Modified live vaccine strains of porcine reproductive and respiratory syndrome virus cause immune system dysregulation similar to wild strains
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38283357
PubMed Central
PMC10811158
DOI
10.3389/fimmu.2023.1292381
Knihovny.cz E-zdroje
- Klíčová slova
- B lymphocytes, Porcine respiratory and reproductive syndrome virus, T lymphocytes, T-cell precursors, animals, thymocytes,
- MeSH
- atenuované vakcíny MeSH
- imunitní systém MeSH
- prasata MeSH
- protilátky virové MeSH
- reprodukční a respirační syndrom prasat * prevence a kontrola MeSH
- virus reprodukčního a respiračního syndromu prasat * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- atenuované vakcíny MeSH
- protilátky virové MeSH
INTRODUCTION: Porcine reproductive and respiratory syndrome virus (PRRSV) emerged about 30 years ago and continues to cause major economic losses in the pork industry. The lack of effective modified live vaccines (MLV) allows the pandemic to continue. BACKGROUND AND OBJECTIVE: We have previously shown that wild strains of PRRSV affect the nascent T cell repertoire in the thymus, deplete T cell clones recognizing viral epitopes essential for neutralization, while triggering a chronic, robust, but ineffective antibody response. Therefore, we hypothesized that the current MLV are inappropriate because they cause similar damage and fail to prevent viral-induced dysregulation of adaptive immunity. METHODS: We tested three MLV strains to demonstrate that all have a comparable negative effect on thymocytes in vitro. Further in vivo studies compared the development of T cells in the thymus, peripheral lymphocytes, and antibody production in young piglets. These three MLV strains were used in a mixture to determine whether at least some of them behave similarly to the wild virus type 1 or type 2. RESULTS: Both the wild and MLV strains cause the same immune dysregulations. These include depletion of T-cell precursors, alteration of the TCR repertoire, necrobiosis at corticomedullary junctions, low body weight gain, decreased thymic cellularity, lack of virus-neutralizing antibodies, and production of non-neutralizing anti-PRRSV antibodies of different isotypes. DISCUSSION AND CONCLUSION: The results may explain why the use of current MLV in young animals may be ineffective and why their use may be potentially dangerous. Therefore, alternative vaccines, such as subunit or mRNA vaccines or improved MLV, are needed to control the PRRSV pandemic.
Department of Cell Biology Faculty of Science Charles University Prague Czechia
Department of Infectious Diseases and Preventive Medicine Veterinary Research Institute Brno Czechia
Laboratory of Gnotobiology Institute of Microbiology Czech Academy of Sciences Novy Hradek Czechia
Zobrazit více v PubMed
Sinkora M, Toman M, Stepanova K, Stepanova H, Leva L, Sinkorova J, et al. . The mechanism of immune dysregulation caused by porcine reproductive and respiratory syndrome virus (PRRSV). Microbes Infect (2023) 25(7):105146. doi: 10.1016/j.micinf.2023.105146 PubMed DOI
Nathues H, Alarcon P, Rushton J, Jolie R, Fiebig K, Jimenez M, et al. . Cost of porcine reproductive and respiratory syndrome virus at individual farm level - An economic disease model. Prev Vet Med (2017) 142:16–29. doi: 10.1016/j.prevetmed.2017.04.006 PubMed DOI
Nan Y, Wu C, Gu G, Sun W, Zhang YJ, Zhou EM. Improved vaccine against PRRSV: current progress and future perspective. Front Microbiol (2017) 8:1635. doi: 10.3389/fmicb.2017.01635 PubMed DOI PMC
Robinson SR, Rahe MC, Gray DK, Martins KV, Murtaugh MP. Porcine reproductive and respiratory syndrome virus neutralizing antibodies provide in vivo cross−protection to PRRSV1 and PRRSV2 viral challenge. Virus Res (2018) 248:13–23. doi: 10.1016/j.virusres.2018.01.015 PubMed DOI PMC
Toman M, Celer V, Kavanová L, Levá L, Frolichova J, Ondráčková P, et al. . Dynamics and differences in systemic and local immune responses after vaccination with inactivated and live commercial vaccines and subsequent subclinical infection with PRRS virus. Front Immunol (2019) 10:1689. doi: 10.3389/fimmu.2019.01689 PubMed DOI PMC
Martínez-Lobo FJ, Díez-Fuertes F, Simarro I, Castro JM, Prieto C. The ability of porcine reproductive and respiratory syndrome virus isolates to induce broadly reactive neutralizing antibodies correlates with in vivo protection. Front Immunol (2021) 12:691145. doi: 10.3389/fimmu.2021.691145 PubMed DOI PMC
Sinkora M, Sinkora J, Rehakova Z, Butler JE. Early ontogeny of thymocytes in pigs: sequential colonization of the thymus by T cell progenitors. J Immunol (2000) 165(4):1832–9. doi: 10.4049/jimmunol.165.4.1832 PubMed DOI
Sinkora M, Sinkorová J, Cimburek Z, Holtmeier W. Two groups of porcine TCRγδ+ thymocytes behave and diverge differently. J Immunol (2007) 178(2):711–9. doi: 10.4049/jimmunol.178.2.711 PubMed DOI
Sinkora M, Butler JE. The ontogeny of the porcine immune system. Dev Comp Immunol (2009) 33(3):273–83. doi: 10.1016/j.dci.2008.07.011 PubMed DOI PMC
Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. Dev Comp Immunol (2016) 58:1–17. doi: 10.1016/j.dci.2015.12.003 PubMed DOI
Wernike K, Bonilauri P, Dauber M, Errington J, LeBlanc N, Revilla-Fernández S, et al. . Porcine reproductive and respiratory syndrome virus: interlaboratory ring trial to evaluate real-time reverse transcription polymerase chain reaction detection methods. J Vet Diagn Invest. (2012) 24(5):855–66. doi: 10.1177/1040638712452724 PubMed DOI
Yoon KJ, Zimmerman JJ, Chang CC, Cancel-Tirado S, Harmon KM, McGinley MJ. Effect of challenge dose and route on porcine reproductive and respiratory syndrome virus (PRRSV) infection in young swine. Vet Res (1999) 30(6):629–38. PubMed
Sinkora M, Sinkorova J. B cell lymphogenesis in swine is located in the bone marrow. J Immunol (2014) 193(10):5023–32. doi: 10.4049/jimmunol.1401152 PubMed DOI
Stepanova K, Sinkora M. The expression of CD25, CD11b, SWC1, SWC7, MHC-II, and family of CD45 molecules can be used to characterize different stages of γδ T lymphocytes in pigs. Dev Comp Immunol (2012) 36(4):728–40. doi: 10.1016/j.dci.2011.11.003 PubMed DOI
Stepanova K, Sinkora M. Porcine γδ T lymphocytes can be categorized into two functionally and developmentally distinct subsets according to expression of CD2 and level of TCR. J Immunol (2013) 190(5):2111–20. doi: 10.4049/jimmunol.1202890 PubMed DOI
Sinkora M, Stepanova K, Sinkorova J. Different anti-CD21 antibodies can be used to discriminate developmentally and functionally different subsets of B lymphocytes in circulation of pigs. Dev Comp Immunol (2013) 39(4):409–18. doi: 10.1016/j.dci.2012.10.010 PubMed DOI
Qiu W, Meng K, Liu Y, Zhang Y, Wang Z, Chen Z, et al. . Simultaneous detection of classical PRRSV, highly pathogenic PRRSV and NADC30-like PRRSV by TaqMan probe real-time PCR. J Virol Methods (2020) 282:113774. doi: 10.1016/j.jviromet.2019.113774 PubMed DOI
Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, et al. . Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q (1991) 13(3):121–30. doi: 10.1080/01652176.1991.9694296 PubMed DOI
Butler JE. Immunoglobulin diversity, B-cell and antibody repertoire development in large farm animals. Rev Sci Tech. (1998) 17(1):43–70. doi: 10.20506/rst.17.1.1096 PubMed DOI
Butler JE, Weber P, Sinkora M, Baker D, Schoenherr A, Mayer B, et al. . Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens. J Immunol (2002) 169(12):6822–30. doi: 10.4049/jimmunol.169.12.6822 PubMed DOI
Sinkora M, Sinkorova J, Stepanova K. Ig light chain precedes heavy chain gene rearrangement during development of B cells in swine. J Immunol (2017) 198(4):1543–52. doi: 10.4049/jimmunol.1601035 PubMed DOI
Sinkora M, Stepanova K, Sinkorova J. Immunoglobulin light chain κ precedes λ rearrangement in swine but a majority of λ+ B cells are generated earlier. Dev Comp Immunol (2020) 111:103751. doi: 10.1016/j.dci.2020.103751 PubMed DOI
Sinkora M, Butler JE, Lager KM, Potockova H, Sinkorova J. The comparative profile of lymphoid cells and the T and B cell spectratype of germ-free piglets infected with viruses SIV, PRRSV or PCV2. Vet Res (2014) 45(1):91. doi: 10.1186/s13567-014-0091-x PubMed DOI PMC
Butler JE, Wertz N, Sun J, Sacco RE. Comparison of the expressed porcine Vbeta and Jbeta repertoire of thymocytes and peripheral T cells. Immunology (2005) 114(2):184–93. doi: 10.1111/j.1365-2567.2004.02072.x PubMed DOI PMC
Cizkova J, Sinkorova Z, Strnadova K, Cervinkova M, Horak V, Sinkora J, et al. . The role of αβ T-cells in spontaneous regression of melanoma tumors in swine. Dev Comp Immunol (2019) 92:60–8. doi: 10.1016/j.dci.2018.10.001 PubMed DOI
Stepanova K, Sinkorova J, Srutkova D, Sinkora M, Jr, Sinkora S, Splichal I, et al. . The order of immunoglobulin light chain κ and λ usage in primary and secondary lymphoid tissues of germ-free and conventional piglets. Dev Comp Immunol (2022) 131:104392. doi: 10.1016/j.dci.2022.104392 PubMed DOI
Mulupuri P, Zimmerman JJ, Hermann J, Johnson CR, Cano JP, Yu W, et al. . Antigen-specific B-cell responses to porcine reproductive and respiratory syndrome virus infection. J Virol (2008) 82(1):358–70. doi: 10.1128/JVI.01023-07 PubMed DOI PMC
Lopez OJ, Osorio FA. Role of neutralizing antibodies in PRRSV protective immunity. Vet Immunol Immunopathol (2004) 102(3):155–63. doi: 10.1016/j.vetimm.2004.09.005 PubMed DOI
Rahe MC, Murtaugh MP. Mechanisms of adaptive immunity to porcine reproductive and respiratory syndrome virus. Viruses (2017) 9(6):148. doi: 10.3390/v9060148 PubMed DOI PMC
Lemke CD, Haynes JS, Spaete R, Adolphson D, Vorwald A, Lager K, et al. . Lymphoid hyperplasia resulting in immune dysregulation is caused by porcine reproductive and respiratory syndrome virus infection in neonatal pigs. J Immunol (2004) 172(3):1916–25. doi: 10.4049/jimmunol.172.3.1916 PubMed DOI
Butler JE, Lemke CD, Weber P, Sinkora M, Lager KM. Antibody repertoire development in fetal and neonatal piglets: XIX. Undiversified B cells with hydrophobic HCDR3s preferentially proliferate in the porcine reproductive and respiratory syndrome. J Immunol (2007) 178(10):6320–31. doi: 10.4049/jimmunol.178.10.6320 PubMed DOI
Butler JE, Lager KM, Golde W, Faaberg KS, Sinkora M, Loving C, et al. . Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic. Immunol Res (2014) 59(1-3):81–108. doi: 10.1007/s12026-014-8549-5 PubMed DOI PMC
Butler JE, Sinkora M, Wang G, Stepanova K, Li Y, Cai X. Perturbation of thymocyte development underlies the PRRS pandemic: A testable hypothesis. Front Immunol (2019) 10:1077. doi: 10.3389/fimmu.2019.01077 PubMed DOI PMC
Sinkorova J, Stepanova K, Butler JE, Sinkora M. T cells in swine completely rearrange immunoglobulin heavy chain genes. Dev Comp Immunol (2019) 99:103396. doi: 10.1016/j.dci.2019.103396 PubMed DOI
Potockova H, Sinkorova J, Karova K, Sinkora M. The distribution of lymphoid cells in the small intestine of germ-free and conventional piglets. Dev Comp Immunol (2015) 51(1):99–107. doi: 10.1016/j.dci.2015.02.014 PubMed DOI
Kasai M, Nakagawa Y, Kondo K, Takahama Y. Thymus. Reference Module in Biomedical Sciences, Elsevier (2014). doi: 10.1016/B978-0-12-801238-3.00109-4 DOI
Ruedas-Torres I, Rodríguez-Gómez IM, Sánchez-Carvajal JM, Pallares FJ, Barranco I, Carrasco L, et al. . Activation of the extrinsic apoptotic pathway in the thymus of piglets infected with PRRSV-1 strains of different virulence. Vet Microbiol (2020) 243:108639. doi: 10.1016/j.vetmic.2020.108639 PubMed DOI
Butler JE, Wertz N, Sinkora M. Antibody repertoire development in swine. Annu Rev Anim Biosci (2017) 5:255–79. doi: 10.1146/annurev-animal-022516-022818 PubMed DOI
Zhang Y, Meyer-Hermann M, George LA, Figge MT, Khan M, Goodall M, et al. . Germinal center B cells govern their own fate via antibody feedback. J Exp Med (2013) 210(3):457–64. doi: 10.1084/jem.20120150 PubMed DOI PMC
Butler JE, Sun J, Wertz N, Sinkora M. Antibody repertoire development in swine. Dev Comp Immunol (2006) 30(1-2):199–221. doi: 10.1016/j.dci.2005.06.025 PubMed DOI
Butler JE, Santiago-Mateo K, Sun XZ, Wertz N, Sinkora M, Francis DH. Antibody repertoire development in fetal and neonatal piglets. XX. B cell lymphogenesis is absent in the ileal Peyer's patches, their repertoire development is antigen dependent, and they are not required for B cell maintenance. J Immunol (2011) 187(10):5141–9. doi: 10.4049/jimmunol.1101871 PubMed DOI
Sinkora M, Sinkorová J, Holtmeier W. Development of gammadelta thymocyte subsets during prenatal and postnatal ontogeny. Immunology (2005) 115(4):544–55. doi: 10.1111/j.1365-2567.2005.02194.x PubMed DOI PMC
Butler JE, Sinkora M. The isolator piglet: a model for studying the development of adaptive immunity. Immunol Res (2007) 39(1-3):33–51. doi: 10.1007/s12026-007-0062-7 PubMed DOI
Sinkora M, Stepanova K, Butler JE, Sinkora M, Jr, Sinkora S, Sinkorova J. Comparative aspects of immunoglobulin gene rearrangement arrays in different species. Front Immunol (2022) 13:823145. doi: 10.3389/fimmu.2022a.823145 PubMed DOI PMC
Sinkora M, Stepanova K, Sinkorova J. Consequences of the different order of immunoglobulin gene rearrangements in swine. Dev Comp Immunol (2022) 126:104196. doi: 10.1016/j.dci.2021.104196 PubMed DOI
Butler JE, Sinkora M. The enigma of the lower gut-associated lymphoid tissue (GALT). J Leukoc Biol (2013) 94(2):259–70. doi: 10.1189/jlb.0313120 PubMed DOI
Duinhof TF, van Schaik G, van Esch EJ, Wellenberg GJ. Detection of PRRSV circulation in herds without clinical signs of PRRS: comparison of five age groups to assess the preferred age group and sample size. Vet Microbiol (2011) 150(1-2):180–4. doi: 10.1016/j.vetmic.2011.01.001 PubMed DOI
Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, et al. . Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PloS One (2007) 2(6):e526. doi: 10.1371/journal.pone.0000526 PubMed DOI PMC
Eclercy J, Renson P, Lebret A, Hirchaud E, Normand V, Andraud M, et al. . A field recombinant strain derived from two type 1 porcine reproductive and respiratory syndrome virus (PRRSV-1) modified live vaccines shows increased viremia and transmission in SPF pigs. Viruses (2019) 11(3):296. doi: 10.3390/v11030296 PubMed DOI PMC
Liu D, Zhou R, Zhang J, Zhou L, Jiang Q, Guo X, et al. . Recombination analyses between two strains of porcine reproductive and respiratory syndrome virus in vivo . Virus Res (2011) 155(2):473–86. doi: 10.1016/j.virusres.2010.12.003 PubMed DOI
Chae C. Commercial PRRS modified-live virus vaccines. Vaccines (Basel). (2021) 9(2):185. doi: 10.3390/vaccines9020185 PubMed DOI PMC