Crowdsourced biodiversity monitoring fills gaps in global plant trait mapping

. 2026 Jan 30 ; 17 (1) : 1203. [epub] 20260130

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41617716

Grantová podpora
444524904 Deutsche Forschungsgemeinschaft (German Research Foundation)
504978936 Deutsche Forschungsgemeinschaft (German Research Foundation)
442032008 Deutsche Forschungsgemeinschaft (German Research Foundation)
459819582 Deutsche Forschungsgemeinschaft (German Research Foundation)
EXC 3127 Future Forests Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816 Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816 Deutsche Forschungsgemeinschaft (German Research Foundation)
202548816 Deutsche Forschungsgemeinschaft (German Research Foundation)
FORTRACK European Space Agency (ESA)
TMPFP2_217531 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
88887.974741/2024-00 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Brazilian Federal Agency for the Support and Evaluation of Graduate Education)

Odkazy

PubMed 41617716
PubMed Central PMC12858941
DOI 10.1038/s41467-026-68996-y
PII: 10.1038/s41467-026-68996-y
Knihovny.cz E-zdroje

Plant functional traits are fundamental to ecosystem dynamics and Earth system processes, but their global characterization is limited by available field surveys and trait measurements. Recent expansions in biodiversity data aggregation-including vegetation surveys, citizen science observations, and trait measurements-offer new opportunities to overcome these constraints. Here we demonstrate that combining these diverse data sources with high-resolution Earth observation data enables accurate modeling of key plant traits at up to 1 km2 resolution. Our approach achieves correlations up to 0.63 (15 of 31 traits exceeding 0.50) and improved spatial transferability, effectively bridging gaps in under-sampled regions. By capturing a broad range of traits with high spatial coverage, these maps can enhance understanding of plant community properties and ecosystem functioning, while serving as tools for modeling global biogeochemical processes and informing conservation efforts. Our framework highlights the power of crowdsourced biodiversity data in addressing longstanding extrapolation challenges in global plant trait modeling, with continued advancements in data collection and remote sensing poised to further refine trait-based understanding of the biosphere.

Biodiversity Macroecology and Biogeography University of Göttingen Göttingen Germany

Biology Education Dokuz Eylül University Buca Izmir Turkey

BIOME Lab Department of Biological Geological and Environmental Sciences Alma Mater Studiorum University of Bologna Bologna Italy

Botany and Microbiology Department College of Science King Saud University Riyadh Saudi Arabia

CEFE CNRS EPHE IRD University of Montpellier Montpellier France

Centre for Environmental and Climate Science Lund University Lund Sweden

Centre for Research and Conservation Royal Zoological Society of Antwerp Antwerp Belgium

Centro de Investigación en Biodiversidad y Cambio Global Universidad Autónoma de Madrid Madrid Spain

Chair of Sensor based Geoinformatics University of Freiburg Freiburg Germany

College of Grassland Science Inner Mongolia Agricultural University Hohhot China

Departamento de Biología Universidad Autónoma de Madrid Madrid Spain

Departamento de Botânica SCB Universidade Federal do Paraná Curitiba Brazil

Department of Biology University of Oxford Oxford UK

Department of Biometry and Environmental System Analysis University of Freiburg Freiburg Germany

Department of Botany and Zoology Faculty of Science Masaryk University Brno Czechia

Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland

Department of Forestry Mizoram University Aizawl India

Department of Geography and Environmental Studies Stellenbosch University Stellenbosch South Africa

Department of Plant Biology Michigan State University East Lansing MI USA

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Czechia

Faculty of Geotechnical Engineering University of Zagreb Zagreb Croatia

Faculty of Resource Management HAWK University of Applied Sciences and Arts Göttingen Germany

Faculty of Science University of South Bohemia České Budějovice Czechia

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

ICFRE Himalayan Forest Research Institute Shimla Himachal Pradesh India

Iluka Chair in Vegetation Science and Biogeography Harry Butler Institute Murdoch University Perth WA Australia

Image Signal Processing Group Image Processing Laboratory University of Valencia Paterna Spain

Institute for Global Change Biology and School for Environment and Sustainability University of Michigan Ann Arbor MI USA

Institute of Agroecology and Plant Production Wrocław University of Environmental and Life Sciences Wrocław Poland

Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

Institute of Botany Faculty of Biology Jagiellonian University Kraków Poland

Institute of Botany of the Czech Academy of Sciences Trebon Czechia

Institute of Natural Resource Sciences Wädenswil Switzerland

Instituto Argentino de Investigaciones de las Zonas Áridas CONICET Mendoza Argentina

Instituto de Ecología y Ciencias Ambientales Facultad de Ciencias Universidad de la República Montevideo Uruguay

Korea Advanced Institute of Science and Technology Daejeon South Korea

Manaaki Whenua Landcare Research Lincoln New Zealand

Max Planck Institute for Biogeochemistry Jena Germany

Palmengarten der Stadt Frankfurt am Main Frankfurt am Main Germany

Plant Ecology and Nature Conservation Group Environmental Sciences Department Wageningen University and Research Wageningen The Netherlands

Plant Ecology Laboratory UNEMAT Nova Xavantina MT Brazil

Program in Ecology Evolution and Behavior Michigan State University East Lansing MI USA

Remote Sensing Centre for Earth System Research Leipzig University Leipzig Germany

Sapienza University of Rome Rome Italy

UMR CNRS 7058 Ecologie et Dynamique des Systèmes Anthropisés Université de Picardie Jules Verne Amiens France

Universidade Regional de Blumenau Blumenau Brazil

Zobrazit více v PubMed

Bruelheide, H. et al. Global trait-environment relationships of plant communities. PubMed DOI

Kambach, S. et al. Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe. PubMed DOI PMC

Laughlin, D. C. et al. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. PubMed DOI

Grime, J. P. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. DOI

Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. PubMed DOI PMC

von Humboldt, A. & Bonpland, A.

Wright, I. J. et al. The worldwide leaf economics spectrum. PubMed DOI

Chapin III, F. S. et al. Consequences of changing biodiversity. PubMed DOI

Running, S. W. Ecosystem disturbance, carbon, and climate. PubMed DOI

Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. In (eds Pawar, S., Woodward, G. & Dell, A. I.)

Isaac, M. E., Gagliardi, S., Ordoñez, J. C. & Sauvadet, M. Shade tree trait diversity and functions in agroforestry systems: a review of which traits matter. DOI

Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. DOI

Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. DOI

Díaz, S. et al. The global spectrum of plant form and function: enhanced species-level trait dataset. PubMed DOI PMC

Fisher, R. A. et al. Vegetation demographics in Earth system models: a review of progress and priorities. PubMed DOI

Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. PubMed DOI

Lausch, A. et al. Linking Earth observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. DOI

Homolová, L., Malenovský, Z., Clevers, J. G. P. W., García-Santos, G. & Schaepman, M. E. Review of optical-based remote sensing for plant trait mapping. DOI

Vermote, E. & Wolfe, R. MODIS/Terra Surface Reflectance Daily L2G Global 1km and 500m SIN Grid V061. https://lpdaac.usgs.gov/products/mod09gav061/ (2021).

Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). DOI

Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. DOI

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. DOI

Cornelissen, J. H. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. DOI

Kattge, J. et al. TRY - a global database of plant traits. DOI

Kattge, J. et al. TRY plant trait database - enhanced coverage and open access. PubMed DOI

Enquist, B. J., Condit, R., Peet, R. K., Schildhauer, M. & Thiers, B. M. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at https://peerj.com/preprints/2615v2 (2016).

Dechant, B. et al. Intercomparison of global foliar trait maps reveals fundamental differences and limitations of upscaling approaches.

Wolf, S. et al. Citizen science plant observations encode global trait patterns. PubMed DOI

Bruelheide, H. et al. sPlot - A new tool for global vegetation analyses. DOI

Hähn, G. J. A. et al. Global decoupling of functional and phylogenetic diversity in plant communities. PubMed

Sabatini, F. M. et al. sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots. DOI

Affouard, A. et al. Pl@ntNet automatically identified occurrences https://www.gbif.org/dataset/14d5676a-2c54-4f94-9023-1e8dcd822aa0 (2023).

INaturalist Contributors. iNaturalist Research-grade Observations https://www.gbif.org/dataset/50c9509d-22c7-4a22-a47d-8c48425ef4a7 (2024).

Telenius, A. Biodiversity information goes public: GBIF at your service. DOI

Cai, L. et al. Global models and predictions of plant diversity based on advanced machine learning techniques. PubMed DOI

Meyer, H. & Pebesma, E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. DOI

Lang, N., Jetz, W., Schindler, K. & Wegner, J. D. A high-resolution canopy height model of the Earth. PubMed DOI PMC

Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I. J. Online solutions and the ‘Wallacean shortfall’: what does GBIF contribute to our knowledge of species’ ranges? DOI

Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. DOI

Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. PubMed DOI

Di Cecco, G. J. et al. Observing the observers: how participants contribute data to inaturalist and implications for biodiversity science. DOI

Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. PubMed DOI

Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. PubMed DOI PMC

Moreno-Martínez, A. et al. A methodology to derive global maps of leaf traits using remote sensing and climate data. DOI

Valdez, J. et al. Strategies for advancing inclusive biodiversity research through equitable practices and collective responsibility. PubMed DOI PMC

Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. DOI

Joswig, J. S. et al. Imputing missing data in plant traits: a guide to improve gap filling.

Schiller, C., Schmidtlein, S., Boonman, C., Moreno-Martínez, A. & Kattenborn, T. Deep learning and citizen science enable automated plant trait predictions from photographs. PubMed DOI PMC

Carlucci, M. B., Debastiani, V. J., Pillar, V. D. & Duarte, L. D. S. Between- and within-species trait variability and the assembly of sapling communities in forest patches. DOI

Albert, C. H. Intraspecific trait variability matters. DOI

Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G. & Violle, C. When and how should intraspecific variability be considered in trait-based plant ecology? DOI

Seifert, A., Violle, C., Chalmandrier, L. & Wardle, D. A. A global meta analysis of the relative extent of intraspecific trait variation in plant communities. PubMed

Butler, E. E. et al. Mapping local and global variability in plant trait distributions. PubMed DOI PMC

Scheiter, S., Wolf, S. & Kattenborn, T. Crowd-sourced trait data can be used to delimit global biomes. DOI

Langan, L. et al. Prediction in trait-based ecology: global simulations of specific leaf area using a trait-based dynamic vegetation model. Preprint at 10.1101/2025.04.14.648688 (2025).

Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “Functional Types” more functional. PubMed DOI

Díaz, S. et al. The global spectrum of plant form and function. PubMed DOI

Li, J. & Prentice, I. C. Global patterns of plant functional traits and their relationships to climate. PubMed PMC

Poggiato, G. et al. Predicting combinations of community mean traits using joint modelling. DOI

Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. PubMed DOI

Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. PubMed DOI

Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. PubMed DOI

Smith, T. & Boers, N. Reliability of vegetation resilience estimates depends on biomass density. PubMed DOI PMC

Moreno, J. F. et al. Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission. In

Nieke, J. et al. The Copernicus hyperspectral imaging mission for the environment (CHIME): an overview of its mission, system and planning status. In

Ustin, S. L. & Middleton, E. M. Current and near-term earth-observing environmental satellites, their missions, characteristics, instruments, and applications. PubMed DOI PMC

Hersbach, H. et al. The ERA5 global reanalysis. DOI

Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. PubMed DOI PMC

Schrodt, F. et al. BHPMF - a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. DOI

Grime, J. P. The C-S-R model of primary plant strategies - origins, implications and tests. In (eds Gottlieb, L. D. & Jain, S. K.)

Kong, D. et al. Nonlinearity of root trait relationships and the root economics spectrum. PubMed DOI PMC

Kramer-Walter, K. R. et al. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. DOI

Yeo, I. & Johnson, R. A. A new family of power transformations to improve normality or symmetry. DOI

GBIF.Org User. Occurrence Download https://www.gbif.org/occurrence/download/0136703-240321170329656. 24330515338 (2024).

Observation.Org. Observation.org, Nature data from around the World https://www.gbif.org/dataset/8a863029-f435-446a-821e-275f4f641165 (2024).

Borgy, B. et al. Sensitivity of community-level trait-environment relationships to data representativeness: a test for functional biogeography. DOI

Carmona, C. P., Bello, F. D., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. PubMed DOI

Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. PubMed DOI

Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. PubMed DOI PMC

Madani, N. et al. Future global productivity will be affected by plant trait response to climate. PubMed DOI PMC

Vallicrosa, H. et al. Global maps and factors driving forest foliar elemental composition: the importance of evolutionary history. PubMed DOI

van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. PubMed DOI PMC

Wright, I. J. et al. Modulation of leaf economic traits and trait relationships by climate. DOI

Kattenborn, T. & Schmidtlein, S. Radiative transfer modelling reveals why canopy reflectance follows function. PubMed DOI PMC

Frappart, F. et al. Global monitoring of the vegetation dynamics from the vegetation optical depth (VOD): a review. DOI

Tian, F. et al. Remote sensing of vegetation dynamics in drylands: evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. DOI

Jones, M. O., Jones, L. A., Kimball, J. S. & McDonald, K. C. Satellite passive microwave remote sensing for monitoring global land surface phenology. DOI

Niklas, K. J. Size-dependent allometry of tree height, diameter and trunk-taper. DOI

Liu, H. et al. Hydraulic traits are coordinated with maximum plant height at the global scale. PubMed DOI PMC

Weigelt, A. et al. An integrated framework of plant form and function: the belowground perspective. PubMed DOI

Niinemets, l A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. DOI

Niklas, K. J. Maximum plant height and the biophysical factors that limit it. PubMed DOI

Zanaga, D. et al. ESA WorldCover 10 m 2021 v200. Zenodo 10.5281/zenodo.7254221 (2022).

Ke, G. et al. LightGBM: a highly efficient gradient boosting decision tree. In

Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. PubMed DOI PMC

Kattenborn, T. et al. Spatially autocorrelated training and validation samples inflate performance assessment of convolutional neural networks. DOI

Meyer, H. & Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. PubMed DOI PMC

Wadoux, A. M.-C., Heuvelink, G. B., De Bruin, S. & Brus, D. J. Spatial cross-validation is not the right way to evaluate map accuracy. DOI

Pohjankukka, J., Pahikkala, T., Nevalainen, P. & Heikkonen, J. Estimating the prediction performance of spatial models via spatial k-fold cross validation. DOI

Chollet, F. & Chollet, F.

Géron, A.

Altmann, A., Toloşi, L., Sander, O. & Lengauer, T. Permutation importance: a corrected feature importance measure. PubMed DOI

Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. DOI

Ludwig, M., Moreno-Martinez, A., Hölzel, N., Pebesma, E. & Meyer, H. Assessing and improving the transferability of current global spatial prediction models. DOI

Zherebtsov, D. https://github.com/danilzherebtsov/verstack (2023).

Lusk, D., Wolf, S., Svidzinska, D. & Kattenborn, T. Global plant trait maps based on crowdsourced biodiversity monitoring and Earth observation - 1 km - All PFTs. Zenodo 10.5281/zenodo.14646322 (2025).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...