Preamplification with dUTP and Cod UNG Enables Elimination of Contaminating Amplicons
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
-
Stiftelsen Assar Gabrielssons Fond
-
BioCARE National Strategic Research Program at University of Gothenburg
-
Johan Jansson Foundation for Cancer Research
86652036
RVO
CEP - Centrální evidence projektů
ALFGBG-716321
Sahlgrenska Academy (ALF) at University of Gothenburg
-
Sahlgrenska Universitetssjukhusets stiftelser
-
Stiftelsen Anna-Brita och Bo Castegrens Minne
-
Knut and Alice Wallenberg Foundation, Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden
18-24753Y
Grantová Agentura České Republiky
BIOCEV: CZ.1.05/2.1.00/19.0390
European Regional Development Fund
235264
Norges Forskningsråd
CAN 2016/438
Cancerfonden
2017-01392
Vetenskapsrådet
PR2015-0076
Barncancerfonden
TJ2015-0058
Barncancerfonden
-
Svenska Sällskapet för Medicinsk Forskning
-
Stiftelserna Wilhelm och Martina Lundgrens
-
VINNOVA
PubMed
30332749
PubMed Central
PMC6214100
DOI
10.3390/ijms19103185
PII: ijms19103185
Knihovny.cz E-zdroje
- Klíčová slova
- Cod UNG, contamination, dUTP, preamplification, qPCR, single-cell analysis,
- MeSH
- analýza jednotlivých buněk MeSH
- deoxyuracilnukleotidy metabolismus MeSH
- Gadus morhua metabolismus MeSH
- kontaminace DNA * MeSH
- reprodukovatelnost výsledků MeSH
- stanovení celkové genové exprese MeSH
- uracil-DNA-glykosidasa metabolismus MeSH
- uracil metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deoxyuracilnukleotidy MeSH
- deoxyuridine triphosphate MeSH Prohlížeč
- uracil-DNA-glykosidasa MeSH
- uracil MeSH
Analyzing rare DNA and RNA molecules in limited sample sizes, such as liquid biopsies and single cells, often requires preamplification, which makes downstream analyses particularly sensitive to polymerase chain reaction (PCR) generated contamination. Herein, we assessed the feasibility of performing Cod uracil-DNA N-glycosylase (Cod UNG) treatment in combination with targeted preamplification, using deoxyuridine triphosphate (dUTP) to eliminate carry-over DNA. Cod UNG can be completely and irreversibly heat inactivated, a prerequisite in preamplification methods, where any loss of amplicons is detrimental to subsequent quantification. Using 96 target assays and quantitative real-time PCR, we show that replacement of deoxythymidine triphosphate (dTTP) with dUTP in the preamplification reaction mix results in comparable dynamic range, reproducibility, and sensitivity. Moreover, Cod UNG essentially removes all uracil-containing template of most assays, regardless of initial concentration, without affecting downstream analyses. Finally, we demonstrate that the use of Cod UNG and dUTP in targeted preamplification can easily be included in the workflow for single-cell gene expression profiling. In summary, Cod UNG treatment in combination with targeted preamplification using dUTP provides a simple and efficient solution to eliminate carry-over contamination and the generation of false positives and inaccurate quantification.
Zobrazit více v PubMed
Stahlberg A., Kubista M. The workflow of single-cell expression profiling using quantitative real-time PCR. Expert Rev. Mol. Diagn. 2014;14:323–331. doi: 10.1586/14737159.2014.901154. PubMed DOI PMC
Stahlberg A., Kubista M. Technical aspects and recommendations for single-cell qPCR. Mol. Asp. Med. 2018;59:28–35. doi: 10.1016/j.mam.2017.07.004. PubMed DOI
Akrap N., Andersson D., Bom E., Gregersson P., Stahlberg A., Landberg G. Identification of Distinct Breast Cancer Stem Cell Populations Based on Single-Cell Analyses of Functionally Enriched Stem and Progenitor Pools. Stem Cell Rep. 2016;6:121–136. doi: 10.1016/j.stemcr.2015.12.006. PubMed DOI PMC
Busch S., Andersson D., Bom E., Walsh C., Stahlberg A., Landberg G. Cellular organization and molecular differentiation model of breast cancer-associated fibroblasts. Mol. Cancer. 2017;16:73. doi: 10.1186/s12943-017-0642-7. PubMed DOI PMC
Rusnakova V., Honsa P., Dzamba D., Stahlberg A., Kubista M., Anderova M. Heterogeneity of astrocytes: From development to injury—Single cell gene expression. PLoS ONE. 2013;8:e69734. doi: 10.1371/journal.pone.0069734. PubMed DOI PMC
Darmanis S., Gallant C.J., Marinescu V.D., Niklasson M., Segerman A., Flamourakis G., Fredriksson S., Assarsson E., Lundberg M., Nelander S., et al. Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells. Cell Rep. 2016;14:380–389. doi: 10.1016/j.celrep.2015.12.021. PubMed DOI PMC
Livak K.J., Wills Q.F., Tipping A.J., Datta K., Mittal R., Goldson A.J., Sexton D.W., Holmes C.C. Methods for qPCR gene expression profiling applied to 1440 lymphoblastoid single cells. Methods. 2013;59:71–79. doi: 10.1016/j.ymeth.2012.10.004. PubMed DOI PMC
Treutlein B., Brownfield D.G., Wu A.R., Neff N.F., Mantalas G.L., Espinoza F.H., Desai T.J., Krasnow M.A., Quake S.R. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014;509:371–375. doi: 10.1038/nature13173. PubMed DOI PMC
Picelli S., Bjorklund A.K., Faridani O.R., Sagasser S., Winberg G., Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods. 2013;10:1096–1098. doi: 10.1038/nmeth.2639. PubMed DOI
Kim C., Gao R., Sei E., Brandt R., Hartman J., Hatschek T., Crosetto N., Foukakis T., Navin N.E. Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell. 2018;173:879–893.e13. doi: 10.1016/j.cell.2018.03.041. PubMed DOI PMC
Heitzer E., Auer M., Gasch C., Pichler M., Ulz P., Hoffmann E.M., Lax S., Waldispuehl-Geigl J., Mauermann O., Lackner C., et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73:2965–2975. doi: 10.1158/0008-5472.CAN-12-4140. PubMed DOI
Clark S.J., Smallwood S.A., Lee H.J., Krueger F., Reik W., Kelsey G. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq) Nat. Protoc. 2017;12:534–547. doi: 10.1038/nprot.2016.187. PubMed DOI
Ono Y., Sugitani A., Karasaki H., Ogata M., Nozaki R., Sasajima J., Yokochi T., Asahara S., Koizumi K., Ando K., et al. An improved digital polymerase chain reaction protocol to capture low-copy KRAS mutations in plasma cell-free DNA by resolving ‘subsampling’ issues. Mol. Oncol. 2017;11:1448–1458. doi: 10.1002/1878-0261.12110. PubMed DOI PMC
Jackson J.B., Choi D.S., Luketich J.D., Pennathur A., Stahlberg A., Godfrey T.E. Multiplex Preamplification of Serum DNA to Facilitate Reliable Detection of Extremely Rare Cancer Mutations in Circulating DNA by Digital PCR. J. Mol. Diagn. 2016;18:235–243. doi: 10.1016/j.jmoldx.2015.10.004. PubMed DOI PMC
Stahlberg A., Krzyzanowski P.M., Jackson J.B., Egyud M., Stein L., Godfrey T.E. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016;44:e105. doi: 10.1093/nar/gkw224. PubMed DOI PMC
Cohen J.D., Li L., Wang Y., Thoburn C., Afsari B., Danilova L., Douville C., Javed A.A., Wong F., Mattox A., et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359:926–930. doi: 10.1126/science.aar3247. PubMed DOI PMC
Andersson D., Akrap N., Svec D., Godfrey T.E., Kubista M., Landberg G., Stahlberg A. Properties of targeted preamplification in DNA and cDNA quantification. Expert Rev. Mol. Diagn. 2015;15:1085–1100. doi: 10.1586/14737159.2015.1057124. PubMed DOI PMC
Kroneis T., Jonasson E., Andersson D., Dolatabadi S., Stahlberg A. Global preamplification simplifies targeted mRNA quantification. Sci. Rep. 2017;7:45219. doi: 10.1038/srep45219. PubMed DOI PMC
Longo M.C., Berninger M.S., Hartley J.L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene. 1990;93:125–128. doi: 10.1016/0378-1119(90)90145-H. PubMed DOI
Thornton C.G., Hartley J.L., Rashtchian A. Utilizing uracil DNA glycosylase to control carryover contamination in PCR: Characterization of residual UDG activity following thermal cycling. Biotechniques. 1992;13:180–184. PubMed
ArcticZymes.com. [(accessed on 1 October 2018)]; Available online: https://arcticzymes.com/technology/cod-uracil-dna-glycosylase/
Raj A., Peskin C.S., Tranchina D., Vargas D.Y., Tyagi S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 2006;4:e309. doi: 10.1371/journal.pbio.0040309. PubMed DOI PMC
Bengtsson M., Stahlberg A., Rorsman P., Kubista M. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels. Genome Res. 2005;15:1388–1392. doi: 10.1101/gr.3820805. PubMed DOI PMC
Hartley J.L., Rashtchian A. Dealing with contamination: Enzymatic control of carryover contamination in PCR. PCR Methods Appl. 1993;3:S10–S14. doi: 10.1101/gr.3.2.S10. PubMed DOI
Lo Y.M., Chan K.C. Setting up a polymerase chain reaction laboratory. Methods Mol. Biol. 2006;336:11–18. doi: 10.1385/1-59745-074-X:11. PubMed DOI
Borst A., Box A.T., Fluit A.C. False-positive results and contamination in nucleic acid amplification assays: Suggestions for a prevent and destroy strategy. Eur. J. Clin. Microbiol. Infect. Dis. 2004;23:289–299. doi: 10.1007/s10096-004-1100-1. PubMed DOI
Pierce K.E., Wangh L.J. Effectiveness and limitations of uracil-DNA glycosylases in sensitive real-time PCR assays. Biotechniques. 2004;36:44–46. doi: 10.2144/04361BM04. PubMed DOI
SciencePrimer.com. [(accessed on 12 September 2018)]; Available online: http://scienceprimer.com/copy-number-calculator-for-realtime-pcr.
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Stahlberg A., Rusnakova V., Forootan A., Anderova M., Kubista M. RT-qPCR work-flow for single-cell data analysis. Methods. 2013;59:80–88. doi: 10.1016/j.ymeth.2012.09.007. PubMed DOI
Svec D., Andersson D., Pekny M., Sjoback R., Kubista M., Stahlberg A. Direct cell lysis for single-cell gene expression profiling. Front. Oncol. 2013;3:274. doi: 10.3389/fonc.2013.00274. PubMed DOI PMC