Climatic stability and geological history shape global centers of neo- and paleoendemism in seed plants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37459510
PubMed Central
PMC10372566
DOI
10.1073/pnas.2300981120
Knihovny.cz E-zdroje
- Klíčová slova
- islands, mountains, past climate change, phylogenetic endemism, plant diversity,
- MeSH
- biodiverzita * MeSH
- biologická evoluce * MeSH
- fylogeneze MeSH
- geologie MeSH
- semena rostlinná MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.
Biodiversity Macroecology and Biogeography University of Göttingen Göttingen 37077 Germany
Campus Institute Data Science Göttingen 37077 Germany
Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen 37077 Germany
Department of Biosciences Durham University Durham DH1 3LE United Kingdom
Department of Ecology Faculty of Science Charles University Prague 128 44 Czech Republic
Division of Bioinvasions Global Change and Macroecology University Vienna Vienna 1030 Austria
Ecology Department of Biology University of Konstanz Konstanz 78464 Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig 04103 Germany
School of Natural Sciences Macquarie University Sydney NSW 2109 Australia
Zobrazit více v PubMed
Sheth S. N., Morueta-Holme N., Angert A. L., Determinants of geographic range size in plants. New Phytol. 226, 650–665 (2020). PubMed
Enquist B. J., et al. , The commonness of rarity: Global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019). PubMed PMC
Kier G., et al. , A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. U.S.A. 106, 9322–9327 (2009). PubMed PMC
Myers N., Mittermeier R. A., Mittermeier C. G., da Fonseca G. A. B., Kent J., Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000). PubMed
Pitman N. C. A., Jørgensen P. M., Estimating the size of the world’s threatened flora. Science 298, 989–989 (2002). PubMed
Purvis A., Agapow P.-M., Gittleman J. L., Mace G. M., Nonrandom extinction and the loss of evolutionary history. Science 288, 328–330 (2000). PubMed
Mace G. M., Gittleman J. L., Purvis A., Preserving the tree of life. Science 300, 1707–1709 (2003). PubMed
Gumbs R., et al. , The EDGE2 protocol: Advancing the prioritisation of evolutionarily distinct and globally endangered species for practical conservation action. PLoS Biol. 21, e3001991 (2023). PubMed PMC
Faith D. P., Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61, 1–10 (1992).
Veron S., et al. , High evolutionary and functional distinctiveness of endemic monocots in world islands. Biodivers. Conserv. 30, 3697–3715 (2021).
Rosauer D., Laffan S. W., Crisp M. D., Donnellan S. C., Cook L. G., Phylogenetic endemism: A new approach for identifying geographical concentrations of evolutionary history. Mol. Ecol. 18, 4061–4072 (2009). PubMed
Mishler B. D., et al. , Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nat. Commun. 5, 4473 (2014). PubMed
Thompson J. D., Lavergne S., Affre L., Gaudeul M., Debussche M., Ecological differentiation of mediterranean endemic plants. Taxon 54, 967–976 (2005).
Hughes C. E., Atchison G. W., The ubiquity of alpine plant radiations: From the andes to the hengduan mountains. New Phytol. 207, 275–282 (2015). PubMed
Fernández-Mazuecos M., et al. , The radiation of Darwin’s giant daisies in the Galápagos Islands. Curr. Biol. 30, 4989–4998 (2020). PubMed
Losos J. B., Ricklefs R. E., Adaptation and diversification on islands. Nature 457, 830–836 (2009). PubMed
Weigelt P., et al. , Global patterns and drivers of phylogenetic structure in island floras. Sci. Rep. 5, 12213 (2015). PubMed PMC
Cronk Q. C. B., Relict floras of Atlantic islands: Patterns assessed. Biol. J. Linn. Soc. Lond. 46, 91–103 (1992).
Fjeldså J., Lovett J. C., Geographical patterns of old and young species in African forest biota: The significance of specific montane areas as evolutionary centres. Biodivers. Conserv. 6, 325–346 (1997).
Dynesius M., Jansson R., Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. U.S.A. 97, 9115–9120 (2000). PubMed PMC
Davis M. B., Shaw R. G., Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001). PubMed
Jansson R., Global patterns in endemism explained by past climatic change. Proc. R. Soc. Lond. B Biol. Sci. 270, 583–590 (2003). PubMed PMC
Bennett K. D., Tzedakis P. C., Willis K. J., Quaternary refugia of north European trees. J. Biogeogr. 18, 103–115 (1991).
Jump A. S., Mátyás C., Peñuelas J., The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24, 694–701 (2009). PubMed
Crisp M. D., Laffan S., Linder H. P., Monro A., Endemism in the Australian flora. J. Biogeogr. 28, 183–198 (2001).
Gillespie R. G., Roderick G. K., Arthropods on islands: Colonization, speciation, and conservation. Annu. Rev. Entomol. 47, 595–632 (2002). PubMed
Cronk Q. C. B., Islands: Stability, diversity, conservation. Biodivers. Conserv. 6, 477–493 (1997).
Lu L.-M., et al. , Evolutionary history of the angiosperm flora of China. Nature 554, 234–238 (2018). PubMed
Thornhill A. H., et al. , Continental-scale spatial phylogenetics of Australian angiosperms provides insights into ecology, evolution and conservation. J. Biogeogr. 43, 2085–2098 (2016).
Weigelt P., König C., Kreft H., GIFT – A global inventory of floras and traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).
Govaerts R., Nic Lughadha E., Black N., Turner R., Paton A., The world checklist of vascular plants, a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215 (2021). PubMed PMC
Smith S. A., Brown J. W., Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018). PubMed
Hojsgaard D., Klatt S., Baier R., Carman J. G., Hörandl E., Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. CRC Crit. Rev. Plant Sci. 33, 414–427 (2014). PubMed PMC
Mishler B. D., Spatial phylogenetics. J. Biogeogr. 50, jbi.14618 (2023).
Rudbeck A. V., et al. , The darwinian shortfall in plants: phylogenetic knowledge is driven by range size. Ecography 2022, e06142 (2022).
Daru B. H., Farooq H., Antonelli A., Faurby S., Endemism patterns are scale dependent. Nat. Commun. 11, 2115 (2020). PubMed PMC
Weigelt P., Kreft H., Quantifying island isolation–insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).
Takhtajan A. L., Floristic Regions of the World (University of California Press, 1986).
Gallagher R. V., et al. , Global shortfalls in threat assessments for endemic flora by country. Plants People Planet 5, ppp3.10369 (2023).
Cronk Q. C. B., The history of endemic flora of St Helena: A relictual series. New Phytol. 105, 509–520 (1987). PubMed
Clement W. L., et al. , Phylogenetic position and biogeography of Hillebrandia sandwicensis (Begoniaceae): A rare Hawaiian relict. Am. J. Bot. 91, 905–917 (2004). PubMed
Zhang L., et al. , The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020). PubMed PMC
Kisel Y., Barraclough T. G., Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316–334 (2010). PubMed
Antonelli A., et al. , Madagascar’s extraordinary biodiversity: Evolution, distribution, and use. Science 378, eabf0869 (2022). PubMed
Yoder A. D., Nowak M. D., Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 37, 405–431 (2006).
Buerki S., Devey D. S., Callmander M. W., Phillipson P. B., Forest F., Spatio-temporal history of the endemic genera of Madagascar. Bot. J. Linn. Soc. 171, 304–329 (2013).
Procheş Ş, Ramdhani S., Perera S. J., Ali J. R., Gairola S., Global hotspots in the present-day distribution of ancient animal and plant lineages. Sci. Rep. 5, 15457 (2015). PubMed PMC
Fernández-Palacios J. M., et al. , Scientists’ warning – The outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021). PubMed PMC
Cai L., et al. , Global models and predictions of plant diversity based on advanced machine learning techniques. New Phytol. 237, 1432–1445 (2023). PubMed
Dagallier L. M. J., et al. , Cradles and museums of generic plant diversity across tropical Africa. New Phytol. 225, 2196–2213 (2020). PubMed PMC
Merckx V. S. F. T., et al. , Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015). PubMed
Xing Y., Ree R. H., Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl. Acad. Sci. U.S.A. 114, E3444–E3451 (2017). PubMed PMC
Antonelli A., et al. , Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).
Rahbek C., et al. , Building mountain biodiversity: Geological and evolutionary processes. Science 365, 1114–1119 (2019). PubMed
Flantua S. G. A., et al. , Snapshot isolation and isolation history challenge the analogy between mountains and islands used to understand endemism. Global Ecol. Biogeogr. 29, 1651–1673 (2020).
Sandel B., et al. , The influence of late quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011). PubMed
Evans K. L., Warren P. H., Gaston K. J., Species–energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. 80, 1–25 (2005). PubMed
Valente L. M., Savolainen V., Vargas P., Unparalleled rates of species diversification in Europe. Proc. R. Soc. B Biol. Sci. 277, 1489–1496 (2010). PubMed PMC
Storch D., Keil P., Jetz W., Universal species–area and endemics–area relationships at continental scales. Nature 488, 78–81 (2012). PubMed
Thornhill A. H., et al. , Spatial phylogenetics of the native California flora. BMC Biol 15, 96 (2017). PubMed PMC
Sandel B., et al. , Current climate, isolation and history drive global patterns of tree phylogenetic endemism. Glob. Ecol. Biogeogr. 29, 4–15 (2020).
Denelle P., Weigelt P., Kreft H., GIFT – an R package to access the Global Inventory of Floras and Traits. bioRxiv [Preprint] (2023). 10.1101/2023.06.27.546704 (accessed 22 October 2022). DOI
Chamberlain S. A., E., Szöcs, taxize: Taxonomic search and retrieval in R. F1000Res 2, 191 (2013). PubMed PMC
Majeský L., Krahulec F., Vašut R. J., How apomictic taxa are treated in current taxonomy: A review. Taxon 66, 1017–1040 (2017).
Sochor M., Vašut R. J., Sharbel T. F., Trávníček B., How just a few makes a lot: Speciation via reticulation and apomixis on example of European brambles (Rubus subgen. Rubus, Rosaceae). Mol. Phylogenet. Evol. 89, 13–27 (2015). PubMed
Tietje M., et al. , Global variation in diversification rate and species richness are unlinked in plants. Proc. Natl. Acad. Sci. U.S.A. 119, e2120662119 (2022). PubMed PMC
Pearse W. D., et al. , pez: Phylogenetics for the environmental sciences. Bioinformatics 31, 2888–2890 (2015). PubMed
Qian H., Ricklefs R. E., Thuiller W., Evolutionary assembly of flowering plants into sky islands. Nat. Ecol. Evol. 5, 640–646 (2021). PubMed
Qian H., Jin Y., Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages? Plant Divers. 43, 255–263 (2021). PubMed PMC
Hengl T., et al. , SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017). PubMed PMC
Danielson J. J., Gesch D. B.. Global multi-resolution terrain elevation data 2010 (GMTED2010) (2011). 10.3133/ofr20111073. Accessed 02 May 2017. DOI
Karger D. N., et al. , Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017). PubMed PMC
Owens H. L., Guralnick R., climateStability: An R package to estimate climate stability from time-slice climatologies. Biodivers. Inform. 14, 8–13 (2019).
Brown J. L., Hill D. J., Dolan A. M., Carnaval A. C., Haywood A. M., PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 1–9 (2018). PubMed PMC
Solt F., Y., Hu, interplot: Plot the effects of variables in interaction terms (2015). https://CRAN.R-project.org/package=interplot. Accessed 19 May 2022.
Dormann C., et al. , Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).
Crase B., Liedloff A. C., Wintle B. A., A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012).
Lim J. Y., Svenning J.-C., Göldel B., Faurby S., Kissling W. D., Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts. Nat. Commun. 11, 4904 (2020). PubMed PMC
Cai L., Data and codes for exploring global centers of neo- and paleoendemism in seed plants. figshare. 10.6084/m9.figshare.21909822. Deposited 17 January 2023. PubMed DOI