Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G9818340
Medical Research Council - United Kingdom
PubMed
28248310
PubMed Central
PMC5337994
DOI
10.1038/ncomms14760
PII: ncomms14760
Knihovny.cz E-zdroje
- MeSH
- antigeny CD27 metabolismus MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace MeSH
- buněčné klony cytologie MeSH
- CX3C chemokinový receptor 1 metabolismus MeSH
- cytotoxicita imunologická MeSH
- dárci tkání MeSH
- dospělí MeSH
- fenotyp MeSH
- genetická variace MeSH
- hypervariabilní oblasti genetika MeSH
- imunitní dozor * MeSH
- interleukin-15 farmakologie MeSH
- lidé MeSH
- proliferace buněk MeSH
- receptory antigenů T-buněk gama-delta metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD27 MeSH
- biologické markery MeSH
- CX3C chemokinový receptor 1 MeSH
- CX3CR1 protein, human MeSH Prohlížeč
- hypervariabilní oblasti MeSH
- interleukin-15 MeSH
- receptory antigenů T-buněk gama-delta MeSH
γδ T cells are considered to be innate-like lymphocytes that respond rapidly to stress without clonal selection and differentiation. Here we use next-generation sequencing to probe how this paradigm relates to human Vδ2neg T cells, implicated in responses to viral infection and cancer. The prevalent Vδ1 T cell receptor (TCR) repertoire is private and initially unfocused in cord blood, typically becoming strongly focused on a few high-frequency clonotypes by adulthood. Clonal expansions have differentiated from a naive to effector phenotype associated with CD27 downregulation, retaining proliferative capacity and TCR sensitivity, displaying increased cytotoxic markers and altered homing capabilities, and remaining relatively stable over time. Contrastingly, Vδ2+ T cells express semi-invariant TCRs, which are present at birth and shared between individuals. Human Vδ1+ T cells have therefore evolved a distinct biology from the Vδ2+ subset, involving a central, personalized role for the γδ TCR in directing a highly adaptive yet unconventional form of immune surveillance.
Central European Institute of Technology Masaryk University Brno 625 00 Czech Republic
Pirogov Russian National Research Medical University Moscow 117997 Russia
Zobrazit více v PubMed
Hayday A. C. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000). PubMed
Bonneville M., O'Brien R. L. & Born W. K. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat. Rev. Immunol. 10, 467–478 (2010). PubMed
Chien Y. H., Meyer C. & Bonneville M. gammadelta T cells: first line of defense and beyond. Annu. Rev. Immunol. 32, 121–155 (2014). PubMed
Gerber D. J. et al.. IL-4-producing gamma delta T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J. Immunol. 163, 3076–3082 (1999). PubMed
Kashani E. et al.. A clonotypic Vgamma4Jgamma1/Vdelta5Ddelta2Jdelta1 innate gammadelta T-cell population restricted to the CCR6(+)CD27(−) subset. Nat. Commun. 6, 6477 (2015). PubMed
Sherwood A. M. et al.. Deep sequencing of the human TCRgamma and TCRbeta repertoires suggests that TCRbeta rearranges after alphabeta and gammadelta T cell commitment. Sci. Transl. Med. 3, 90ra61 (2011). PubMed PMC
Dimova T. et al.. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc. Natl Acad. Sci. USA 112, E556–E565 (2015). PubMed PMC
Rhodes D. A., Reith W. & Trowsdale J. Regulation of immunity by butyrophilins. Annu. Rev. Immunol. 34, 151–172 (2016). PubMed
Correia D. V. et al.. Differentiation of human peripheral blood Vdelta1+ T cells expressing the natural cytotoxicity receptor NKp30 for recognition of lymphoid leukemia cells. Blood 118, 992–1001 (2011). PubMed
Wencker M. et al.. Innate-like T cells straddle innate and adaptive immunity by altering antigen-receptor responsiveness. Nat. Immunol. 15, 80–87 (2014). PubMed PMC
Couzi L. et al.. Common features of gammadelta T cells and CD8(+) alphabeta T cells responding to human cytomegalovirus infection in kidney transplant recipients. J. Infect. Dis. 200, 1415–1424 (2009). PubMed
Dechanet J. et al.. Implication of gammadelta T cells in the human immune response to cytomegalovirus. J. Clin. Investig. 103, 1437–1449 (1999). PubMed PMC
Farnault L. et al.. Clinical evidence implicating gamma-delta T cells in EBV control following cord blood transplantation. Bone Marrow Transplant. 48, 1478–1479 (2013). PubMed
Fujishima N. et al.. Skewed T cell receptor repertoire of Vdelta1(+) gammadelta T lymphocytes after human allogeneic haematopoietic stem cell transplantation and the potential role for Epstein-Barr virus-infected B cells in clonal restriction. Clin. Exp. Immunol. 149, 70–79 (2007). PubMed PMC
Halary F. et al.. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J. Exp. Med. 201, 1567–1578 (2005). PubMed PMC
Pitard V. et al.. Long-term expansion of effector/memory Vdelta2-gammadelta T cells is a specific blood signature of CMV infection. Blood 112, 1317–1324 (2008). PubMed PMC
Akbar A. N. & Fletcher J. M. Memory T cell homeostasis and senescence during aging. Curr. Opin. Immunol. 17, 480–485 (2005). PubMed
Khan N. et al.. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992 (2002). PubMed
Alejenef A. et al.. Cytomegalovirus drives Vdelta2neg gammadelta T cell inflation in many healthy virus carriers with increasing age. Clin. Exp. Immunol. 176, 418–428 (2014). PubMed PMC
Roux A. et al.. Differential impact of age and cytomegalovirus infection on the gammadelta T cell compartment. J. Immunol. 191, 1300–1306 (2013). PubMed
Dieli F. et al.. Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J. Exp. Med. 198, 391–397 (2003). PubMed PMC
Rock E. P., Sibbald P. R., Davis M. M. & Chien Y. H. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179, 323–328 (1994). PubMed PMC
Venturi V., Price D. A., Douek D. C. & Davenport M. P. The molecular basis for public T-cell responses? Nat. Rev. Immunol. 8, 231–238 (2008). PubMed
Wang H., Fang Z. & Morita C. T. Vgamma2Vdelta2 T Cell Receptor recognition of prenyl pyrophosphates is dependent on all CDRs. J. Immunol. 184, 6209–6222 (2010). PubMed PMC
Dellabona P., Padovan E., Casorati G., Brockhaus M. & Lanzavecchia A. An invariant V alpha 24-J alpha Q/V beta 11 T cell receptor is expressed in all individuals by clonally expanded CD4-8-T cells. J. Exp. Med. 180, 1171–1176 (1994). PubMed PMC
Tilloy F. et al.. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999). PubMed PMC
Hamann D. et al.. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997). PubMed PMC
Hayday A. C. Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009). PubMed
Vantourout P. & Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013). PubMed PMC
Morita C. T., Jin C., Sarikonda G. & Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol. Rev. 215, 59–76 (2007). PubMed
Gibbons D. L. et al.. Neonates harbour highly active gammadelta T cells with selective impairments in preterm infants. Eur. J. Immunol. 39, 1794–1806 (2009). PubMed
Ramsburg E., Tigelaar R., Craft J. & Hayday A. Age-dependent requirement for gammadelta T cells in the primary but not secondary protective immune response against an intestinal parasite. J. Exp. Med. 198, 1403–1414 (2003). PubMed PMC
Luoma A. M. et al.. Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human gammadelta T cells. Immunity 39, 1032–1042 (2013). PubMed PMC
Sciammas R. et al.. Unique antigen recognition by a herpesvirus-specific TCR-gamma delta cell. J. Immunol. 152, 5392–5397 (1994). PubMed
Uldrich A. P. et al.. CD1d-lipid antigen recognition by the gammadelta TCR. Nat. Immunol. 14, 1137–1145 (2013). PubMed
Willcox C. R. et al.. Cytomegalovirus and tumor stress surveillance by binding of a human gammadelta T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012). PubMed
Zeng X. et al.. Gammadelta T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37, 524–534 (2012). PubMed PMC
Exley M. A. & Koziel M. J. To be or not to be NKT: natural killer T cells in the liver. Hepatology 40, 1033–1040 (2004). PubMed
Vermijlen D. et al.. Human cytomegalovirus elicits fetal gammadelta T cell responses in utero. J. Exp. Med. 207, 807–821 (2010). PubMed PMC
Lafarge X. et al.. Expression of MHC class I receptors confers functional intraclonal heterogeneity to a reactive expansion of gammadelta T cells. Eur. J. Immunol. 35, 1896–1905 (2005). PubMed
Bodger M. P., Janossy G., Bollum F. J., Burford G. D. & Hoffbrand A. V. The ontogeny of terminal deoxynucleotidyl transferase positive cells in the human fetus. Blood 61, 1125–1131 (1983). PubMed
Bowie A. G. & Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911–922 (2008). PubMed PMC
Fernandez-Messina L., Reyburn H. T. & Vales-Gomez M. Human NKG2D-ligands: cell biology strategies to ensure immune recognition. Front. Immunol. 3, 299 (2012). PubMed PMC
Horst D., Geerdink R. J., Gram A. M., Stoppelenburg A. J. & Ressing M. E. Hiding lipid presentation: viral interference with CD1d-restricted invariant natural killer T (iNKT) cell activation. Viruses 4, 2379–2399 (2012). PubMed PMC
Fernandez C. S. et al.. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol. Cell Biol. 93, 177–188 (2015). PubMed
Couzi L. et al.. Cytomegalovirus-induced gammadelta T cells associate with reduced cancer risk after kidney transplantation. J. Am. Soc. Nephrol. 21, 181–188 (2010). PubMed PMC
Wang C. et al.. High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc. Natl Acad. Sci. USA 107, 1518–1523 (2010). PubMed PMC
Han J. et al.. Simultaneous amplification and identification of 25 human papillomavirus types with Templex technology. J. Clin. Microbiol. 44, 4157–4162 (2006). PubMed PMC
Giudicelli V. & Lefranc M. P. IMGT/junctionanalysis: IMGT standardized analysis of the V-J and V-D-J junctions of the rearranged immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harb. Protoc. 2011, 716–725 (2011). PubMed
Yousfi Monod M., Giudicelli V., Chaume D. & Lefranc M. P. IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONs. Bioinformatics 20, i379–i385 (2004). PubMed
Thomsen M. C. & Nielsen M. Seq2Logo: a method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 40, W281–W287 (2012). PubMed PMC
Sievers F. et al.. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011). PubMed PMC
Yang Y. et al.. Distinct mechanisms define murine B cell lineage immunoglobulin heavy chain (IgH) repertoires. eLife 4, e09083 (2015). PubMed PMC
Bolotin D. A. et al.. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015). PubMed
Shugay M. et al.. VDJtools: unifying post-analysis of T cell receptor repertoires. PLoS Comput. Biol. 11, e1004503 (2015). PubMed PMC
Differential Skewing of Circulating MR1-Restricted and γδ T Cells in Human Psoriasis Vulgaris
Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
The human Vδ2+ T-cell compartment comprises distinct innate-like Vγ9+ and adaptive Vγ9- subsets