The impact of parturition induction with cloprostenol on immunological parameters in the sow colostrum

. 2020 Dec 11 ; 6 (1) : 35. [epub] 20201211

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33303033

Grantová podpora
QJ1510218 Národní Agentura pro Zemědělský Výzkum
RO0518 Ministerstvo Zemědělství
LO1218 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0385 Ministerstvo Školství, Mládeže a Tělovýchovy

Odkazy

PubMed 33303033
PubMed Central PMC7731548
DOI 10.1186/s40813-020-00174-y
PII: 10.1186/s40813-020-00174-y
Knihovny.cz E-zdroje

BACKGROUND: Farrowing induction with prostaglandin F2 analogue cloprostenol is commonly used on commercial farms to manage the timing of farrowing. When labour induction is applied, the questions arise about possible side effects of such a hormonal intervention on physiological processes connected with labour and lactation, including colostral immunity. RESULTS: In this study, immune cells composition, lysozyme concentration, complement bacteriolytic activity and proinflamatory (GM-CSF2, IL-1β, IL-6, a TNFα) and anti-inflammatory (IL-4, IL-10, TGFβ1 a TGFβ2) cytokines were measured in colostrum samples from sows farrowing naturally (NP) and from sows with farrowing induced using cloprostenol administration on day 113 of gestation (IP). A significantly higher proportion of lymphocytes was found in colostrum of induced sows compared to colostrum of non-induced sows. No significant differences between NP and IP were found in complement activity, in the proportions of granulocytes, macrophages and lymphocyte subpopulations. Lower lysozyme concentration and higher IL-1β, IL-6, TGFβ1 and TNFα concentrations were found in IP sow colostrum compared to colostrum from NP sows. CONCLUSIONS: An increased proportion of colostral lymphocytes can positively influence the cellular immunity transmission from sow to her offspring. On the other hand, a lower lysozyme concentration can adversely affect newborn's intestinal immunity, as well as changes in cytokine concentrations can have an adverse effect on newborn piglet intestinal epithelium development and its defence function.

Zobrazit více v PubMed

Ichikawa H, Koketsu Y. Standard operating procedures for sows and piglets in farrowing and lactation in Japanese commercial herds. J Vet Med Sci. 2012;74:1423–1428. doi: 10.1292/jvms.11-0450. PubMed DOI

Vanderhaeghe C, Dewulf J, Ribbens S, de Kruif A, Maes D. A cross-sectional study to collect risk factors associated with stillbirths in pig herds. Anim Reprod Sci. 2010;118:62–68. doi: 10.1016/j.anireprosci.2009.06.012. PubMed DOI

White KR, Anderson DM, Bate LA. Increasing piglet survival through an improved farrowing management protocol. Can J Anim Sci. 1996;76:491–495. doi: 10.4141/cjas96-075. DOI

Nguyen K, Cassar G, Friendship RM, Dewey C, Farzan A, Kirkwood RN, et al. An investigation of the impacts of induced parturition, birth weight, birth order, litter size, and sow parity on piglet serum concentrations of immunoglobulin G. J Swine Heal Prod. 2013;21:139–143.

Cabrera RA, Lin X, Campbell JM, Moeser AJ, Odle J. Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. J Anim Sci Biotechnol. 2012;3:42. doi: 10.1186/2049-1891-3-42. PubMed DOI PMC

Foisnet A, Farmer C, David C, Quesnel H. Farrowing induction induces transient alterations in prolactin concentrations and colostrum composition in primiparous sows1. J Anim Sci. 2011;89:3048–3059. doi: 10.2527/jas.2010-3507. PubMed DOI

Vallet JL, Miles JR, Rempel LA. A simple novel measure of passive transfer of maternal immunoglobulin is predictive of preweaning mortality in piglets. Vet J. 2013;195. 10.1016/j.tvjl.2012.06.009. PubMed

Salmon H, Berri M, Gerdts V, Meurens F. Humoral and cellular factors of maternal immunity in swine. Dev Comp Immunol. 2009;33:384–393. doi: 10.1016/j.dci.2008.07.007. PubMed DOI

Wagstrom E, Yoon K, Zimmerman J. Immune components in porcine mammary secretions. Viral Immunol. 2000;10:153–193. PubMed

Le Jan C. A study by flow cytometry of lymphocytes in sow colostrum. Res Vet Sci. 1994;57:300–304. doi: 10.1016/0034-5288(94)90121-X. PubMed DOI

Hlavova K, Stepanova H, Faldyna M. The phenotype and activation status of T and NK cells in porcine colostrum suggest these are central/effector memory cells. Vet J. 2014;202:477–482. doi: 10.1016/j.tvjl.2014.09.008. PubMed DOI

Nechvatalova K, Kudlackova H, Leva L, Babickova K, Faldyna M. Transfer of humoral and cell-mediated immunity via colostrum in pigs. Vet Immunol Immunopathol. 2011;142:95–100. doi: 10.1016/j.vetimm.2011.03.022. PubMed DOI

Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343:227–235. doi: 10.1007/s00441-010-1034-0. PubMed DOI PMC

Brock JH, Ortega F, Piñeiro A. Bactericidal and haemolytic activity of complement in bovine colostrum and serum: effect of proteolytic enzymes and ethylene glycol tetraacetic acid (EGTA) Ann Immunol (Paris) 1975;126C:439–451. PubMed

Reiter B, Brock JH. Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. 1975. pp. 71–82. PubMed PMC

Eckblad WP, Hendrix KM, Olson DP. Total complement hemolytic activity of colostral whey and sera from dairy cows. Cornell Vet. 1981;71:54–58. PubMed

Korhonen H, Syväoja EL, Ahola-Luttila H, Sivelä S, Kopola S, Husu J, et al. Bactericidal effect of bovine normal and immune serum, colostrum and milk against helicobacter pylori. J Appl Bacteriol. 1995;78:655–662. doi: 10.1111/j.1365-2672.1995.tb03112.x. PubMed DOI

Masschalck B, Michiels CW. Antimicrobial properties of lysozyme in relation to foodborne vegetative bacteria. Crit Rev Microbiol. 2003;29:191–214. doi: 10.1080/713610448. PubMed DOI

Ellison RT, Giehl TJ, Giehl TJ. Killing of gram-negative bacteria by lactoferrin and lysozyme. J Clin Invest. 1991;88:1080–1091. doi: 10.1172/JCI115407. PubMed DOI PMC

Oliver WT, Wells JE. Lysozyme as an alternative to growth promoting antibiotics in swine production. J Anim Sci Biotechnol. 2015;6:35. doi: 10.1186/s40104-015-0034-z. PubMed DOI PMC

Huang G, Li X, Lu D, Liu S, Suo X, Li Q, et al. Lysozyme improves gut performance and protects against enterotoxigenic Escherichia coli infection in neonatal piglets. Vet Res. 2018;49:20. doi: 10.1186/s13567-018-0511-4. PubMed DOI PMC

Elahi S, Thompson DR, Van Kessel J, Babiuk LA, Gerdts V. Protective role of passively transferred maternal cytokines against Bordetella pertussis infection in newborn piglets. Infect Immun. 2017;85:1–16. doi: 10.1128/IAI.01063-16. PubMed DOI PMC

Xu R-J, Doan QC, Regester GO. Detection and characterisation of transforming growth factor-Beta in porcine colostrum. Neonatology. 1999;75:59–64. doi: 10.1159/000014078. PubMed DOI

Nguyen KT, Cassar G, Friendship RM, Dewey CE, Farzan A, Kirkwood RN. Stillbirth and preweaning mortality in litters of sows induced to farrow with supervision compared to litters of naturally farrowing sows with minimal supervision. J Swine Heal Prod. 2011;19:214–217.

Tuboly S, Bernáth S. Intestinal absorption of colostral lymphoid cells in newborn animals. Adv Exp Med Biol. 2002;503:107–114. doi: 10.1007/978-1-4615-0559-4_12. PubMed DOI

Luo W, Diaz FJ, Wiltbank MC. Induction of mRNA for chemokines and chemokine receptors by prostaglandin F2α is dependent upon stage of the porcine corpus Luteum and Intraluteal progesterone. Endocrinology. 2011;152:2797–2805. doi: 10.1210/en.2010-1247. PubMed DOI PMC

Salmon H. Mammary gland immunology and neonate protection in pigs. Homing of lymphocytes into the MG. Adv Exp Med Biol. 2000;480:279–286. doi: 10.1007/0-306-46832-8_32. PubMed DOI

Maheshwari A, Christensen RD, Calhoun DA. ELR+ CXC chemokines in human milk. Cytokine. 2003;24:91–102. doi: 10.1016/j.cyto.2003.07.002. PubMed DOI

Gautvik KM, Kriz M. Effects of prostaglandins on prolactin and growth hormone synthesis and secretion in cultured rat pituitary cells. Endocrinology. 1976;98:352–358. doi: 10.1210/endo-98-2-352. PubMed DOI

Väänänen JE, Tong BLP, Väänänen CCM, Chan IHH, Yuen BH, Leung PCK. Interaction of prostaglandin F2αand prostaglandin-E2on progesterone production in human Granulosa-luteal cells. NeuroSignals. 2001;10:380–388. doi: 10.1159/000046905. PubMed DOI

Ricciotti E, Fitzgerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31:986–1000. doi: 10.1161/ATVBAHA.110.207449. PubMed DOI PMC

Cabinian A, Sinsimer D, Tang M, Zumba O, Mehta H, Toma A, et al. Transfer of maternal immune cells by breastfeeding: maternal cytotoxic T lymphocytes present in breast Milk localize in the Peyer’s patches of the nursed infant. PLoS One. 2016;11:e0156762. doi: 10.1371/journal.pone.0156762. PubMed DOI PMC

Maye S. Title investigation of the presence and activity of the innate immune component, complement, in bovine milk: University College Cork; 2016. http://hdl.handle.net/10468/3510 (Accessed 7 May 2020).

Sakai R, Kitano E, Hatanaka M, Lo P, Matsuura R, Deguchi K, et al. Studies of pig complement: measurement of pig CH50, ACH50, and components. Transplant Proc. 2016;48:1282–1284. doi: 10.1016/j.transproceed.2015.10.066. PubMed DOI

Guthrie HD, Rexroad CE. Blockade of luteal prostaglandin F release in vitro during Cloprostenol-induced Luteolysis in the pig. Biol Reprod. 1980;23:358–362. doi: 10.1095/biolreprod23.2.358. PubMed DOI

Roberts RM, Bazer FW, Baldwin N, Pollard WE. Progesterone induction of lysozyme and peptidase activities in the porcine uterus. Arch Biochem Biophys. 1976;177:499–507. doi: 10.1016/0003-9861(76)90461-6. PubMed DOI

Brenmoehl J, Ohde D, Wirthgen E. Cytokines in milk and the role of TGF-beta. Best Pract Res Clin Endocrinol Metab. 2018;32:47–56. doi: 10.1016/J.BEEM.2018.01.006. PubMed DOI

Fischer BM, Krunkosky TM, Wright DT, Dolan-O’Keefe M, Adler KB. Tumor necrosis factor-alpha (TNF-α) stimulates Mucin secretion and gene expression in airway epithelium in vitro. Chest. 1995;107:133S–135S. doi: 10.1378/CHEST.107.3_SUPPLEMENT.133S. PubMed DOI

Garofalo R. Cytokines in human milk. J Pediatr. 2010;156:S36–S40. doi: 10.1016/j.jpeds.2009.11.019. PubMed DOI

Wells JM, Rossi O, Meijerink M, van Baarlen P. Epithelial crosstalk at the microbiota–mucosal interface. Proc Natl Acad Sci. 2011;108:4607–4614. doi: 10.1073/PNAS.1000092107. PubMed DOI PMC

Ogawa J, Sasahara A, Yoshida T, Sira MM, Futatani T, Kanegane H, et al. Role of transforming growth factor-β in breast milk for initiation of IgA production in newborn infants. Early Hum Dev. 2004;77:67–75. doi: 10.1016/J.EARLHUMDEV.2004.01.005. PubMed DOI

Tizard IR. Veterinary immunology : an introduction. Philadelphia: Saunders; 2004.

Chiriac MT, Buchen B, Wandersee A, Hundorfean G, Günther C, Bourjau Y, et al. Activation of epithelial signal transducer and activator of transcription 1 by interleukin 28 controls mucosal healing in mice with colitis and is increased in mucosa of patients with inflammatory bowel disease. Gastroenterology. 2017;153:123–138.e8. doi: 10.1053/j.gastro.2017.03.015. PubMed DOI

Andrews C, McLean MH, Durum SK. Cytokine tuning of intestinal epithelial function. Front Immunol. 2018;9:1270. doi: 10.3389/fimmu.2018.01270. PubMed DOI PMC

Oswald IP. Role of intestinal epithelial cells in the innate immune defence of the pig intestine. Vet Res. 2006;37:359–368. doi: 10.1051/vetres:2006006. PubMed DOI

Sinkora M, Sinkorova J, Holtmeier W. Development of gammadelta thymocyte subsets during prenatal and postnatal ontogeny. Immunology. 2005;115:544–555. doi: 10.1111/j.1365-2567.2005.02194.x. PubMed DOI PMC

Poisot T, Simková A, Hyrsl P, Morand S. Interactions between immunocompetence, somatic condition and parasitism in the chub Leuciscus cephalus in early spring. J Fish Biol. 2009;75:1667–1682. doi: 10.1111/j.1095-8649.2009.02400.x. PubMed DOI

Virta M, Karp M, Rönnemaa S, Lilius E-M. Kinetic measurement of the membranolytic activity of serum complement using bioluminescent bacteria. J Immunol Methods. 1997;201:215–221. doi: 10.1016/S0022-1759(96)00225-6. PubMed DOI

Nikoskelainen S, Lehtinen J, Lilius E-M. Bacteriolytic activity of rainbow trout (Oncorhynchus mykiss) complement. Dev Comp Immunol. 2002;26:797–804. doi: 10.1016/S0145-305X(02)00032-0. PubMed DOI

Kilpi MK, Atosuo JT, Lilius E-ME. Bacteriolytic activity of the alternative pathway of complement differs kinetically from the classical pathway. Dev Comp Immunol. 2009;33:1102–1110. doi: 10.1016/j.dci.2009.06.007. PubMed DOI

Atosuo J, Lehtinen J, Vojtek L, Lilius E-M. Escherichia coli K-12 (pEGFPluxABCDEamp): a tool for analysis of bacterial killing by antibacterial agents and human complement activities on a real-time basis. Luminescence. 2013;28:771–779. doi: 10.1002/bio.2435. PubMed DOI

Buchtikova S, Simkova A, Rohlenova K, Flajshans M, Lojek A, Lilius E-M, et al. The seasonal changes in innate immunity of the common carp (Cyprinus carpio) Aquaculture. 2011;318:169–175. doi: 10.1016/j.aquaculture.2011.05.013. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...