherry RJ. 1931. A new formula for predicting the shrinkage of the coefficient of multiple correlation. Ann. Mathem. Stat. 2, 440-457. (10.1214/aoms/1177732951) DOI
R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See http://www.r-project.org.
Keith H, Vardon M, Obst C, Young V, Houghton RA, Mackey B. 2021. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341. (10.1016/j.scitotenv.2020.144341) PubMed DOI
Beudert B, Bässler C, Thorn S, Noss R, Schröder B, Dieffenbach-Fries H, Foullois N, Müller J. 2015. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272-281. (10.1111/conl.12153) DOI
Keith H, Mackey BG, Lindenmayer DB. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11 635-11 640. (10.1073/pnas.0901970106) PubMed DOI PMC
Magnani F, et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849-851. (10.1038/nature05847) PubMed DOI
Kortmann M, Heurich M, Latifi H, Rösner S, Seidl R, Müller J, Thorn S. 2018. Forest structure following natural disturbances and early succession provides habitat for two avian flagship species, capercaillie (Tetrao urogallus) and hazel grouse (Tetrastes bonasia). Biol. Conserv. 226, 81-91. (10.1016/j.biocon.2018.07.014) PubMed DOI PMC
Thompson PL, Kéfi S, Zelnik YR, Dee LE, Wang S, De Mazancourt C, Loreau M, Gonzalez A. 2021. Scaling up biodiversity ecosystem functioning relationships: the role of environmental heterogeneity in space and time. Proc. R. Soc. B 288, 20202779. (10.1098/rspb.2020.2779) PubMed DOI PMC
Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob. Change Biol. 10, 2052-2077. (10.1111/j.1365-2486.2004.00866.x) DOI
Keeton WS, Chernyavskyy M, Gratzer G, Main-Knorn M, Shpylchak M, Bihun Y. 2010. Structural characteristics and aboveground biomass of old-growth spruce-fir stands in the eastern Carpathian mountains, Ukraine. Plant Biosyst. 144, 1-12. (10.1080/11263500903560512) DOI
Leroux SJ, Schmiegelow FK, Lessard RB, Cumming SG. 2007. Minimum dynamic reserves: a framework for determining reserve size in ecosystems structured by large disturbances. Biol. Conserv. 138, 464-473. (10.1016/j.biocon.2007.05.012) DOI
Franklin JF, et al. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 155, 399-423. (10.1016/S0378-1127(01)00575-8) DOI
Moomaw WR, Masino SA, Faison EK. 2019. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. Forests Global Change 2, 27. (10.3389/ffgc.2019.00027) DOI
Global patterns of vascular plant alpha diversity
Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon