Development of gammadelta thymocyte subsets during prenatal and postnatal ontogeny
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
16011523
PubMed Central
PMC1782173
DOI
10.1111/j.1365-2567.2005.02194.x
PII: IMM2194
Knihovny.cz E-zdroje
- MeSH
- antigeny CD1 imunologie MeSH
- antigeny CD2 imunologie MeSH
- antigeny CD45 imunologie MeSH
- antigeny CD8 imunologie MeSH
- buněčná diferenciace imunologie MeSH
- buněčné dělení imunologie MeSH
- CD antigeny imunologie MeSH
- CD4-pozitivní T-lymfocyty imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- histokompatibilita - antigeny třídy II imunologie MeSH
- imunofenotypizace metody MeSH
- kultivované buňky MeSH
- modely u zvířat MeSH
- prasata MeSH
- receptory antigenů T-buněk gama-delta imunologie MeSH
- slezina cytologie imunologie MeSH
- T-lymfocyty - podskupiny imunologie MeSH
- thymus cytologie embryologie imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny CD1 MeSH
- antigeny CD2 MeSH
- antigeny CD45 MeSH
- antigeny CD8 MeSH
- CD antigeny MeSH
- histokompatibilita - antigeny třídy II MeSH
- receptory antigenů T-buněk gama-delta MeSH
In this report, we describe 12 subpopulations of porcine gammadelta thymocytes based on their expression of CD1, CD2, CD4, CD8- isoforms and CD45RC. Our data suggest that gammadelta thymocytes can be divided into two major families: (a) one large family of CD4-gammadelta thymocytes that could be further subdivided according to the CD2/CD8alphaalpha phenotype and (b) a small family of CD4+ gammadelta thymocytes bearing CD8alphabeta and possessing certain unusual features in comparison with other gammadelta thymocytes. Maturation of gammadelta thymocytes within the CD4- family begins with proliferation of the CD2+ CD8- CD1+ CD45RC- gammadelta common precursor. This developmental stage is followed by diversification into the CD2+ CD8alphaalpha+, CD2+ CD8- and CD2- CD8- subsets. Their further maturation is accompanied by a loss of expression of CD1 and by increased expression of CD45RC. Therefore, individual subsets develop from CD1+ CD45RC- through CD1- CD45RC- into CD1- CD45RC+ cells. On the other hand, gammadelta thymocytes within the CD4+ family bear exclusively CD8alphabeta, always express CD1, but may coexpress CD45RC. These cells have no counterpart in the periphery. Our observations suggest that all peripheral CD8+ gammadelta T cells express CD8alphaalpha and that two subsets of these cells differing in major histocompatibility complex II expression, occur. We propose that one subset acquires CD8alphaalpha in the thymus while the second acquires CD8alphaalpha as a result of stimulation in the periphery.
Zobrazit více v PubMed
Kuhnlein P, Vicente A, Varas A, Hunig T, Zapata A. γ/δ T cells in fetal, neonatal, and adult rat lymphoid organs. Dev Immunol. 1995;4:181–8. PubMed PMC
Hein WR, Mackay CR. Prominence of γδ T cells in the ruminant immune system. Immunol Today. 1991;12:30–4. 10.1016/0167-5699(91)90109-7. PubMed DOI
Pardoll DM, Fowlkes BJ, Bluestone JA, Kruisbeek A, Maloy WL, Coligan JE, Schwartz RH. Differential expression of two distinct T-cell receptors during thymocyte development. Nature. 1987;326:79–81. 10.1038/326079a0. PubMed DOI
Chen CL, Cihak J, Losch U, Cooper MD. Differential expression of two T cell receptors, TcR1 and TcR2, on chicken lymphocytes. Eur J Immunol. 1988;18:539–43. PubMed
Sinkora M, Sinkora J, Rehakova Z, Splichal I, Yang H, Parkhouse RM, Trebichavsky I. Prenatal ontogeny of lymphocyte subpopulations in pigs. Immunology. 1988;95:595–603. 10.1046/j.1365-2567.1998.00641.x. PubMed DOI PMC
Sinkora M, Sinkora J, Rehakova Z, Butler JE. Early ontogeny of thymocytes in pigs: sequential colonization of the thymus by T cell progenitors. J Immunol. 2000;165:1832–9. PubMed
Saalmuller A, Hirt W, Reddehase MJ. Porcine γ/δ T lymphocyte subsets differing in their propensity to home to lymphoid tissue. Eur J Immunol. 1990;20:2343–6. PubMed
Yang H, Parkhouse RM. Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology. 1996;89:76–83. 10.1046/j.1365-2567.1996.d01-705.x. PubMed DOI PMC
Reddehase MJ, Saalmuller A, Hirt W. γ/δ T-lymphocyte subsets in swine. Curr Top Microbiol Immunol. 1991;173:113–7. PubMed
Yang H, Parkhouse RM. Differential expression of CD8 epitopes amongst porcine CD8-positive functional lymphocyte subsets. Immunology. 1997;92:45–52. 10.1046/j.1365-2567.1997.00308.x. PubMed DOI PMC
de Bruin MG, van Rooij EM, Voermans JJ, de Visser YE, Bianchi AT, Kimman TG. Establishment and characterization of porcine cytolytic cell lines and clones. Vet Immunol Immunopathol. 1997;59:337–47. 10.1016/S0165-2427(97)00085-8. PubMed DOI
Sinkora M, Sun J, Butler JE. Antibody repertoire development in fetal and neonatal piglets. V. VDJ gene chimeras resembling gene conversion products are generated at high frequency by PCR in vitro. Mol Immunol. 2000;37:1025–34. 10.1016/S0161-5890(01)00022-0. PubMed DOI
Sinkora M, Sun J, Sinkorova J, Christenson RK, Ford SP, Butler JE. Antibody repertoire development in fetal and neonatal piglets. VI. B-cell lymphogenesis occurs at multiple sites with differences in the frequency of in-frame rearrangements. J Immunol. 2003;170:1781–8. PubMed
Saalmuller A, Weiland F, Reddehase MJ. Resting porcine T lymphocytes expressing class II major histocompatibility antigen. Immunobiol. 1991;183:102–14. PubMed
Takamatsu HH, Denyer MS, Wileman TE. A sub-population of circulating porcine γδ T cells can act as professional antigen presenting cells. Vet Immunol Immunopathol. 2002;87:223–4. 10.1016/S0165-2427(02)00083-1. PubMed DOI
Sinkora M, Sinkorova J, Butler JE. B cell development and VDJ rearrangement in the fetal pig. Vet Immunol Immunopathol. 2002;87:341–6. 10.1016/S0165-2427(02)00062-4. PubMed DOI
De la Hera A, Toribio ML, Martinez C. Delineation of human thymocytes with or without functional potential by CD1-specific antibodies. Int Immunol. 1989;1:496–502. PubMed
Offner F, Van Beneden K, Debacker V, Vanhecke D, Vandekerckhove B, Plum J, Leclercq G. Phenotypic and functional maturation of TCRγδ cells in the human thymus. J Immunol. 1997;158:4634–41. PubMed
Zapata JM, Pulido R, Acevedo A, Sanchez-Madrid F, de Landazuri MO. Human CD45RC specificity: a novel marker for T cells at different maturation and activation stages. J Immunol. 1994;152:3852–61. PubMed
Hargreaves M, Bell EB. Identical expression of CD45R isoforms by CD45RC+‘revertant’ memory and CD45RC+ naive CD4 T cells. Immunology. 1997;91:323–30. 10.1046/j.1365-2567.1997.00267.x. PubMed DOI PMC
Kang J, Coles M, Cado D, Raulet DH. The developmental fate of T cells is critically influenced by TCRγδ expression. Immunity. 1998;8:427–38. 10.1016/S1074-7613(00)80548-8. PubMed DOI
Hirt W, Saalmuller A, Reddehase MJ. Expression of γ/δ T cell receptors in porcine thymus. Immunobiol. 1993;188:70–81. PubMed
Witherden DA, Kimpton WG, Abernethy NJ, Cahill RN. Changes in thymic export of γδ and αβ T cells during fetal and postnatal development. Eur J Immunol. 1994;24:2329–36. PubMed
Zuckermann FA, Husmann RJ. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology. 1996;87:500–12. PubMed PMC
Itohara S, Nakanishi N, Kanagawa O, Kubo R, Tonegawa S. Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γδ T cells during thymic ontogeny and in peripheral lymphoid organs. Proc Natl Acad Sci USA. 1989;86:5094–8. PubMed PMC
Fisher AG, Ceredig R. γδ T cells expressing CD8 or CD4low appear early in murine foetal thymus development. Int Immunol. 1991;3:1323–8. PubMed
Bucy RP, Chen CH, Cooper MD. Ontogeny of T cell receptors in the chicken thymus. J Immunol. 1990;144:1161–8. PubMed
Aparicio P, Alonso JM, Toribio ML, Marcos MAR, Pezzi L, Martinez AC. Isolation and characterization of (γ,δ) CD4+ T cell clones derived from human fetal liver cells. J Exp Med. 1989;170:1009–13. 10.1084/jem.170.3.1009. PubMed DOI PMC
Wucherpfennig KW, Liao YJ, Prendergast M, Prendergast J, Hafler DA, Strominger JL. Human fetal liver γ/δ T cells predominantly use unusual rearrangement of the T cell receptor δ and γ loci expressed on both CD4+ CD8− and CD4− CD8−γ/δ T cells. J Exp Med. 1993;177:425–32. 10.1084/jem.177.2.425. PubMed DOI PMC
Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition)
Perturbation of Thymocyte Development Underlies the PRRS Pandemic: A Testable Hypothesis
The ontogeny of the porcine immune system