Comparative Aspects of Immunoglobulin Gene Rearrangement Arrays in Different Species

. 2022 ; 13 () : 823145. [epub] 20220211

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35222402

Studies in humans and mice indicate the critical role of the surrogate light chain in the selection of the productive immunoglobulin repertoire during B cell development. However, subsequent studies using mutant mice have also demonstrated that alternative pathways are allowed. Our recent investigation has shown that some species, such as pig, physiologically use preferential rearrangement of authentic light chains, and become independent of surrogate light chains. Here we summarize the findings from swine and compare them with results in other species. In both groups, allelic and isotypic exclusions remain intact, so the different processes do not alter the paradigm of B-cell monospecificity. Both groups also retained some other essential processes, such as segregated and sequential rearrangement of heavy and light chain loci, preferential rearrangement of light chain kappa before lambda, and functional κ-deleting element recombination. On the other hand, the respective order of heavy and light chains rearrangement may vary, and rearrangement of the light chain kappa and lambda on different chromosomes may occur independently. Studies have also confirmed that the surrogate light chain is not required for the selection of the productive repertoire of heavy chains and can be substituted by authentic light chains. These findings are important for understanding evolutional approaches, redundancy and efficiency of B-cell generation, dependencies on other regulatory factors, and strategies for constructing therapeutic antibodies in unrelated species. The results may also be important for explaining interspecies differences in the proportional use of light chains and for the understanding of divergences in rearrangement processes. Therefore, the division into two groups may not be definitive and there may be more groups of intermediate species.

Zobrazit více v PubMed

Melchers F. Checkpoints That Control B Cell Development. J Clin Invest (2015) 4:1–8. doi: 10.1172/JCI78083 PubMed DOI PMC

Klein F, Feldhahn N, Mooster JL, Sprangers M, Hofmann WK, Wernet P, et al. . Tracing the Pre-B to Immature B Cell Transition in Human Leukemia Cells Reveals a Coordinated Sequence of Primary and Secondary IGK Gene Rearrangement, IGK Deletion, and IGL Gene Rearrangement. J Immunol (2005) 174:367–75. doi: 10.4049/jimmunol.174.1.367 PubMed DOI

Sinkora M, Sun J, Sinkorova J, Christenson RK, Ford SP, Butler JE. Antibody Repertoire Development in Fetal and Neonatal Piglets. VI. B Cell Lymphogenesis Occurs at Multiple Sites With Differences in the Frequency of in-Frame Rearrangements. J Immunol (2003) 170:1781–8. doi: 10.4049/jimmunol.170.4.1781 PubMed DOI

Sinkora M, Butler JE. The Ontogeny of the Porcine Immune System. Dev Comp Immunol (2009) 33:273–83. doi: 10.1016/j.dci.2008.07.011 PubMed DOI PMC

Sinkora M, Stepanova K, Sinkorova J. Different Anti-CD21 Antibodies can be Used to Discriminate Developmentally and Functionally Different Subsets of B Lymphocytes in Circulation of Pigs. Dev Comp Immunol (2013) 39:409–18. doi: 10.1016/j.dci.2012.10.010 PubMed DOI

Butler JE, Santiago-Mateo K, Sun X-Z, Wertz N, Sinkora M, Francis DH. Antibody Repertoire Development in Fetal and Neonatal Piglets. XX. B Cell Lymphogenesis is Absent in the Ileal Peyer's Patches, Their Repertoire Development is Antigen Dependent, and They are Not Required for B Cell Maintenance. J Immunol (2011) 187:5141–49. doi: 10.4049/jimmunol.1101871 PubMed DOI

Sinkora M, Sinkorova J. B Cell Lymphogenesis in Swine is Located in the Bone Marrow. J Immunol (2014) 193:5023–32. doi: 10.4049/jimmunol.1401152 PubMed DOI

Sinkora M, Sinkorova J, Stepanova K. Ig Light Chain Precedes Heavy Chain Gene Rearrangement During Development of B Cells in Swine. J Immunol (2017) 198:1543–52. doi: 10.4049/jimmunol.1601035 PubMed DOI

Sinkorova J, Stepanova K, Butler JE, Sinkora M. T Cells in Swine Completely Rearrange Immunoglobulin Heavy Chain Genes. Dev Comp Immunol (2019) 99:103396. doi: 10.1016/j.dci.2019.103396 PubMed DOI

Sinkora M, Stepanova K, Sinkorova J. Immunoglobulin Light Chain κ Precedes λ Rearrangement in Swine But a Majority of λ+ B Cells are Generated Earlier. Dev Comp Immunol (2020) 111:3751. doi: 10.1016/j.dci.2020.103751 PubMed DOI

Stepanova K, Sinkorova J, Srutkova D, Sinkora M, Jr., Sinkora S, Splichal I, et al. . The Order of Immunoglobulin Light Chain κ and λ Usage in Primary and Secondary Lymphoid Tissues of Germ-Free and Conventional Piglets. Dev Comp Immunol (2022). PubMed

Sinkora M, Stepanova K, Sinkorova J. Consequences of the Different Order of Immunoglobulin Gene Rearrangements in Swine. Dev Comp Immunol (2022) 126:104196. doi: 10.1016/j.dci.2021.104196 PubMed DOI

Butler JE, Weber P, Sinkora M, Sun J, Ford SJ, Christenson RK. Antibody Repertoire Development in Fetal and Neonatal Piglets. II. Characterization of Heavy Chain Complementarity-Determining Region 3 Diversity in the Developing Fetus. J Immunol (2000) 165:6999–7010. doi: 10.4049/jimmunol.165.12.6999 PubMed DOI

Eguchi-Ogawa T, Wertz N, Sun XZ, Piumi F, Uenishi H, Wells K, et al. . Antibody Repertoire Development in Fetal and Neonatal Piglets. XI. The Relationship of Variable Heavy Chain Gene Usage and the Genomic Organization of the Variable Heavy Chain Locus. J Immunol (2010) 184:3734–42. doi: 10.4049/jimmunol.0903616 PubMed DOI

Schwartz JC, Lefranc MP, Murtaugh MP. Organization, Complexity and Allelic Diversity of the Porcine (Sus Scrofa Domestica) Immunoglobulin Lambda Locus. Immunogenetics (2012) 64:399–407. doi: 10.1007/s00251-011-0594-9 PubMed DOI PMC

Schwartz JC, Lefranc MP, Murtaugh MP. Evolution of the Porcine (Sus Scrofa Domestica) Immunoglobulin Kappa Locus Through Germline Gene Conversion. Immunogenetics (2012) 64:303–11. doi: 10.1007/s00251-011-0589-6 PubMed DOI PMC

Sinkora M, Butler JE, Lager KM, Potockova H, Sinkorova J. The Comparative Profile of Lymphoid Cells and the T and B Cell Spectratype of Germ-Free Piglets Infected With Viruses SIV, PRRSV or PCV2. Vet Res (2014) 45:91. doi: 10.1186/s13567-014-0091-x PubMed DOI PMC

Butler JE, Wertz N, Sinkora M. Antibody Repertoire Development in Swine. Annu Rev Anim Biosci (2017) 5:255–79. doi: 10.1146/annurev-animal-022516-022818 PubMed DOI

Sinkora M, Sun J, Butler JE. Antibody Repertoire Development in Fetal and Neonatal Piglets. V. VDJ Gene Chimeras Resembling Gene Conversion Products are Generated at High Frequency by PCR In Vitro . Mol Immunol (2000) 37:1025–34. doi: 10.1016/S0161-5890(01)00022-0 PubMed DOI

Butler JE, Sinkora M, Wertz N, Holtmeier W, Lemke CD. Development of the Neonatal B and T Cell Repertoire in Swine: Implications for Comparative and Veterinary Immunology. Vet Res (2006) 37:417–41. doi: 10.1051/vetres:2006009 PubMed DOI

Butler JE, Zhao Y, Sinkora M, Wertz N, Kacskovics I. Immunoglobulins, Antibody Repertoire and B Cell Development. Dev Comp Immunol (2009) 33:321–33. doi: 10.1016/j.dci.2008.06.015 PubMed DOI

Sinkora M, Butler JE. Progress in the Use of Swine in Developmental Immunology of B and T Lymphocytes. Dev Comp Immunol (2016) 58:1–17. doi: 10.1016/j.dci.2015.12.003 PubMed DOI

Butler JE, Sun J, Wertz N, Sinkora M. Antibody Repertoire Development in Swine. Dev Comp Immunol (2006) 30:199–221. doi: 10.1016/j.dci.2005.06.025 PubMed DOI

Sinkora M, Sinkorova J, Cimburek Z, Holtmeier W. Two Groups of Porcine Tcrγδ+ Thymocytes Behave and Diverge Differently. J Immunol (2007) 178:711–19. doi: 10.4049/jimmunol.178.2.711 PubMed DOI

Collins AM, Watson CT. Immunoglobulin Light Chain Gene Rearrangements, Receptor Editing and the Development of a Self-Tolerant Antibody Repertoire. Front Immunol (2018) 9:2249. doi: 10.3389/fimmu.2018.02249 PubMed DOI PMC

Martensson IL, Keenan RA, Licence S. The Pre-B-Cell Receptor. Curr Opin Immunol (2007) 19:137–42. doi: 10.1016/j.coi.2007.02.006 PubMed DOI

Kitamura D, Rajewsky K. Targeted Disruption of Mu Chain Membrane Exon Causes Loss of Heavy-Chain Allelic Exclusion. Nature (1992) 356:154–56. doi: 10.1038/356154a0 PubMed DOI

van der Burg M, Tumkaya T, Boerma M, de Bruin-Versteeg S, Langerak AW, van Dongen JJ. Ordered Recombination of Immunoglobulin Light Chain Genes Occurs at the IGK Locus But Seems Less Strict at the IGL Locus. Blood (2001) 97:1001–8. doi: 10.1182/blood.V97.4.1001 PubMed DOI

Korsmeyer SJ, Hieter PA, Sharrow SO, Goldman CK, Leder P, Waldmann TA. Normal Human B Cells Display Ordered Light Chain Gene Rearrangements and Deletions. J Exp Med (1982) 156:975–85. doi: 10.1084/jem.156.4.975 PubMed DOI PMC

Das S, Nikolaidis N, Nei M. Genomic Organization and Evolution of Immunoglobulin Kappa Gene Enhancers and Kappa Deleting Element in Mammals. Mol Immunol (2009) 46:3171–77. doi: 10.1016/j.molimm.2009.05.180 PubMed DOI PMC

Stepanova K, Sinkora M. The Expression of CD25, CD11b, SWC1, SWC7, MHC-II, and Family of CD45 Molecules can be Used to Characterize Different Stages of Gamma Delta T Lymphocytes in Pigs. Dev Comp Immunol (2012) 36:728–40. doi: 10.1016/j.dci.2011.11.003 PubMed DOI

Butler JE, Wertz N, Sun X. Antibody Repertoire Development in Fetal and Neonatal Piglets. XIV. Highly Restricted IGKV Gene Usage Parallels the Pattern Seen With IGLV and IGHV. Mol Immunol (2013) 55:329–36. doi: 10.1016/j.molimm.2013.03.011 PubMed DOI

Wertz N, Vazquez J, Wells K, Sun J, Butler JE. Antibody Repertoire Development in Fetal and Neonatal Piglets. XII. Three IGLV Genes Comprise 70% of the Pre-Immune Repertoire and There is Little Junctional Diversity. Mol Immunol (2013) 55:319–28. doi: 10.1016/j.molimm.2013.03.012 PubMed DOI

Criscitiello MF, Flajnik MF. Four Primordial Immunoglobulin Light Chain Isotypes, Including Lambda and Kappa, Identified in the Most Primitive Living Jawed Vertebrates. Eur J Immunol (2007) 37:2683–94. doi: 10.1002/eji.200737263 PubMed DOI PMC

Hsu E. V(D)J Recombination: Of Mice and Sharks. Adv Exp Med Biol (2009) 650:166–79. doi: 10.1007/978-1-4419-0296-2_14 PubMed DOI

Nemazee D. Receptor Editing in Lymphocyte Development and Central Tolerance. Nat Rev Immunol (2006) 6:728–40. doi: 10.1038/nri1939 PubMed DOI

Hardy RR, Hayakawa K. B Cell Development Pathways. Annu Rev Immunol (2001) 19:595–621. doi: 10.1146/annurev.immunol.19.1.595 PubMed DOI

Kubagawa H, Cooper MD, Carroll AJ, Burrows PD. Light-Chain Gene Expression Before Heavy-Chain Gene Rearrangement in Pre-B Cells Transformed by Epstein-Barr Virus. Proc Natl Acad Sci USA (1989) 86:2356–60. doi: 10.1073/pnas.86.7.2356 PubMed DOI PMC

Grawunder U, Haasner D, Melchers F, Rolink A. Rearrangement and Expression of κ Light Chain Genes can Occur Without µ Heavy Chain Expression During Differentiation of Pre-B Cells. Int Immunol (1993) 5:1609–18. doi: 10.1093/intimm/5.12.1609 PubMed DOI

Ehlich A, Schaal S, Gu H, Kitamura D, Muller W, Rajewsky K. Immunoglobulin Heavy and Light Chain Genes Rearrange Independently at Early Stages of B Cell Development. Cell (1993) 72:695–704. doi: 10.1016/0092-8674(93)90398-A PubMed DOI

Novobrantseva TI, Martin VM, Pelanda R, Muller W, Rajewsky K, Ehlich A. Rearrangement and Expression of Immunoglobulin Light Chain Genes can Precede Heavy Chain Expression During Normal B Cell Development in Mice. J Exp Med (1999) 189:75–88. doi: 10.1084/jem.189.1.75 PubMed DOI PMC

Benatar T, Tkalec L, Ratcliffe MJ. Stochastic Rearrangement of Immunoglobulin Variable-Region Genes in Chicken B-Cell Development. Proc Natl Acad Sci USA (1992) 89:7615–9. doi: 10.1073/pnas.89.16.7615 PubMed DOI PMC

Reynaud CA, Bertocci B, Dahan A, Weill JC. Formation of the Chicken B-Cell Repertoire: Ontogenesis, Regulation of Ig Gene Rearrangement, and Diversification by Gene Conversion. Adv Immunol (1994) 57:353–578. doi: 10.1016/S0065-2776(08)60676-8 PubMed DOI

Ratcliffe MJ. Antibodies, Immunoglobulin Genes and the Bursa of Fabricius in Chicken B Cell Development. Dev Comp Immunol (2006) 30:101–18. doi: 10.1016/j.dci.2005.06.018 PubMed DOI

Jasper PJ, Zhai SK, Kalis SL, Kingzette M, Knight KL. B Lymphocyte Development in Rabbit: Progenitor B Cells and Waning of B Lymphopoiesis. J Immunol (2003) 171:6372–80. doi: 10.4049/jimmunol.171.12.6372 PubMed DOI

Reynaud CA, Anquez V, Weill JC. The Chicken D Locus and its Contribution to the Immunoglobulin Heavy Chain Repertoire. Eur J Immunol (1991) 11:2661–70. doi: 10.1002/eji.1830211104 PubMed DOI

Shimizu T, Mundt C, Licence S, Melchers F, Martensson IL. Vpreb1/Vpreb2/λ5 Triple-Deficient Mice Show Impaired B Cell Development But Functional Allelic Exclusion of the IgH Locus. J Immunol (2002) 168:6286–93. doi: 10.4049/jimmunol.168.12.6286 PubMed DOI

ten Boekel E, Melchers F, Rolink A. Changes in the VH Gene Repertoire of Developing Precursor B Lymphocytes in Mouse Bone Marrow Mediated by the Pre-B Cell Receptor. Immunity (1997) 7:357–68. doi: 10.1016/S1074-7613(00)80357-X PubMed DOI

Kitamura D, Roes J, Kühn R, Rajewsky K. A B Cell-Deficient Mouse by Targeted Disruption of the Membrane Exon of the Immunoglobulin Mu Chain Gene. Nature (1991) 350:423–26. doi: 10.1038/350423a0 PubMed DOI

Shaffer AL, Schlissel MS. A Truncated Heavy Chain Protein Relieves the Requirement for Surrogate Light Chains in Early B Cell Development. J Immunol (1997) 159:1265–75. PubMed

Rosnet O, Blanco-Betancourt C, Grivel K, Richter K, Schiff C. Binding of Free Immunoglobulin Light Chains to VpreB3 Inhibits Their Maturation and Secretion in Chicken B Cells. J Biol Chem (2004) 279:10228–36. doi: 10.1074/jbc.M312169-A200 PubMed DOI

Ekman A, Ilves M, Iivanainen A. B Lymphopoiesis is Characterized by Pre-B Cell Marker Gene Expression in Fetal Cattle and Declines in Adults. Dev Comp Immunol (2012) 37:39–49. doi: 10.1016/j.dci.2011.12.009 PubMed DOI

Wang X, Parra ZE, Miller RD. A VpreB3 Homologue in a Marsupial, the Gray Short-Tailed Opossum, Monodelphis Domestica. Immunogenetics (2012) 64:647–52. doi: 10.1007/s00251-012-0626-0 PubMed DOI PMC

Sun X, Wertz N, Lager K, Sinkora M, Stepanova K, Tobin G, et al. . Antibody Repertoire Development in Fetal and Neonatal Piglets. XXII. λ Rearrangement Precedes κ Rearrangement During B-Cell Lymphogenesis in Swine. Immunology (2012) 137:149–59. doi: 10.1111/j.1365-2567.2012.03615.x PubMed DOI PMC

Jones HB, III. On a New Substance Occurring in the Urine of a Patient With Mollities Ossium. Phil Trans R Soc (1848) 138:55–62. doi: 10.1098/rstl.1848.0003 DOI

Hopper JE, Papagiannes E. Evidence by Radioimmunoassay That Mitogen-Activated Human Blood Mononuclear Cells Secrete Significant Amounts of Light Chain Ig Unassociated With Heavy Chain. Cell Immunol (1986) 101:122–31. doi: 10.1016/0008-8749(86)90191-7 PubMed DOI

Hutchinson AT, Ramsland PA, Jones DR, Agostino M, Lund ME, Jennings CV, et al. . Free Ig Light Chains Interact With Sphingomyelin and are Found on the Surface of Myeloma Plasma Cells in an Aggregated Form. J Immunol (2010) 185:4179–88. doi: 10.4049/jimmunol.1001956 PubMed DOI

Nadel B, Cazenave PA, Sanchez P. Murine Lambda Gene Rearrangements: The Stochastic Model Prevails Over the Ordered Model. EMBO J (1990) 9:435–40. doi: 10.1002/j.1460-2075.1990.tb08128.x PubMed DOI PMC

Schwartz JC, Philp RL, Bickhart DM, Smith TPL, Hammond JA. The Antibody Loci of the Domestic Goat (Capra Hircus). Immunogenetics (2018) 70:317–26. doi: 10.1007/s00251-017-1033-3 PubMed DOI PMC

Larson PA, Bartlett ML, Garcia K, Chitty J, Balkema-Buschmann A, Towner J, et al. . Genomic Features of Humoral Immunity Support Tolerance Model in Egyptian Rousette Bats. Cell Rep (2021) 35:109140. doi: 10.1016/j.celrep.2021.109140 PubMed DOI

Sun Y, Liu Z, Ren L, Wei Z, Wang P, Li N, et al. . Immunoglobulin Genes and Diversity: What We Have Learned From Domestic Animals. J Anim Sci Biotechnol (2012) . 3:18. doi: 10.1186/2049-1891-3-18 PubMed DOI PMC

Sitnikova T, Su C. Coevolution of Immunoglobulin Heavy- and Light-Chain Variable-Region Gene Families. Mol Biol Evol (1998) 15:617–25. doi: 10.1093/oxfordjournals.molbev.a025965 PubMed DOI

Butler JE. Immunoglobulin Diversity, B-Cell and Antibody Repertoire Development in Large Farm Animals. Rev Sci Tech (1998) 17:43–70. doi: 10.20506/rst.17.1.1096 PubMed DOI

Ford JE, Home WA, Gibson DM. Light Chain Isotype Regulation in the Horse. Characterization of Ig Kappa Genes. J Immunol (1994) 153:1099–111. PubMed

Shi Z, Zhang Q, Yan H, Yang Y, Wang P, Zhang Y, et al. . More Than One Antibody of Individual B Cells Revealed by Single-Cell Immune Profiling. Cell Discovery (2019) 5:64. doi: 10.1038/s41421-019-0137-3 PubMed DOI PMC

Yamagami T, ten Boekel E, Andersson J, Rolink A, Melchers F. Frequencies of Multiple IgL Chain Gene Rearrangements in Single Normal or kappaL Chain-Deficient B Lineage Cells. Immunity (1999) 11:317–27. doi: 10.1016/S1074-7613(00)80107-7 PubMed DOI

Perdiguero P, Morel E, Díaz-Rosales P, Tafalla C. Individual B Cells Transcribe Multiple Rearranged Immunoglobulin Light Chains in Teleost Fish. iScience (2021) 24:102615. doi: 10.1016/j.isci.2021.102615 PubMed DOI PMC

Eberle AB, Herrmann K, Jäck HM, Mühlemann O. Equal Transcription Rates of Productively and Nonproductively Rearranged Immunoglobulin Mu Heavy Chain Alleles in a Pro-B Cell Line. RNA (2009) 15:1021–28. doi: 10.1261/rna.1516409 PubMed DOI PMC

Li S, Wilkinson MF. Nonsense Surveillance in Lymphocytes? Immunity (1998) 8:135–41. doi: 10.1016/S1074-7613(00)80466-5 PubMed DOI

Du Pasquier L, Robert J, Courtet M, Mussmann R. B-Cell Development in the Amphibian Xenopus. Immunol Rev (2000) 175:201–13. doi: 10.1111/j.1600-065x.2000.imr017501.x PubMed DOI

Pettinello R, Dooley H. The Immunoglobulins of Cold-Blooded Vertebrates. Biomolecules (2014) 4:1045–69. doi: 10.3390/biom4041045 PubMed DOI PMC

Fehrenkamp BD, Morrissey KA, Miller RD. Opossum Milk IgG is From Maternal Circulation and Timing of Transfer Correlates With Neonatal Immune Development. Reprod Fertil Dev (2019) 31:1246–51. doi: 10.1071/RD18121 PubMed DOI PMC

Ghia P, ten Boekel E, Sanz E, de la Hera A, Rolink A, Melchers F. Ordering of Human Bone Marrow B Lymphocyte Precursors by Single-Cell Polymerase Chain Reaction Analyses of the Rearrangement Status of the Immunoglobulin H and L Chain Gene Loci. J Exp Med (1996) 184:2217–29. doi: 10.1084/jem.184.6.2217 PubMed DOI PMC

Rolink AG, Winkler T, Melchers F, Andersson J. Precursor B Cell Receptor-Dependent B Cell Proliferation and Differentiation Does Not Require the Bone Marrow or Fetal Liver Environment. J Exp Med (2000) 191:23–32. doi: 10.1084/jem.191.1.23 PubMed DOI PMC

Butler JE, Wertz N, Sun J, Wang H, Lemke C, Chardon P, et al. . The Pre-Immune Variable Kappa Repertoire of Swine is Selectively Generated From Certain Subfamilies of Vkappa2 and One Jkappa Gene. Vet Immunol Immunopathol (2005) 108:127–37. doi: 10.1016/j.vetimm.2005.07.016 PubMed DOI

Rolink A, Grawunder U, Haasner D, Strasser A, Melchers F. Immature Surface Ig+ B Cells can Continue to Rearrange κ and λ L Chain Gene Loci. J Exp Med (1993) 178:1263–70. doi: 10.1084/jem.178.4.1263 PubMed DOI PMC

Kaushik A, Schulze DH, Bona C, Kelsoe G. Murine V Kappa Gene Expression Does Not Follow the VH Paradigm. J Exp Med (1989) 169:1859–64. doi: 10.1084/jem.169.5.1859 PubMed DOI PMC

Sun L, Kono N, Shimizu T, Toh H, Xue H, Numata O, et al. . Distorted Antibody Repertoire Developed in the Absence of Pre-B Cell Receptor Formation. Biochem Biophys Res Commun (2018) 495:1411–17. doi: 10.1016/j.bbrc.2017.11.171 PubMed DOI

Girchick HJ, Lipsky PE. The Kappa Gene Repertoire of Human Neonatal B Cells. Mol Immunol (2001) 38:1113–27. doi: 10.1016/S0161-5890(02)00039-1 PubMed DOI

Richl P, Stern U, Lipsky PE, Girschick HJ. The Lambda Gene Immunoglobulin Repertoire of Human Neonatal B Cells. Mol Immunol (2008) 45:320–27. doi: 10.1016/j.molimm.2007.06.155 PubMed DOI

Guo N, Su M, Xie Z, Wang K, Yuan H, Li M, et al. . Characterization and Comparative Analysis of Immunoglobulin Lambda Chain Diversity in a Neonatal Porcine Model. Vet Immunol Immunopathol (2018) 195:84–91. doi: 10.1016/j.vetimm.2017.12.002 PubMed DOI

Mendicino M, Ramsoondar J, Phelps C, Vaught S, Ball T, LeRoith J, et al. . Generation of Antibody- and B Cell-Deficient Pigs by Targeted Disruption of the J-Region Gene Segment of the Heavy Chain Locus. Transgenic Res (2011) 20:625–41. doi: 10.1007/s11248-010-9444-z PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace