Preamplification with dUTP and Cod UNG Enables Elimination of Contaminating Amplicons

. 2018 Oct 16 ; 19 (10) : . [epub] 20181016

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30332749

Grantová podpora
- Stiftelsen Assar Gabrielssons Fond
- BioCARE National Strategic Research Program at University of Gothenburg
- Johan Jansson Foundation for Cancer Research
86652036 RVO CEP - Centrální evidence projektů
ALFGBG-716321 Sahlgrenska Academy (ALF) at University of Gothenburg
- Sahlgrenska Universitetssjukhusets stiftelser
- Stiftelsen Anna-Brita och Bo Castegrens Minne
- Knut and Alice Wallenberg Foundation, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
18-24753Y Grantová Agentura České Republiky
BIOCEV: CZ.1.05/2.1.00/19.0390 European Regional Development Fund
235264 Norges Forskningsråd
CAN 2016/438 Cancerfonden
2017-01392 Vetenskapsrådet
PR2015-0076 Barncancerfonden
TJ2015-0058 Barncancerfonden
- Svenska Sällskapet för Medicinsk Forskning
- Stiftelserna Wilhelm och Martina Lundgrens
- VINNOVA

Analyzing rare DNA and RNA molecules in limited sample sizes, such as liquid biopsies and single cells, often requires preamplification, which makes downstream analyses particularly sensitive to polymerase chain reaction (PCR) generated contamination. Herein, we assessed the feasibility of performing Cod uracil-DNA N-glycosylase (Cod UNG) treatment in combination with targeted preamplification, using deoxyuridine triphosphate (dUTP) to eliminate carry-over DNA. Cod UNG can be completely and irreversibly heat inactivated, a prerequisite in preamplification methods, where any loss of amplicons is detrimental to subsequent quantification. Using 96 target assays and quantitative real-time PCR, we show that replacement of deoxythymidine triphosphate (dTTP) with dUTP in the preamplification reaction mix results in comparable dynamic range, reproducibility, and sensitivity. Moreover, Cod UNG essentially removes all uracil-containing template of most assays, regardless of initial concentration, without affecting downstream analyses. Finally, we demonstrate that the use of Cod UNG and dUTP in targeted preamplification can easily be included in the workflow for single-cell gene expression profiling. In summary, Cod UNG treatment in combination with targeted preamplification using dUTP provides a simple and efficient solution to eliminate carry-over contamination and the generation of false positives and inaccurate quantification.

Zobrazit více v PubMed

Stahlberg A., Kubista M. The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Rev. Mol. Diagn. 2014;14:323–331. doi: 10.1586/14737159.2014.901154. PubMed DOI PMC

Stahlberg A., Kubista M. Technical aspects and recommendations for single-cell qPCR. Mol. Asp. Med. 2018;59:28–35. doi: 10.1016/j.mam.2017.07.004. PubMed DOI

Akrap N., Andersson D., Bom E., Gregersson P., Stahlberg A., Landberg G. Identification of Distinct Breast Cancer Stem Cell Populations Based on Single-Cell Analyses of Functionally Enriched Stem and Progenitor Pools. Stem Cell Rep. 2016;6:121–136. doi: 10.1016/j.stemcr.2015.12.006. PubMed DOI PMC

Busch S., Andersson D., Bom E., Walsh C., Stahlberg A., Landberg G. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol. Cancer. 2017;16:73. doi: 10.1186/s12943-017-0642-7. PubMed DOI PMC

Rusnakova V., Honsa P., Dzamba D., Stahlberg A., Kubista M., Anderova M. Heterogeneity of astrocytes: From development to injury—Single cell gene expression. PLoS ONE. 2013;8:e69734. doi: 10.1371/journal.pone.0069734. PubMed DOI PMC

Darmanis S., Gallant C.J., Marinescu V.D., Niklasson M., Segerman A., Flamourakis G., Fredriksson S., Assarsson E., Lundberg M., Nelander S., et al. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells. Cell Rep. 2016;14:380–389. doi: 10.1016/j.celrep.2015.12.021. PubMed DOI PMC

Livak K.J., Wills Q.F., Tipping A.J., Datta K., Mittal R., Goldson A.J., Sexton D.W., Holmes C.C. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods. 2013;59:71–79. doi: 10.1016/j.ymeth.2012.10.004. PubMed DOI PMC

Treutlein B., Brownfield D.G., Wu A.R., Neff N.F., Mantalas G.L., Espinoza F.H., Desai T.J., Krasnow M.A., Quake S.R. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371–375. doi: 10.1038/nature13173. PubMed DOI PMC

Picelli S., Bjorklund A.K., Faridani O.R., Sagasser S., Winberg G., Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods. 2013;10:1096–1098. doi: 10.1038/nmeth.2639. PubMed DOI

Kim C., Gao R., Sei E., Brandt R., Hartman J., Hatschek T., Crosetto N., Foukakis T., Navin N.E. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell. 2018;173:879–893.e13. doi: 10.1016/j.cell.2018.03.041. PubMed DOI PMC

Heitzer E., Auer M., Gasch C., Pichler M., Ulz P., Hoffmann E.M., Lax S., Waldispuehl-Geigl J., Mauermann O., Lackner C., et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73:2965–2975. doi: 10.1158/0008-5472.CAN-12-4140. PubMed DOI

Clark S.J., Smallwood S.A., Lee H.J., Krueger F., Reik W., Kelsey G. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq) Nat. Protoc. 2017;12:534–547. doi: 10.1038/nprot.2016.187. PubMed DOI

Ono Y., Sugitani A., Karasaki H., Ogata M., Nozaki R., Sasajima J., Yokochi T., Asahara S., Koizumi K., Ando K., et al. An improved digital polymerase chain reaction protocol to capture low-copy KRAS mutations in plasma cell-free DNA by resolving ‘subsampling’ issues. Mol. Oncol. 2017;11:1448–1458. doi: 10.1002/1878-0261.12110. PubMed DOI PMC

Jackson J.B., Choi D.S., Luketich J.D., Pennathur A., Stahlberg A., Godfrey T.E. Multiplex Preamplification of Serum DNA to Facilitate Reliable Detection of Extremely Rare Cancer Mutations in Circulating DNA by Digital PCR. J. Mol. Diagn. 2016;18:235–243. doi: 10.1016/j.jmoldx.2015.10.004. PubMed DOI PMC

Stahlberg A., Krzyzanowski P.M., Jackson J.B., Egyud M., Stein L., Godfrey T.E. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016;44:e105. doi: 10.1093/nar/gkw224. PubMed DOI PMC

Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC

Andersson D., Akrap N., Svec D., Godfrey T.E., Kubista M., Landberg G., Stahlberg A. Properties of targeted preamplification in DNA and cDNA quantification. Expert Rev. Mol. Diagn. 2015;15:1085–1100. doi: 10.1586/14737159.2015.1057124. PubMed DOI PMC

Kroneis T., Jonasson E., Andersson D., Dolatabadi S., Stahlberg A. Global preamplification simplifies targeted mRNA quantification. Sci. Rep. 2017;7:45219. doi: 10.1038/srep45219. PubMed DOI PMC

Longo M.C., Berninger M.S., Hartley J.L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990;93:125–128. doi: 10.1016/0378-1119(90)90145-H. PubMed DOI

Thornton C.G., Hartley J.L., Rashtchian A. Utilizing uracil DNA glycosylase to control carryover contamination in PCR: Characterization of residual UDG activity following thermal cycling. Biotechniques. 1992;13:180–184. PubMed

ArcticZymes.com. [(accessed on 1 October 2018)]; Available online: https://arcticzymes.com/technology/cod-uracil-dna-glycosylase/

Raj A., Peskin C.S., Tranchina D., Vargas D.Y., Tyagi S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 2006;4:e309. doi: 10.1371/journal.pbio.0040309. PubMed DOI PMC

Bengtsson M., Stahlberg A., Rorsman P., Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 2005;15:1388–1392. doi: 10.1101/gr.3820805. PubMed DOI PMC

Hartley J.L., Rashtchian A. Dealing with contamination: Enzymatic control of carryover contamination in PCR. PCR Methods Appl. 1993;3:S10–S14. doi: 10.1101/gr.3.2.S10. PubMed DOI

Lo Y.M., Chan K.C. Setting up a polymerase chain reaction laboratory. Methods Mol. Biol. 2006;336:11–18. doi: 10.1385/1-59745-074-X:11. PubMed DOI

Borst A., Box A.T., Fluit A.C. False-positive results and contamination in nucleic acid amplification assays: Suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis. 2004;23:289–299. doi: 10.1007/s10096-004-1100-1. PubMed DOI

Pierce K.E., Wangh L.J. Effectiveness and limitations of uracil-DNA glycosylases in sensitive real-time PCR assays. Biotechniques. 2004;36:44–46. doi: 10.2144/04361BM04. PubMed DOI

SciencePrimer.com. [(accessed on 12 September 2018)]; Available online: http://scienceprimer.com/copy-number-calculator-for-realtime-pcr.

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Stahlberg A., Rusnakova V., Forootan A., Anderova M., Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods. 2013;59:80–88. doi: 10.1016/j.ymeth.2012.09.007. PubMed DOI

Svec D., Andersson D., Pekny M., Sjoback R., Kubista M., Stahlberg A. Direct cell lysis for single-cell gene expression profiling. Front. Oncol. 2013;3:274. doi: 10.3389/fonc.2013.00274. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...