Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon

. 2021 Oct 27 ; 288 (1961) : 20211631. [epub] 20211020

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34666524

With accelerating environmental change, understanding forest disturbance impacts on trade-offs between biodiversity and carbon dynamics is of high socio-economic importance. Most studies, however, have assessed immediate or short-term effects of disturbance, while long-term impacts remain poorly understood. Using a tree-ring-based approach, we analysed the effect of 250 years of disturbances on present-day biodiversity indicators and carbon dynamics in primary forests. Disturbance legacies spanning centuries shaped contemporary forest co-benefits and trade-offs, with contrasting, local-scale effects. Disturbances enhanced carbon sequestration, reaching maximum rates within a comparatively narrow post-disturbance window (up to 50 years). Concurrently, disturbance diminished aboveground carbon storage, which gradually returned to peak levels over centuries. Temporal patterns in biodiversity potential were bimodal; the first maximum coincided with the short-term post-disturbance carbon sequestration peak, and the second occurred during periods of maximum carbon storage in complex old-growth forest. Despite fluctuating local-scale trade-offs, forest biodiversity and carbon storage remained stable across the broader study region, and our data support a positive relationship between carbon stocks and biodiversity potential. These findings underscore the interdependencies of forest processes, and highlight the necessity of large-scale conservation programmes to effectively promote both biodiversity and long-term carbon storage, particularly given the accelerating global biodiversity and climate crises.

Alma Mater Studiorum University of Bologna Department of Biological Geological and Environmental Sciences BIOME Laboratory Via Irnerio 42 40126 Bologna Italy

Czech University of Life Sciences Prague Faculty of Forestry and Wood Sciences Kamýcká 129 Praha 6 Suchdol 16521 Czech Republic

Department of Biology and General Ecology Faculty of Ecology and Environmental Sciences Technical University in Zvolen Masaryka 24 Zvolen 96001 Slovakia

Department of Biology Minot State University Minot ND USA

Department of Forest Science Biliran Province State University Biliran Campus Biliran 6549 Philippines

Department of Forestry and Renewable Forest Resources Biotechnical Faculty University of Ljubljana Večna pot 83 Ljubljana 1000 Slovenia

Department of Natural Resources Washington State 1111 Washington Street SE Olympia WA 98504 USA

Faculty of Forestry Ukrainian National Forestry University Gen Chuprynka 103 Lviv 790 57 Ukraine

Forest Biometrics Laboratory Faculty of Forestry 'Stefan cel Mare' University of Suceava Universitătii Street no 13 Suceava 720229 Romania

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Puschstraße 4 Leipzig 04103 Germany

Griffith Climate Change Response Program Griffith University Parklands Drive Southport Queensland 4222 Australia

Martin Luther University Halle Wittenberg Institute of Biology Am Kirchtor 1 Halle 06108 Germany

Rubenstein School of Environment and Natural Resources University of Vermont 81 Carrigan Drive Burlington VT USA

Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 Birmensdorf 8903 Switzerland

Zobrazit více v PubMed

Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J. 2008. Old-growth forests as global carbon sinks. Nature 455, 213-215. (10.1038/nature07276) PubMed DOI

Howard C, Flather CH, Stephens PA. 2020. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 1-10. (10.1038/s41467-020-14771-6) PubMed DOI PMC

Friedlingstein P, et al. 2019. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783-1838. (10.5194/essd-11-1783-2019) DOI

Griscom BW, et al. 2017. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11 645-11 650. (10.1073/pnas.1710465114) PubMed DOI PMC

Parrish JD, Braun D, Unnasch RS. 2003. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53, 851-860. (10.1641/0006-3568(2003)053[0851:AWCWWS]2.0.CO;2) DOI

Betts MG, Wolf C, Ripple WJ, Phalan B, Millers KA, Duarte A, Butchart SHM, Levi T. 2017. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441-444. (10.1038/nature23285) PubMed DOI

Buotte PC, Law BE, Ripple WJ, Berner TL. 2020. Carbon sequestration and biodiversity co-benefits of preserving forests in the western United States. Ecol. Appl. 30, 1-11. (10.1002/eap.2039) PubMed DOI PMC

Mammola S, Riccardi N, Prié V, Correia R, Cardoso P, Lopes-Lima M, Sousa R. 2020. Towards a taxonomically unbiased European Union biodiversity strategy for 2030. Proc. R. Soc. B 287, 20202166. (10.1098/rspb.2020.2166) PubMed DOI PMC

Thom D, Seidl R. 2016. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760-781. (10.1111/brv.12193) PubMed DOI PMC

Sabatini FM, et al. 2019. Trade-offs between carbon stocks and biodiversity in European temperate forests. Glob. Change Biol. 25, 536-548. (10.1111/gcb.14503) PubMed DOI

Thom D, Golivets M, Edling L, Meigs GW, Gourevitch JD, Sonter L, Galford GL, Keeton WS. 2019. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal–temperate North America. Glob. Change Biol. 25, 2446-2458. (10.1111/gcb.14656) PubMed DOI

Lennox GD, et al. 2018. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Change Biol. 24, 5680-5694. (10.1111/gcb.14443) PubMed DOI

Lecina-Diaz J, Alvarez A, Regos A, Drapeau P, Paquette A, Messier C, Javier R. 2018. The positive carbon stocks-biodiversity relationship in forests: co-occurrence and drivers across five sub-climates. Ecol. Appl. 28, 1481-1493. (10.1002/eap.1749) PubMed DOI

Di Marco M, Watson JE, Currie DJ, Possingham HP, Venter O. 2018. The extent and predictability of the biodiversity-carbon correlation. Ecol. Lett. 21, 365-375. (10.1111/ele.12903) PubMed DOI

Ferreira J, et al. 2018. Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nat. Clim. Change 8, 744-749. (10.1038/s41558-018-0225-7) DOI

Asbeck T, Sabatini F, Augustynczik ALD, Basile M, Helbach J, Jonker M, Knuff A, Bauhus J. 2021. Biodiversity response to forest management intensity, carbon stocks and net primary production in temperate montane forests. Sci. Rep. 11, 1625. (10.1038/s41598-020-80499-4) PubMed DOI PMC

Seidl R, et al. 2017. Forest disturbances under climate change. Nat. Clim. Change 7, 395-402. (10.1038/NCLIMATE3303) PubMed DOI PMC

Kurz WA, Stinson G, Rampley G. 2008. Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Phil. Trans. R. Soc. B 363, 2259-2268. (10.1098/rstb.2007.2198) PubMed DOI PMC

Turner MG, et al. 2020. Climate change, ecosystems and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105. (10.1098/rstb.2019.0105) PubMed DOI PMC

Case MJ, Johnson BG, Bartowitz KJ, Hudiburg TW. 2021. Forests of the future: climate change impacts and implications for carbon storage in the Pacific Northwest, USA. For. Ecol. Manag. 482, 118886. (10.1016/j.foreco.2020.118886) DOI

Schurman JS, et al. 2018. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Change Biol. 24, 2169-2181. (10.1111/gcb.14041) PubMed DOI

Mori AS. 2011. Ecosystem management based on natural disturbances: hierarchical context and non-equilibrium paradigm. J. Appl. Ecol. 48, 280-292. (10.1111/j.1365-2664.2010.01956.x) DOI

Harmon ME, Pabst RJ. 2015. Testing predictions of forest succession using long-term measurements: 100 yrs of observations in the Oregon Cascades. J. Veg. Sci. 26, 722-732. (10.1111/jvs.12273) DOI

Druckenbrod DL, Martin-Benito D, Orwig DA, Pederson N, Poulter B, Renwick KM, Shugart HH. 2019. Redefining temperate forest responses to climate and disturbance in the eastern United States: new insights at the mesoscale. Glob. Ecol. Biogeogr. 28, 557-575. (10.1111/geb.12876) DOI

Food and Agricultural Organization (FAO). 2020. Global Forest Resource Assessment 2020 – key findings. Rome. Published online May 2020. See 10.4060/ca8753en (retrieved in June 2021). DOI

Meigs R, et al. 2017. More ways than one: mixed-severity disturbance regimes foster structural complexity via multiple developmental pathways. For. Ecol. Manag. 406, 410-426. (10.1016/j.foreco.2017.07.051) DOI

IUCN. 2020. Policy statement on primary forests including intact forest landscapes. See https://www.iucn.org/sites/dev/files/content/documents/iucn_pf-ifl_policy_2020_approved_version.pdf.

Keeton WS. 2018. Source or sink? Carbon dynamics in old-growth forests and their role in climate change mitigation. In Ecology and recovery of eastern old-growth forests (eds Barton A, Keeton WS), pp. 267-288. Washington, DC: Island Press.

Sabatini FM, et al. 2018. Where are Europe's last primary forests? Divers. Distrib. 24, 1426-1439. (10.1111/ddi.12778) DOI

Remote Primary Forests. 2021. REMOTE primary forests: research on mountain temperate primary forests. Prague, Czech Republic: Remote Primary Forests. See www.remoteforests.org/.

Mikoláš M, et al. 2019. Primary forest distribution and representation in a Central European landscape: results of a large-scale field-based census. For. Ecol. Manag. 449, 117466. (10.1016/j.foreco.2019.117466) DOI

Čada V, et al. 2020. Quantifying natural disturbances using a large-scale dendrochronological reconstruction to guide forest management. Ecol. Appl. 30, e02189. (10.1002/eap.2189) PubMed DOI

Harmon ME, Sexton J. 1996. Guidelines for measurements of woody detritus in forest ecosystems, 73p. Seattle, WA: LTER Network Office, University of Washington.

Lorimer CG, Frelich LE. 1989. A methodology for estimating canopy disturbance frequency and intensity in dense temperate forests. Can. J. For. Res. 19, 651-663. (10.1139/x89-102) DOI

Burrascano S, et al. 2018. Congruence across taxa and spatial scales: are we asking too much of species data? Glob. Ecol. Biogeogr. 27, 980-990. (10.1111/geb.12766) DOI

Bače R, et al. . Submitted. Long-term response of habitat quality to disturbance of varying time and severity across the European spruce forests.

Suter W, Graf RF, Hess R. 2002. Capercaillie (Tetrao urogallus) and avian biodiversity: testing the umbrella-species concept. Conserv. Biol. 16, 778-788. (10.1046/j.1523-1739.2002.01129.x) DOI

Gao T, Nielsen A, Hedblom M. 2015. Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. Ecol. Indic. 57, 420-434. (10.1016/j.ecolind.2015.05.028) DOI

Mikoláš M, et al. . 2021. Data from: Natural disturbance impacts on trade-offs and co-benefits of forest biodiversity and carbon. Dryad Digital Repository. (10.5061/dryad.0k6djhb13) PubMed DOI PMC

Hilmers T, Nicolas Friess N, Bässler C, Heurich M, Brandl R, Pretzsch H, Seidl R, Müller J. 2018. Biodiversity along temperate forest succession. J. Appl. Ecol. 55, 2756-2766. (10.1111/1365-2664.13238) DOI

Wegge P, Rolstad J. 2017. Climate change and bird reproduction: warmer springs benefit breeding success in boreal forest grouse. Proc. R. Soc. B 284, 20171528. (10.1098/rspb.2017.1528) PubMed DOI PMC

Mikoláš M, et al. 2017. Mixed-severity natural disturbances promote the occurrence of an endangered umbrella species in primary forests. For. Ecol. Manag. 405, 210-218. (10.1016/j.foreco.2017.09.006) DOI

Forrester DI, et al. 2017. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. For. Ecol. Manag. 396, 160-175. (10.1016/j.foreco.2017.04.011) DOI

Kublin E, Breidenbach J, Kändler G. 2015. TapeR: flexible tree taper curves based on semiparametric mixed models. R package version 0.3.3. See https://CRAN.R-project.org/package=TapeR.

Teodosiu M, Bouriaud OB. 2012. Deadwood specific density and its influential factors: a case study from a pure Norway spruce old-growth forest in the Eastern Carpathians. For. Ecol. Manag. 283, 77-85. (10.1016/j.foreco.2012.06.050) DOI

Kobler J, Zehetgruber B, Dirnböck T, Jandl R, Mirtl M, Schindlbacher A. 2019. Effects of aspect and altitude on carbon cycling processes in a temperate mountain forest catchment. Landsc. Ecol. 34, 325-340. (10.1007/s10980-019-00769-z) DOI

Trotsiuk V, et al. 2016. The legacy of disturbance on individual tree and stand-level aboveground biomass accumulation and stocks in primary mountain Picea abies forests. Forest Ecol. Manag. 373, 108-115. (10.1016/j.foreco.2016.04.038) DOI

Woodwell G, Whittaker RH. 1968. Primary production in terrestrial ecosystems. Am. Zool. 8, 19-30. (10.1093/icb/8.1.19) DOI

Wood SN. 2017. Generalized additive models: an introduction with R, 2nd edn, 496p. Boca Raton: Chapman and Hall/CRC.

Marra G, Wood SN. 2011. Practical variable selection for generalized additive models. Comput. Stat. Data Anal. 55, 2372-2387. (10.1016/j.csda.2011.02.004) DOI

Baayen H, Vasishth S, Kliegl R, Bates D. 2017. The cave of shadows: addressing the human factor with generalized additive mixed models. J. Mem. Lang. 94, 206-234. (10.1016/j.jml.2016.11.006) DOI

Van Rij J, Wieling M, Baayen R, Van Rijn H. 2017. itsadug: Interpreting time series and autocorrelated data using GAMMs. R package version 2, 3. See https://CRAN.R-project.org/package=itsadug.

Bjørnstad ON, Falck W. 2001. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8, 53-70. (10.1023/A:1009601932481) DOI

Wherry RJ. 1931. A new formula for predicting the shrinkage of the coefficient of multiple correlation. Ann. Mathem. Stat. 2, 440-457. (10.1214/aoms/1177732951) DOI

R Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. See http://www.r-project.org.

Keith H, Vardon M, Obst C, Young V, Houghton RA, Mackey B. 2021. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 769, 144341. (10.1016/j.scitotenv.2020.144341) PubMed DOI

Beudert B, Bässler C, Thorn S, Noss R, Schröder B, Dieffenbach-Fries H, Foullois N, Müller J. 2015. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 8, 272-281. (10.1111/conl.12153) DOI

Keith H, Mackey BG, Lindenmayer DB. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests. Proc. Natl Acad. Sci. USA 106, 11 635-11 640. (10.1073/pnas.0901970106) PubMed DOI PMC

Magnani F, et al. 2007. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 849-851. (10.1038/nature05847) PubMed DOI

Kortmann M, Heurich M, Latifi H, Rösner S, Seidl R, Müller J, Thorn S. 2018. Forest structure following natural disturbances and early succession provides habitat for two avian flagship species, capercaillie (Tetrao urogallus) and hazel grouse (Tetrastes bonasia). Biol. Conserv. 226, 81-91. (10.1016/j.biocon.2018.07.014) PubMed DOI PMC

Thompson PL, Kéfi S, Zelnik YR, Dee LE, Wang S, De Mazancourt C, Loreau M, Gonzalez A. 2021. Scaling up biodiversity ecosystem functioning relationships: the role of environmental heterogeneity in space and time. Proc. R. Soc. B 288, 20202779. (10.1098/rspb.2020.2779) PubMed DOI PMC

Pregitzer KS, Euskirchen ES. 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Glob. Change Biol. 10, 2052-2077. (10.1111/j.1365-2486.2004.00866.x) DOI

Keeton WS, Chernyavskyy M, Gratzer G, Main-Knorn M, Shpylchak M, Bihun Y. 2010. Structural characteristics and aboveground biomass of old-growth spruce-fir stands in the eastern Carpathian mountains, Ukraine. Plant Biosyst. 144, 1-12. (10.1080/11263500903560512) DOI

Leroux SJ, Schmiegelow FK, Lessard RB, Cumming SG. 2007. Minimum dynamic reserves: a framework for determining reserve size in ecosystems structured by large disturbances. Biol. Conserv. 138, 464-473. (10.1016/j.biocon.2007.05.012) DOI

Franklin JF, et al. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For. Ecol. Manag. 155, 399-423. (10.1016/S0378-1127(01)00575-8) DOI

Moomaw WR, Masino SA, Faison EK. 2019. Intact forests in the United States: proforestation mitigates climate change and serves the greatest good. Front. Forests Global Change 2, 27. (10.3389/ffgc.2019.00027) DOI

Zobrazit více v PubMed

Dryad
10.5061/dryad.0k6djhb13

figshare
10.6084/m9.figshare.c.5666862

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...