Good performance of turquoise killifish (Nothobranchius furzeri) on pelleted diet as a step towards husbandry standardization
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32488062
PubMed Central
PMC7265286
DOI
10.1038/s41598-020-65930-0
PII: 10.1038/s41598-020-65930-0
Knihovny.cz E-zdroje
- MeSH
- chov zvířat normy MeSH
- dieta normy veterinární MeSH
- Fundulidae fyziologie MeSH
- krmivo pro zvířata normy MeSH
- modely u zvířat * MeSH
- složení těla MeSH
- stárnutí * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dietary alteration is one of the most universally effective aging interventions, making its standardization a fundamental need for model organisms in aging. In this dietetic study we address the current lack of standardized formulated diet for turquoise killifish Nothobranchius furzeri - a promising model organism. We first demonstrated that N. furzeri can be fully weaned at the onset of puberty onto a commercially available pelleted diet as the sole nutrition when kept in social tanks. We then compared nine somatic and six reproductive parameters between fish fed a typical laboratory diet - frozen chironomid larvae (bloodworms) and fish weaned from bloodworms to BioMar pellets. Both dietary groups had comparable somatic and reproductive performance. There was no difference between diet groups in adult body size, specific growth rate, condition or extent of hepatocellular vacuolation. Fish fed a pelleted diet had higher juvenile body mass and more visceral fat. Pellet-fed males had lower liver mass and possessed a lipid type of hepatocellular vacuolation instead of the prevailing glycogen-like vacuolation in the bloodworm-fed group. No considerable effect was found on reproductive parameters. The negligible differences between dietary groups and good acceptance of pellets indicate their suitability as a useful starting point for the development of standardized diet for Nothobranchius furzeri.
Czech Academy of Sciences Institute of Vertebrate Biology Květná 8 603 65 Brno Czech Republic
Department of Zoology Faculty of Sciences Charles University Viničná 7 122 44 Prague Czech Republic
Zobrazit více v PubMed
Liang Y, et al. Calorie restriction is the most reasonable anti-ageing intervention: A meta-analysis of survival curves. Sci. Rep. 2018;8:5779. PubMed PMC
Polačik M, Blažek R, Reichard M. Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nat. Protoc. 2016;11:1396–1413. PubMed
Dodzian, J., Kean, S., Seidel, J. & Valenzano, D. R. A protocol for laboratory housing of Turquoise Killifish (Nothobranchius furzeri). J. Vis. Exp. e57073 10.3791/57073 (2018). PubMed PMC
Watanabe T, Sakamoto H, Abiru M, Yamashita J. Development of a new type of dry pellet for yellowtail. Bull. Jpn. Soc. Sci. Fish. 1991;57:891–897.
Papa Nicolás G., Chalar Cora, Berois Nibia, Arezo María José. Annual killifish: an approach to the choriogenins of Austrolebias charrua egg envelope. Environmental Biology of Fishes. 2019;102(6):829–844.
Armitage, P. D. Chironomidae as food. in The Chironomidae (eds. P. D., P. S., Armitage, Cranston & L. C. V., Pinder) 423–435 (Springer, 1995). 10.1007/978-94-011-0715-0_17.
Spitsbergen, J. M., Buhler, D. R. & Peterson, T. S. Neoplasia and neoplasm-associated lesions in laboratory colonies of zebrafish emphasizing key influences of diet and aquaculture system design. ILAR J. 114–125 (2012). PubMed PMC
Moatt JP, et al. Reconciling nutritional geometry with classical dietary restriction: Effects of nutrient intake, not calories, on survival and reproduction. Aging Cell. 2019;18:e12868. PubMed PMC
Fowler L. Adele, Williams Michael B., D'Abramo Louis R., Watts Stephen A. The Zebrafish in Biomedical Research. 2020. Zebrafish Nutrition—Moving Forward; pp. 379–401.
Watts SA, Powell M, D’Abramo LR. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 2012;53:144–160. PubMed PMC
Reichard M, Polačik M. Nothobranchius furzeri, an’instant’ fish from an ephemeral habitat. Elife. 2019;8:e41548. PubMed PMC
Shanley DP, Kirkwood TBL. Calorie restriction and aging: A life history analysis. Evolution (N. Y). 2000;54:740–750. PubMed
Markovich ML, Rizzuto NV, Brown PB. Diet affects spawning in Zebrafish. Zebrafish. 2007;4:69–74. PubMed
Mandal SC, et al. Effect of substituting live feed with formulated feed on the reproductive performance and fry survival of Siamese fighting fish, Betta splendens (Regan, 1910) Fish Physiol. Biochem. 2012;38:573–584. PubMed
Miller GW, et al. The influences of parental diet and vitamin E intake on the embryonic zebrafish transcriptome. Comp. Biochem. Physiol. - Part D Genomics Proteomics. 2014;10:22–29. PubMed PMC
Jiang C, Wang P, Li M, Liu S, Zhang S. Dietary β-glucan enhances the contents of complement component 3 and factor B in eggs of zebrafish. Dev. Comp. Immunol. 2016;65:107–113. PubMed
Wolf C, Wheeler JR. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models. Aquat. Toxicol. 2018;197:60–78. PubMed
Wolf JC, Wolfe MJ. A brief overview of nonneoplastic hepatic toxicity in fish. Toxicol. Pathol. 2005;33:75–85. PubMed
Wolf JC, et al. Nonlesions, misdiagnoses, missed diagnoses, and other interpretive challenges in fish histopathology studies: A guide for investigators, authors, reviewers, and readers. Toxicol. Pathol. 2015;43:297–325. PubMed
Vrtílek, M. et al. Limited scope for reproductive senescence in wild populations of a short-lived fish. Sci. Nat. 105, (2018). PubMed
Godoy, R. S. et al. Age-associated liver alterations in wild populations of Austrolebias minuano, a short-lived Neotropical annual killifish. Biogerontology5, (2019). PubMed
Di Cicco E, Terzibasi Tozzini E, Rossi G, Cellerino A. The short-lived annual fish Nothobranchius furzeri shows a typical teleost aging process reinforced by high incidence of age-dependent neoplasias. Exp. Gerontol. 2011;46:249–256. PubMed
Terzibasi Tozzini E, et al. Effects of dietary restriction on mortality and age-related phenotypes in the short-lived fish Nothobranchius furzeri. Aging Cell. 2009;8:88–99. PubMed
Hu Chi-Kuo, Brunet Anne. The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell. 2018;17(3):e12757. PubMed PMC
Genade T, et al. Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell. 2005;4:223–233. PubMed
Valdesalici, S. & Cellerino, A. Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc. R. Soc. B Biol. Sci.270, S189–S191 (2003). PubMed PMC
Vrtílek M, Žák J, Polačik M, Blažek R, Reichard M. Longitudinal demographic study of wild populations of African annual killifish. Sci. Rep. 2018;8:4774. PubMed PMC
Polačik M, et al. Alternative intrapopulation life-history strategies and their trade-offs in an African annual fish. J. Evol. Biol. 2014;27:854–865. PubMed
Polačik M, Reichard M. Diet overlap among three sympatric African annual killifish species Nothobranchius spp. from Mozambique. J. Fish Biol. 2010;77:754–768. PubMed
Valenzano DR, et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr. Biol. 2006;16:296–300. PubMed
Almaida-Pagán PF, et al. Impact of a shift work-like lighting schedule on the functioning of the circadian system in the short-lived fish Nothobranchius furzeri. Exp. Gerontol. 2018;112:44–53. PubMed
Valenzano, D. R., Sharp, S. & Brunet, A. Transposon-mediated transgenesis in the short-lived African killifish Nothobranchius furzeri, a vertebrate model for aging. G31, 531–538 (2011). PubMed PMC
Blažek, R., Polačik, M. & Reichard, M. Rapid growth, early maturation and short generation time in African annual fishes. Evodevo4, (2013). PubMed PMC
Hsu CY, Chiu YC. Ambient temperature influences aging in an annual fish (Nothobranchius rachovii) Aging Cell. 2009;8:726–737. PubMed
Powell, M. L., George, B., Allison, D. B., Watts, S. A. & Austad, S. N. The impact of restricting a formulated diet on growth, reproduction, and survival in Nothobranchius furzeri. 2nd Notho Symp. 2016 T5 (2016).
Vrtílek M, Žák J, Pšenička M, Reichard M. Extremely rapid maturation of a wild African annual fish. Curr. Biol. 2018;28:R822–R824. PubMed
Goolish, E. M., Okutake, K. & Lesure, S. Growth and survivorship of larval Zebrafish Danio rerio on processed diets. N. Am. J. Aquac.61, 189–198 (1999).
Penrith ML, Bastianello SS, Penrith MJ. Hepatic lipoidosis and fatty infiltration of organs in a captive African stonefish, Synanceja verrucosa Bloch & Schneider. J. Fish Dis. 1994;17:171–176.
Moatt JP, et al. Body macronutrient composition is predicted by lipid and not protein content of the diet. Ecol. Evol. 2017;7:10056–10065. PubMed PMC
Oka T, et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 2010;10:21. PubMed PMC
KOHLA U., SAINT-PAUL U., FRIEBE J., WERNICKE D., BFA V. HILGE, BRAVM E., GROPP J. Growth, digestive enzyme activities and hepatic glycogen levels in juvenile Colossoma macropomum Cuvier from South America during feeding, starvation and refeeding. Aquaculture Research. 1992;23(2):189–208.
Casselman, S. J. & Schulte-Hostedde, A. I. Reproductive roles predict sexual dimorphism in internal and external morphology of lake whitefish Coregonus clupeaformis. Ecol. Freshwater Fish13, 217–222 (2004).
Trivers, R. L. Parental investment and sexual selection. in Sexual Selection & the Descent of Man (T., Campbell ed.) 136–179 (Aldine publishing Company, 1972).
Hemre GI, Mommsen TP, Krogdahl A. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. 2002;8:175–194.
Henrotte E, et al. Dietary n-3/n-6 ratio affects the biochemical composition of Eurasian perch (Perca fluviatilis) semen but not indicators of sperm quality. Aquac. Res. 2010;41:31–38.
Vrtílek M, Reichard M. Highly plastic resource allocation to growth and reproduction in females of an African annual fish. Ecol. Freshw. Fish. 2015;24:616–628.
Lawrence C, Best J, James A, Maloney K. The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio) Aquaculture. 2012;368–369:103–108.
Vasagam KPK, Shanmugam A, Rajagopal S. Dietary effect on fry production and growth performance of sailfin molly, Poecilia latipinna, in saltwater. Acta Ichthyol. Piscat. 2007;37:29–35.
Bruce M, et al. Development of broodstock diets for the European Sea Bass (Dicentrarchus labrax) with special emphasis on the importance of n - 3 and n - 6 highly unsaturated fatty acid to reproductive performance. Aquaculture. 1999;177:85–97.
Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: The annual Nothobranchius fishes as a new model system in biology. Biol. Rev. 2016;91:511–533. PubMed
Lepič, P., Buřič, M. & Kozák, P. Adaptation to pelleted feed in pikeperch fingerlings: learning from the trainer fish over gradual adaptation from natural food. Aquat. Living Resour. 30, (2017).
Ricker WE. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Canada. 1975;191:1–382.
Furness AI, Lee K, Reznick DN. Adaptation in a variable environment: Phenotypic plasticity and bet-hedging during egg diapause and hatching in an annual killifish. Evolution (N. Y). 2015;69:1461–1475. PubMed
R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria (2018).
Peig J, Green AJ. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 2010;24:1323–1332.
Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using {lme4} J. Stat. Softw. 2015;67:1–48.
Wheeler, B. & Torchiano, M. lmPerm: Permutation Tests for Linear Models. R Packag. version 2.1.0 (2016).