Tick-borne encephalitis virus inhibits rRNA synthesis and host protein production in human cells of neural origin
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MC_UU_12014/8
Medical Research Council - United Kingdom
PubMed
31560682
PubMed Central
PMC6785130
DOI
10.1371/journal.pntd.0007745
PII: PNTD-D-19-00498
Knihovny.cz E-resources
- MeSH
- Transcription, Genetic MeSH
- Encephalitis, Tick-Borne genetics metabolism virology MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- RNA Precursors MeSH
- Protein Biosynthesis genetics MeSH
- RNA, Ribosomal genetics metabolism MeSH
- RNA Polymerase I genetics metabolism MeSH
- Encephalitis Viruses, Tick-Borne physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA Precursors MeSH
- RNA, Ribosomal MeSH
- RNA Polymerase I MeSH
Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus (Flaviviridae), is a causative agent of a severe neuroinfection. Recently, several flaviviruses have been shown to interact with host protein synthesis. In order to determine whether TBEV interacts with this host process in its natural target cells, we analysed de novo protein synthesis in a human cell line derived from cerebellar medulloblastoma (DAOY HTB-186). We observed a significant decrease in the rate of host protein synthesis, including the housekeeping genes HPRT1 and GAPDH and the known interferon-stimulated gene viperin. In addition, TBEV infection resulted in a specific decrease of RNA polymerase I (POLR1) transcripts, 18S and 28S rRNAs and their precursor, 45-47S pre-rRNA, but had no effect on the POLR3 transcribed 5S rRNA levels. To our knowledge, this is the first report of flavivirus-induced decrease of specifically POLR1 rRNA transcripts accompanied by host translational shut-off.
Bernhard Nocht Institute for Tropical Medicine Bernhard Nocht Str 74 Hamburg Germany
German Centre for Infection Research partner site Hamburg Luebeck Borstel Riems Hamburg Germany
MRC University of Glasgow Centre for Virus Research Glasgow Scotland United Kingdom
See more in PubMed
Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, et al. ICTV Virus Taxonomy Profile: Flaviviridae. J Gen Virol. 2017;98(1):2–3. WOS:000396098700002. 10.1099/jgv.0.000672 PubMed DOI PMC
Dumpis U, Crook D, Oksi J. Tick-borne encephalitis. Clin Infect Dis. 1999;28(4):882–90. 10.1086/515195 . PubMed DOI
Kunz C, Heinz FX. Tick-borne encephalitis. Vaccine. 2003;21:S1–S2. ISI:000181967400001. PubMed
Frimmel S, Krienke A, Riebold D, Loebermann M, Littmann M, Fiedler K, et al. Tick-borne encephalitis virus habitats in North East Germany: reemergence of TBEV in ticks after 15 years of inactivity. Biomed Res Int. 2014. WOS:000339315800001. PubMed PMC
Boelke M, Bestehorn M, Marchwald B, Kubinski M, Liebig K, Glanz J, et al. First isolation and phylogenetic analyses of tick-borne encephalitis virus in Lower Saxony, Germany. Viruses-Basel. 2019;11(5). ARTN 462 10.3390/v11050462. WOS:000472676600073. PubMed PMC
Pagani SC, Malossa SF, Klaus C, Hoffmann D, Beretta O, Bomio-Pacciorini N, et al. First detection of TBE virus in ticks and sero-reactivity in goats in a non-endemic region in the southern part of Switzerland (Canton of Ticino). Ticks Tick-Borne Dis. 2019;10(4):868–74. WOS:000468379800020. 10.1016/j.ttbdis.2019.04.006 PubMed DOI
Haglund M, Gunther G. Tick-borne encephalitis—pathogenesis, clinical course and long-term follow-up. Vaccine. 2003;21:S11–S8. ISI:000181967400003. 10.1016/s0264-410x(02)00811-3 PubMed DOI
Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. Visualization of Central European tick-borne encephalitis infection in fatal human cases. J Neuropathol Exp Neurol. 2005;64(6):506–12. Epub 2005/06/28. 10.1093/jnen/64.6.506 . PubMed DOI
Kurhade C, Zegenhagen L, Weber E, Nair S, Michaelsen-Preusse K, Spanier J, et al. Type I Interferon response in olfactory bulb, the site of tick-borne flavivirus accumulation, is primarily regulated by IPS-1. J Neuroinflamm. 2016;13. WOS:000368886900003. PubMed PMC
Weber E, Finsterbusch K, Lindquist R, Nair S, Lienenklaus S, Gekara NO, et al. Type I interferon protects mice from fatal neurotropic infection with langat virus by systemic and local antiviral responses. J Virol. 2014;88(21):12202–12. WOS:000343314900004. 10.1128/JVI.01215-14 PubMed DOI PMC
Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral Res. 2003;57(1–2):129–46. 10.1016/s0166-3542(02)00206-1 PubMed DOI
Markoff L. 5'-and 3'-noncoding regions in flavivirus RNA. Adv Virus Res. 2003;59:177–228. PubMed PMC
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, et al. Biochemistry and molecular biology of flaviviruses. Chem Rev. 2018;118(8):4448–82. WOS:000431095200009. 10.1021/acs.chemrev.7b00719 PubMed DOI PMC
Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol. 2008;6(9):699–708. ISI:000258413100015. 10.1038/nrmicro1928 PubMed DOI PMC
Lindqvist R, Upadhyay A, Overby AK. Tick-borne flaviviruses and the type I interferon response. Viruses-Basel. 2018;10(7). Tick-borne flaviviruses and the type I interferon response. WOS:000445153200002. PubMed PMC
Apte-Sengupta S, Sirohi D, Kuhn RJ. Coupling of replication and assembly in flaviviruses. Curr Opin Virol. 2014;9:134–42. WOS:000346958700022. 10.1016/j.coviro.2014.09.020 PubMed DOI PMC
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Csh Perspect Biol. 2013;5(1). WOS:000315983600013. PubMed PMC
Rivas HG, Schmaling SK, Gaglia MM. Shutoff of host gene expression in influenza A virus and herpesviruses: similar mechanisms and common themes. Viruses-Basel. 2016;8(4). WOS:000375157800015. PubMed PMC
Blakqori G, van Knippenberg I, Elliott RM. Bunyamwera orthobunyavirus S-segment untranslated regions mediate poly(A) tail-independent translation. J Virol. 2009;83(8):3637–46. WOS:000264327300021. 10.1128/JVI.02201-08 PubMed DOI PMC
Walsh D, Mohr I. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol. 2011;9(12):860–75. WOS:000297255800012. 10.1038/nrmicro2655 PubMed DOI PMC
Feigenblum D, Schneider RJ. Modification of eukaryotic initiation factor 4F during infection by influenza virus. J Virol. 1993;67(6):3027–35. WOS:A1993LB79400008. PubMed PMC
de Breyne S, Bonderoff JM, Chumakov KM, Lloyd RE, Hellen CUT. Cleavage of eukaryotic initiation factor eIF5B by enterovirus 3C proteases. Virology. 2008;378(1):118–22. WOS:000258316100013. 10.1016/j.virol.2008.05.019 PubMed DOI PMC
Gradi A, Svitkin YV, Imataka H, Sonenberg N. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. P Natl Acad Sci USA. 1998;95(19):11089–94. WOS:000075957100017. PubMed PMC
Roth H, Magg V, Uch F, Mutz P, Klein P, Haneke K, et al. Flavivirus infection uncouples translation suppression from cellular stress responses. Mbio. 2017;8(1). WOS:000395835000058. PubMed PMC
Edgil D, Polacek C, Harris E. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol. 2006;80(6):2976–86. WOS:000236131400039. 10.1128/JVI.80.6.2976-2986.2006 PubMed DOI PMC
Villas-Boas CSA, Conceicao TM, Ramirez J, Santoro ABM, Da Poian AT, Montero-Lomeli M. Dengue virus-induced regulation of the host cell translational machinery. Braz J Med Biol Res. 2009;42(11):1020–6. WOS:000271163100001. 10.1590/S0100-879X2009001100004 PubMed DOI
Roberts L, Wieden HJ. Viruses, IRESs, and a universal translation initiation mechanism. Biotechnol Genet Eng Rev. 2018;34(1):60–75. Epub 2018/05/29. 29804514. 10.1080/02648725.2018.1471567 PubMed DOI
Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdisciplinary Reviews: RNA. 2015;6(2):225–42. Epub 2014/10/28. 10.1002/wrna.1269 PubMed DOI PMC
Khatter H, Vorlander MK, Muller CW. RNA polymerase I and III: similar yet unique. Curr Opin Struc Biol. 2017;47:88–94. WOS:000419413700013. PubMed
Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase II. Nat Rev Mol Cell Bio. 2018;19(7):464–78. WOS:000435953700009. PubMed
Yan Y, Du Y, Wang G, Li K. Non-structural protein 1 of H3N2 influenza A virus induces nucleolar stress via interaction with nucleolin. Sci Rep. 2017;7(1):17761 Epub 2017/12/21. 10.1038/s41598-017-18087-2 PubMed DOI PMC
Belin S, Kindbeiter K, Hacot S, Albaret MA, Roca-Martinez JX, Therizols G, et al. Uncoupling ribosome biogenesis regulation from RNA polymerase I activity during herpes simplex virus type 1 infection. RNA. 2010;16(1):131–40. Epub 2009/11/26. 10.1261/rna.1935610 PubMed DOI PMC
Oswald E, Reinz E, Voit R, Aubin F, Alonso A, Auvinen E. Human papillomavirus type 8 E7 protein binds nuclear myosin 1c and downregulates the expression of pre-rRNA. Virus Genes. 2017;53(6):807–13. Epub 2017/07/25. 10.1007/s11262-017-1491-6 . PubMed DOI
Westdorp KN, Sand A, Moorman NJ, Terhune SS. Cytomegalovirus late protein pUL31 alters pre-rRNA expression and nuclear organization during infection. J Virol. 2017;91(18). Epub 2017/07/01. 10.1128/JVI.00593-17 PubMed DOI PMC
Ponti D, Troiano M, Bellenchi GC, Battaglia PA, Gigliani F. The HIV Tat protein affects processing of ribosomal RNA precursor. BMC cell biology. 2008;9:32 Epub 2008/06/19. 10.1186/1471-2121-9-32 PubMed DOI PMC
Jacobsen PF, Jenkyn DJ, Papadimitriou JM. Establishment of a human medulloblastoma cell line and its heterotransplantation into nude mice. J Neuropathol Exp Neurol. 1985;44(5):472–85. Epub 1985/09/01. 10.1097/00005072-198509000-00003 . PubMed DOI
Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51(5):1417–23. Epub 1973/11/01. 10.1093/jnci/51.5.1417 . PubMed DOI
Kozuch O, Mayer V. Pig kidney epithelial (PS) cells: a perfect tool for the study of flaviviruses and some other arboviruses. Acta Virol. 1975;19(6):498. Epub 1975/11/01. 1999. PubMed
Billiau A, Edy VG, Heremans H, Van Damme J, Desmyter J, Georgiades JA, et al. Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother. 1977;12(1):11–5. Epub 1977/07/01. 10.1128/aac.12.1.11 PubMed DOI PMC
Teng TS, Foo SS, Simamarta D, Lum FM, Teo TH, Lulla A, et al. Viperin restricts chikungunya virus replication and pathology. J Clin Invest. 2012;122(12):4447–60. Epub 2012/11/20. 10.1172/JCI63120 PubMed DOI PMC
Wallner G, Mandl CW, Ecker M, Holzmann H, Stiasny K, Kunz C, et al. Characterisation and complete genome sequences of high- and low-virulence variants of tick-borne encephalitis virus. J Gen Virol. 1996;77:1035–42. WOS:A1996UJ08600027. 10.1099/0022-1317-77-5-1035 PubMed DOI
Asghar N, Lindblom P, Melik W, Lindqvist R, Haglund M, Forsberg P, et al. Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance. Plos One. 2014;9(7). WOS:000341354800074. PubMed PMC
Heinz FX, Kunz C. Homogeneity of the structural glycoprotein from European isolates of tick-borne encephalitis virus: comparison with other flaviviruses. J Gen Virol. 1981;57(Pt 2):263–74. Epub 1981/12/01. 10.1099/0022-1317-57-2-263 . PubMed DOI
Pospisil L, Jandasek L. and Pesek J. Isolation of new strains of tick-borne encephalitis virus, Brno region, summer 1953. Lek List. 1954;9:3–5. PubMed
De Madrid AT, Porterfield JS. A simple micro-culture method for the study of group B arboviruses. Bull World Health Organ. 1969;40(1):113–21. Epub 1969/01/01. PubMed PMC
Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC bioinformatics. 2017;18(1):529 Epub 2017/12/01. 10.1186/s12859-017-1934-z PubMed DOI PMC
Selinger M, Wilkie GS, Tong L, Gu Q, Schnettler E, Grubhoffer L, et al. Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection. J Gen Virol. 2017;98(8):2043–60. Epub 2017/08/09. 10.1099/jgv.0.000853 PubMed DOI PMC
Reid DW, Campos RK, Child JR, Zheng TL, Chan KWK, Bradrick SS, et al. Dengue virus selectively annexes endoplasmic reticulum-associated translation machinery as a strategy for co-opting host cell protein synthesis. J Virol. 2018;92(7). WOS:000428409800013. PubMed PMC
Best MD. Click chemistry and bioorthogonal reactions: unprecedented selectivity in the labeling of biological molecules. Biochemistry. 2009;48(28):6571–84. Epub 2009/06/03. 10.1021/bi9007726 . PubMed DOI
Lindqvist R, Overby AK. The role of viperin in antiflavivirus responses. DNA Cell Biol. 2018;37(9):725–30. WOS:000443729600001. 10.1089/dna.2018.4328 PubMed DOI
Yang K, Yang J, Yi J. Nucleolar Stress: hallmarks, sensing mechanism and diseases. Cell Stress. 2018;2(6):125–40. Epub 10.5. 2018. 10.15698/cst2018.06.139 PubMed DOI PMC
Hayasaka D, Nagata N, Fujii Y, Hasegawa H, Sata T, Suzuki R, et al. Mortality following peripheral infection with Tick-borne encephalitis virus results from a combination of central nervous system pathology, systemic inflammatory and stress responses. Virology. 2009;390(1):139–50. WOS:000268218200016. 10.1016/j.virol.2009.04.026 PubMed DOI
Mandl CW, Ecker M, Holzmann H, Kunz C, Heinz FX. Infectious cDNA clones of tick-borne encephalitis virus European subtype prototypic strain Neudoerfl and high virulence strain Hypr. J Gen Virol. 1997;78:1049–57. WOS:A1997WW48500010. 10.1099/0022-1317-78-5-1049 PubMed DOI
Westaway EG. Proteins Specified by Group B Togaviruses in Mammalian-Cells during Productive Infections. Virology. 1973;51(2):454–65. WOS:A1973P069000019. 10.1016/0042-6822(73)90444-3 PubMed DOI
Heinz FX, Kunz C. Molecular epidemiology of tick-borne encephalitis virus: peptide mapping of large non-structural proteins of European isolates and comparison with other flaviviruses. J Gen Virol. 1982;62(October):271–85. WOS:A1982PL98600008. PubMed
Emara MM, Brinton MA. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. P Natl Acad Sci USA. 2007;104(21):9041–6. WOS:000246853700065. PubMed PMC
Pena J, Harris E. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem. 2011;286(16):14226–36. WOS:000289556200046. 10.1074/jbc.M111.222703 PubMed DOI PMC
Panayiotou C, Lindqvist R, Kurhade C, Vonderstein K, Pasto J, Edlund K, et al. Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation. J Virol. 2018;92(7). WOS:000428409800027. PubMed PMC
Upadhyay AS, Vonderstein K, Pichlmair A, Stehling O, Bennett KL, Dobler G, et al. Viperin is an iron-sulfur protein that inhibits genome synthesis of tick-borne encephalitis virus via radical SAM domain activity. Cell Microbiol. 2014;16(6):834–48. Epub 2013/11/20. 10.1111/cmi.12241 . PubMed DOI
Van der Hoek KH, Eyre NS, Shue B, Khantisitthiporn O, Glab-Ampi K, Carr JM, et al. Viperin is an important host restriction factor in control of Zika virus infection. Sci Rep. 2017;7. WOS:000404451300081. PubMed PMC
Helbig KJ, Beard MR. The role of viperin in the innate antiviral response. J Mol Biol. 2014;426(6):1210–9. WOS:000333487600007. 10.1016/j.jmb.2013.10.019 PubMed DOI
Banerjee S, An S, Zhou A, Silverman RH, Makino S. RNase L-independent specific 28S rRNA cleavage in murine coronavirus-infected cells. J Virol. 2000;74(19):8793–802. Epub 2000/09/12. 10.1128/jvi.74.19.8793-8802.2000 PubMed DOI PMC
Fujita R, Asano S, Sahara K, Bando H. Marked decrease of ribosomal RNA in BmN cells infected with AcMNPV. J Insect Biotechnol Sericol. 2005;74(3):125–8. 10.11416/jibs.74.125 DOI
Slomnicki LP, Chung DH, Parker A, Hermann T, Boyd NL, Hetman M. Ribosomal stress and Tp53-mediated neuronal apoptosis in response to capsid protein of the Zika virus. Sci Rep. 2017;7(1):16652 Epub 2017/12/02. 10.1038/s41598-017-16952-8 PubMed DOI PMC
Herbert KM, Nag A. A tale of two RNAs during viral infection: how viruses antagonize mRNAs and small non-coding RNAs in the host cell. Viruses-Basel. 2016;8(6). WOS:000378848600006. PubMed PMC
Weber F, Kochs G, Haller O. Inverse interference: How viruses fight the interferon system. Viral Immunol. 2004;17(4):498–515. WOS:000226043900005. 10.1089/vim.2004.17.498 PubMed DOI
Valadao ALC, Aguiar RS, de Arruda LB. Interplay between inflammation and cellular stress triggered by flaviviridae viruses. Front Microbiol. 2016;7. WOS:000381851000001. PubMed PMC