The ontogeny of the porcine immune system

. 2009 Mar ; 33 (3) : 273-83. [epub] 20080830

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid18762210
Odkazy

PubMed 18762210
PubMed Central PMC7103207
DOI 10.1016/j.dci.2008.07.011
PII: S0145-305X(08)00159-6
Knihovny.cz E-zdroje

Cellular and humoral aspects of the immune response develop sequentially in the fetus. During the ontogeny, the pluripotent stem cells emerge and differentiate into all hematopoietic lineages. Basic questions including the identification of the first lympho-hematopoietic sites, the origin of T and B lymphocytes, the development of different subpopulations of alphabeta T, gammadelta T and B lymphocytes as well as development of innate immunity and the acquisition of full immunological capacities are discussed here for swine and compared with other species. The description of related topics such as fertilization, morphogenesis, maternal-fetal-neonatal physiology and early neonatal development are also discussed.

Zobrazit více v PubMed

Marrable A.W. Pitman Medical Publishing; Great Britain: 1971. The embryonic pig: a chronological account.

Sterzl J., Silverstein A.M. Developmental aspects of immunity. Adv Immunol. 1967;6(1):337–371. PubMed

Butler J.E., Brown W.R. The immunoglobulins and immunoglobulin genes of swine. Vet Immunol Immunopathol. 1994;43(1-3):5–12. PubMed

Tlaskalova-Hogenova H., Mandel L., Trebichavsky I., Kovaru F., BArot R., Sterzl J. Development of immune responses in early pig ontogeny. Vet Immunol Immunopathol. 1994;43(1-3):135–142. PubMed

Butler J.E., Sun J., Weber P., Ford S.P., Rehakova Z., Sinkora J. Antibody repertoire development in fetal and neonatal piglets. IV. Switch recombination, primarily in fetal thymus occurs independent of environmental antigen and is only weakly associated with repertoire diversification. J Immunol. 2001;167(6):3239–3249. PubMed

Jungersen G., Bille-Hansen V., Jensen L., Lind P. Transplacental transmission of Toxoplasma gondii in minipigs infected with strains of different virulence. J Parasitol. 2001;87(1):108–113. PubMed

Muller A., Medvinsky A., Strouboulis J., Grosveld F., Dzierzak E. Development of hematopoietic stem cell activity in the mouse embryo. Immunity. 1994;1(4):291–301. PubMed

Sinkora M., Sun J., Sinkorova J., Christenson R.K., Ford S.P., Butler J.E. Antibody repertoire development in fetal and neonatal piglets. VI. B-cell lymphogenesis occurs at multiple sites with differences in the frequency of in-frame rearrangements. J Immunol. 2003;170(4):1781–1788. PubMed

Trebichavsky I., Tlaskalova H., Cukrowska B., Splichal I., Sinkora J., Rehakova Z. Early ontogeny of immune cells and their functions in the fetal pig. Vet Immunol Immunopathol. 1996;54(1-4):75–81. PubMed

Sinkora M., Sinkora J., Rehakova Z., Splichal I., Yang H., Parkhouse R.M. Prenatal ontogeny of lymphocyte subpopulations in pigs. Immunology. 1998;95(4):595–603. PubMed PMC

Huh N.D., Kim Y.B., Koren H.S., Amos D.B. Natural killing and antibody-dependent cellular cytotoxicity in specific-pathogen-free miniature swine and germ-free piglets. II. Ontogenic development of NK and ADCC. Int J Cancer. 1981;28(2):175–178. PubMed

Yang W.C., Schultz R.D. Ontogeny of natural killer cell activity and antibody dependent cell mediated cytotoxicity in pigs. Dev Comp Immunol. 1986;10(3):405–418. PubMed

Splichal I., Bonneau M., Charley B. Ontogeny of interferon alpha secreting cells in the porcine fetal hematopoietic organs. Immunol Lett. 1994;43(3):203–208. PubMed PMC

Sinkora M., Sinkora J., Rehakova Z., Butler J.E. Early ontogeny of thymoctes in pigs: sequential colonization of the thymus by T cell progenitors. J Immunol. 2000;165(4):1832–1839. PubMed

Hardy R.R., Carmack C.E., Shinton S.A., Kemp J.D., Hayakawa K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med. 1991;173(5):1213–1225. PubMed PMC

Ehlich A., Schaal S., Gu H., Kitamura D., Müller W., Rajewsky K. Immunoglobulin heavy and light chain genes rearrange independently at early stages of B cell development. Cell. 1993;72(5):695–704. PubMed

Ghia P., ten Boekel E., Sanz E., de la Hera A., Rolink A., Melchers F. Ordering of human bone marrow B lymphocyte precursors by single-cell polymerase chain reaction analyses of the rearrangement status of the immunoglobulin H and L chain gene loci. J Exp Med. 1996;184(6):2217–2229. PubMed PMC

Rolink A.G., ten Boekel E., Yamagami T., Ceredig R., Andersson J., Melchers F. B cell development in the mouse from early progenitors to mature B cells. Immunol Lett. 1999;68(1):89–93. PubMed

Hardy R.R., Hayakawa K. B cell development pathways. Annu Rev Immunol. 2001;19:595–621. PubMed

Melchers F., Karasuyama H., Haasner D., Bauer S., Kudo A., Sakaguchi N. The surrogate light chain in B-cell development. Immunol Today. 1993;14(2):60–68. PubMed

King L.B., Monroe J.G. Immunobiology of the immature B cell: plasticity in the B-cell antigen receptor-induced response fine tunes negative selection. Immunol Rev. 2000;176(1):86–104. PubMed

Butler J.E., Sun J., Navarro P. The swine Ig heavy chain locus has a single JH and no identifiable IgD. Int Immunol. 1996;8(12):1897–1904. PubMed

Reynaud C.A., Imhof B.A., Anquez V., Weill J.C. Emergence of committed B lymphoid progenitors in the developing chicken embryo. EMBO J. 1992;11(12):4349–4358. PubMed PMC

McCormack W.T., Tjoelker L.W., Thompson C.B. Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion. Annu Rev Immunol. 1991;9(1):219–241. PubMed

Sinkora J., Rehakova Z., Sinkora M., Cukrowska B., Tlaskalova-Hogenova H. Early development of immune system in pigs. Vet Immunol Immunopathol. 2002;87(3-4):301–306. PubMed

Nourrit F., Doyen N., Kourilsky P., Rougeon F., Cumano A. Extensive junctional diversity of Ig heavy chain rearrangements generated in the progeny of single fetal multipotent hematopoietic cells in the absence of selection. J Immunol. 1998;160(9):4254–4261. PubMed

Knight K.L., Crane M.A. Generating the antibody repertoire in rabbit. Adv Immunol. 1994;56(1):179–218. PubMed

Butler J.E., Weber P., Wertz N. Antibody repertoire development in fetal and neonatal piglets. XIII. Hybrid VH genes and the preimmune repertoire revisited. J Immunol. 2006;177(8):5459–5470. PubMed

Butler J.E., Weber P., Sinkora M., Sun J., Ford S.J., Christenson R. Antibody repertoire development in fetal and neonatal piglets. II. Characterization of heavy chain CDR3 diversity in the developing fetus. J Immunol. 2000;165(12):6999–7011. PubMed

Butler J.E., Wertz N., Wang H., Sun J., Chardon P., Piumi F. Antibody repertoire development in fetal and neonatal pigs. VII. Characterization of the pre-immune kappa light chain repertoire. J Immunol. 2004;173(11):6794–6805. PubMed

Jones M., Cordell J.L., Beyers A.D., Tse A.G.D., Mason D.Y. Detection of T and B cells in many animal species using cross-reactive anti-peptide antibodies. J Immunol. 1993;150(12):5429–5435. PubMed

Sinkora J., Rehakova Z., Sinkora M., Cukrowska B., Tlaskalova-Hogenova H., Bianchi A.T. Expression of CD2 on porcine B lymphocytes. Immunology. 1998;95(3):443–449. PubMed PMC

Sinkora M., Sinkorova J., Cimburek Z., Holtmeier W. Two groups of porcine TCRγδ+ thymocytes behave and diverge differently. J Immunol. 2007;178(2):711–719. PubMed

Sinkora M., Butler J.E., Holtmeier W., Sinkorova J. Lymphocyte development in fetal piglets: facts and surprises. Vet Immunol Immunopathol. 2005;108(1–2):177–184. PubMed

Faldyna M., Samankova P., Leva L., Cerny J., Oujezdska J., Rehakova Z. Cross-reactive anti-human monoclonal antibodies as a tool for B-cell identification in dogs and pigs. Vet Immunol Immunopathol. 2007;119(1–2):56–62. PubMed

Wilson S.M., Wilkie B.N. B-1 and B-2 B-cells in the pig cannot be differentiated by expression of CD5. Vet Immunol Immunopathol. 2007;115(1–2):10–16. PubMed

McAleer J., Weber P., Sun J., Butler J.E. Antibody repertoire development in fetal and neonatal piglets. XI. The thymic B cell repertoire develops independently from that in blood and mesenteric lymph nodes. Immunology. 2005;114(2):171–183. PubMed PMC

Zhao Y., Pan-Hammarstrom Q., Kacskovics I., Hammarstrom L. The porcine Igδ gene: Unique chimeric splicing of the first constant region domain in its heavy chain transcripts. J Immunol. 2003;171(3):1312–1318. PubMed

Butler J.E., Sinkora M. The isolator piglet: a model for studying the development of adaptive immunity. Immunol Res. 2007;39(1–3):33–51. PubMed

Cukrowska B., Sinkora J., Mandel L., Splichal I., Bianchi A.T.J., Kovaru F. Thymic B cells of pig fetuses and germ free pigs spontaneously produce IgM. IgG and IgA: detection of ELISPOT method. Immunology. 1996;87(3):487–492. PubMed PMC

Jotereau F., Heuze F., Salomon-Vie V., Gascan H. Cell kinetics in the fetal mouse thymus: precursor cell input, proliferation, and emigration. J Immunol. 1987;138(4):1026–1030. PubMed

Coltey M., Jotereau F.V., Le Douarin N.M. Evidence for a cyclic renewal of lymphocyte precursor cells in the embryonic chick thymus. Cell Differ. 1987;22(1):71–82. PubMed

Sinkora M., Sinkorova J., Holtmeier W. Development of γδ thymocyte subsets during prenatal and postnatal ontogeny. Immunology. 2005;115(4):544–555. PubMed PMC

Offner F., Van Beneden K., Debacker V., Vanhecke D., Vandekerckhove B., Plum J. Phenotypic and functional maturation of TCRγδ cells in the human thymus. J Immunol. 1997;158(10):4634–4641. PubMed

Itohara S., Nakanishi N., Kanagawa O., Kubo R., Tonegawa S. Monoclonal antibodies specific to native murine T-cell receptor γδ: analysis of γδ T cells during thymic ontogeny and in peripheral lymphoid organs. Proc Natl Acad Sci USA. 1989;86(13):5094–5098. PubMed PMC

Fisher A.G., Ceredig R. γδ T cells expressing CD8 or CD4low appear early in murine foetal thymus development. Int Immunol. 1991;3(12):1323–1328. PubMed

Bucy R.P., Chen C.H., Cooper M.D. Ontogeny of T cell receptors in the chicken thymus. J Immunol. 1990;144(4):1161–1168. PubMed

Aparicio P., Alonso J.M., Toribio M.L., Marcos M.A., Pezzi L., Martínez A.C. Isolation and characterization of γδ CD4+ T cell clones derived from human fetal liver cells. J Exp Med. 1989;170(3):1009–1014. PubMed PMC

Wucherpfennig K.W., Liao Y.J., Prendergast M., Prendergast J., Hafler D.A., Strominger J.L. Human fetal liver γ/δ T cells predominantly use unusual rearrangements of the T cell receptor δ and γ loci expressed on both CD4+CD8− and CD4−CD8− γ/δ T cells. J Exp Med. 1993;177(2):425–432. PubMed PMC

Saalmuller A., Hirt W., Reddehase M.J. Porcine γδ T lymphocyte subsets differing in their propensity to home to lymphoid tissue. Eur J Immunol. 1990;20(10):2343–2346. PubMed

Yang H., Parkhouse R.M. Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology. 1996;89(1):76–83. PubMed PMC

Reddehase M.J., Saalmuller A., Hirt W. γδ T-lymphocyte subsets in swine. Curr Top Microbiol Immunol. 1991;173(1):113–117. PubMed

Yang H., Parkhouse R.M. Differential expression of CD8 epitopes amongst porcine CD8-positive functional lymphocyte subsets. Immunology. 1997;92(1):45–52. PubMed PMC

de Bruin M.G., van Rooij E.M., Voermans J.J., de Visser Y.E., Bianchi A.T., Kimman T.G. Establishment and characterization of porcine cytolytic cell lines and clones. Vet Immunol Immunopathol. 1997;59(3-4):337–347. PubMed

MacDonald H.R., Schreyer M., Howe R.C., Bron C. Selective expression of CD8α (Ly-2) subunit on activated thymic γ/δ cells. Eur J Immunol. 1990;20(4):927–930. PubMed

Moebius U., Kober G., Griscelli A.L., Hercend T., Meuer S.C. Expression of different CD8 isoforms on distinct human lymphocyte subpopulations. Eur J Immunol. 1991;21(8):1793–1800. PubMed

Hori T., Paliard X., de Waal Malefijt R., Ranes M., Spits H. Comparative analysis of CD8 expressed on mature CD4+ CD8+ T cell clones cultured with IL-4 and that on CD8+ T cell clones: implication for functional significance of CD8β. Int Immunol. 1991;3(7):737–741. PubMed

Spetz A.L., Kourilsky P., Larsson-Sciard E.L. Induction of CD8 molecules on thymic γ/δ T cells in vitro is dependent upon α/β T cells. Eur J Immunol. 1991;21(11):2755–2759. PubMed

Saalmuller A., Werner T., Fachinger V. T-helper cells from naive to committed. Vet Immunol Immunopathol. 2002;87(3-4):137–145. PubMed

Sinkora M., Sun J., Butler J.E. Antibody repertoire development in fetal and neonatal piglets. V. VDJ gene chimeras resembling gene conversion products are generated at high frequency by PCR in vitro. Mol Immunol. 2000;37(17):1025–1034. PubMed

Saalmuller A., Hirt W., Reddehase M.J. Phenotypic discrimination between thymic and extrathymic CD4−CD8− and CD4+CD8+ porcine T lymphocytes. Eur J Immunol. 1989;19(11):2011–2016. PubMed

Zuckermann F.A., Husmann R.J. Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology. 1996;87(3):500–512. PubMed PMC

Pabst R., Rothkötter H.J. Postnatal development of lymphocyte subsets in different compartments of the small intestine of piglets. Vet Immunol Immunopathol. 1999;72(1-2):167–173. PubMed

Butler J.E., Sun J., Weber P., Navarro P., Francis D. Antibody repertoire development in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies the preimmune repertoire in mucosal lymphoid tissues. Immunology. 2000;100(1):119–130. PubMed PMC

Butler J.E., Lemke C.D., Weber P., Sinkora M., Lager K.M. Antibody repertoire development in fetal and neonatal piglets. XIX. Undiversified B cells with hydrophobic HCDR3s preferentially proliferate in the porcine reproductive and respiratory syndrome. J Immunol. 2007;178(10):6320–6331. PubMed

Butler J.E., Weber P., Sinkora M., Baker D., Schoenherr A., Mayer B. Antibody repertoire development in fetal and neonatal piglets. VIII. Colonization is required for newborn piglets to make serum antibodies to T-dependent and type 2 T-independent antigens. J Immunol. 2002;169(12):6822–6830. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...