Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35685361
PubMed Central
PMC9167876
DOI
10.1016/j.csbj.2022.05.052
PII: S2001-0370(22)00207-0
Knihovny.cz E-zdroje
- Klíčová slova
- A3SS, alternative 3′ splice site, A5SS, alternative 5′ splice site, ACACA, Acetyl-CoA Carboxylase Alpha, AKR1C2, Aldo-Keto Reductase Family 1 Member C2, ANKS1A, Ankyrin Repeat And Sterile Alpha Motif Domain Containing 1A, ANOS1, Anosmin 1, AOX1, Aldehyde Oxidase 1, APOBEC3G, Apolipoprotein B MRNA Editing Enzyme Catalytic Subunit 3G, APOL1/6, Apolipoprotein L1/6, ARID2, AT-Rich Interaction Domain 2, AUTS2, Activator Of Transcription And Developmental Regulator AUTS2, Alternative splicing, Astrocytes, BCL11B, BAF Chromatin Remodeling Complex Subunit BCL11B, BCL9L, BCL9 Transcription Coactivator-like, BDKRB2, Bradykinin Receptor B2, BDNF, Brain Derived Neurotrophic Factor, BEND3, BEN Domain Containing 3, BSA, bovine serum albumin, BST2, Bone Marrow Stromal Cell Antigen 2, CALB1, Calbindin 1, CAMK2A, Calcium/Calmodulin Dependent Protein Kinase II Alpha, CD, complement determinant, CDKN1C, Cyclin Dependent Kinase Inhibitor 1C, CFAP61, Cilia And Flagella Associated Protein 61, CHRNA3, Cholinergic Receptor Nicotinic Alpha 3 Subunit, CHRNB4, Cholinergic Receptor Nicotinic Beta 4 Subunit, CLIC5, Chloride Intracellular Channel 5, CMPK2, Cytidine/Uridine Monophosphate Kinase 2, CNS, central nervous system, CNTN2, Contactin 2, CREG2, Cellular Repressor Of E1A Stimulated Genes 2, CXADR, Coxsackievirus B-Adenovirus Receptor, CYYR1, Cysteine And Tyrosine Rich 1, DACH1, Dachshund Family Transcription Factor 1, DAPI, diamidino-2-phenylindole, DCC, Netrin 1 Receptor, DCX, Doublecortin, DDX60, DExD/H-Box Helicase 60, DDX60L, DExD/H-Box 60 Like, DE, differentially expressed, DENV, Dengue virus, DIRAS2, DIRAS Family GTPase 2, DLX1/5/6, Distal-Less Homeobox 1/5/6, DNMT3B, DNA Methyltransferase 3 Beta, DPYSL2, Dihydropyrimidinase Like 2, EBF1, EBF Transcription Factor 1, EGF, Epidermal Growth Factor, ELAVL2/4, ELAV Like RNA Binding Protein 2/4, EPHB1, EPH Receptor B1, EPSTI1, Epithelial Stromal Interaction 1, ERBB4, Erb-B2 Receptor Tyrosine Kinase 4, ES, exon skipping, ESRRG, Estrogen Related Receptor Gamma, FGFb, Fibroblast Growth Factor 2, FPKM, Fragments Per Kilobase of transcript per Million mapped reads, FUT9, Fucosyltransferase 9, G2E3, G2/M−Phase Specific E3 Ubiquitin Protein Ligase, GABRG2, Gamma-Aminobutyric Acid Type A Receptor Subunit Gamma 2, GAPDH, Glyceraldehyde-3-Phosphate Dehydrogenase, GAS2L3, Growth Arrest Specific 2 Like 3, GAS7, Growth Arrest Specific 7, GATAD2B, GATA Zinc Finger Domain Containing 2B, GFAP, Glial Fibrillary Acidic Protein, GIPC2, GIPC PDZ Domain Containing Family Member 2, GLRA2, Glycine Receptor Alpha 2, GNG2, G Protein Subunit Gamma 2, GO, gene ontology, GOLGA4, Golgin A4, GRIN2A, Glutamate Ionotropic Receptor NMDA Type Subunit 2A, GSEA, gene set enrichment analysis, HERC5/6, HECT And RLD Domain Containing E3 Ubiquitin Protein Ligase 5/6, HEYL, Hes Related Family BHLH Transcription Factor With YRPW Motif Like, HPRT1, Hypoxanthine Phosphoribosyltransferase 1, HS, hot-spot, HSPA6, Heat Shock Protein Family A (Hsp70) Member 6, HUDD (ELAV4), Hu-Antigen D/ELAV Like Neuron-Specific RNA Binding Protein 4, IFI6, Interferon Alpha Inducible Protein 6, IFIH1 (MDA5), Interferon Induced With Helicase C Domain 1/Melanoma Differentiation-Associated Protein 5, IFIT1-3, Interferon Induced Protein With Tetratricopeptide Repeats 1–3, IFITM1/2, Interferon Induced Transmembrane Protein 1/2, IFN, interferon, IGB, Integrated Genome Browser, IL6, Interleukin 6, IR, intron retention, ISG20, Interferon Stimulated Exonuclease Gene 20, ISGF3, Interferon-Stimulated Gene Factor 3 Gamma, ISGs, interferon-stimulated genes, JEV, Japanese encephalitis virus, KCND2, Potassium Voltage-Gated Channel Subfamily D Member 2, KCNK10, Potassium Two Pore Domain Channel Subfamily K Member 10, KCNS2, Potassium Voltage-Gated Channel Modifier Subfamily S Member 2, KIT, KIT Proto-Oncogene, Receptor Tyrosine Kinase, KLHDC8A, Kelch Domain Containing 8A, KLHL13, Kelch Like Family Member 13, KRR1, KRR1 Small Subunit Processome Component Homolog, LCOR, Ligand Dependent Nuclear Receptor Corepressor, LEKR1, Leucine, Glutamate And Lysine Rich 1, LGI1, Leucine Rich Glioma Inactivated 1, LRRTM3, Leucine Rich Repeat Transmembrane Neuronal 3, LSV, local splicing variation, LUZP2, Leucine Zipper Protein 2, MAN1A1, Mannosidase Alpha Class 1A Member 1, MAP2, Microtubule Associated Protein 2, MBNL2, Muscleblind Like Splicing Regulator 2, MCTP1, Multiple C2 And Transmembrane Domain Containing 1, MMP13, Matrix Metallopeptidase 13, MN1, MN1 Proto-Oncogene, Transcriptional Regulator, MOI, multiplicity of infection, MTUS2, Microtubule Associated Scaffold Protein 2, MX2, MX Dynamin Like GTPase 2, MYCN, MYCN Proto-Oncogene, BHLH Transcription Factor, NAV1, Neuron Navigator 1, NCAM1, Neural Cell Adhesion Molecule 1, NDRG4, N-Myc Downstream-Regulated Gene 4 Protein, NEK7, NIMA Related Kinase 7, NFASC, Neurofascin, NKAIN1, Sodium/Potassium Transporting ATPase Interacting 1, NMI, N-Myc And STAT Interactor 2, NRAP, Nebulin Related Anchoring Protein, NRARP, NOTCH Regulated Ankyrin Repeat Protein, NREP, Neuronal Regeneration Related Protein, NRN1, Neuritin 1, NS3, flaviviral non-structural protein 3, NXPH2, Neurexophilin 2, NYNRIN, NYN Domain And Retroviral Integrase Containing, Neurons, Neuropathogenesis, OAS, 2′-5′-Oligoadenylate Synthetase, OASL, 2′-5′-Oligoadenylate Synthetase Like, ONECUT2, ONECUT-2 Homeodomain Transcription Factor, OPCML, Opioid Binding Protein/Cell Adhesion Molecule Like, OTX2, Orthodenticle Homeobox 2, PBS, phosphate buffer saline, PBX1, Pre-B-Cell Leukemia Transcription Factor 1, PCDH18/20, Protocadherin 18/20, PFKFB3, 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 3, PIK3C2B, Phosphatidylinositol-4-Phosphate 3-Kinase Catalytic Subunit Type 2 Beta, PIP4P2, Phosphatidylinositol-4,5-Bisphosphate 4-Phosphatase 2, PLCH1, Phospholipase C Eta 1, POU3F4, Brain-Specific Homeobox/POU Domain Protein 4, PPM1L, Protein Phosphatase, Mg2+/Mn2+ Dependent 1L, PPP1R17, Protein Phosphatase 1 Regulatory Subunit 17, PRDM12, PR Domain Zinc Finger Protein 12, PSI, percent selective index, PSRC1, Proline And Serine Rich Coiled-Coil 1, PTPN5, Protein Tyrosine Phosphatase Non-Receptor Type 5, PTPRH, Protein Tyrosine Phosphatase Receptor Type H, RAPGEF5, Rap Guanine Nucleotide Exchange Factor 5, RBFOX1, RNA Binding Fox-1 Homolog 1, RIG-I (DDX58), Retinoic Acid-Inducible Gene 1 Protein, RNF212, Ring Finger Protein 212, RNVU1, RNA, Variant U1 Small Nuclear, RSAD2, Radical S-Adenosyl Methionine Domain Containing 2, RTL8B, Retrotransposon Gag Like 8B, Response to infection, SAMD9, Sterile Alpha Motif Domain Containing 9, SEMA3E, Semaphorin 3E, SH3TC2, SH3 Domain And Tetratricopeptide Repeats 2, SHF, Src Homology 2 Domain Containing F, SHISAL1, Shisa Like 1, SIAH3, Siah E3 Ubiquitin Protein Ligase Family Member 3, SIRPA, Signal Regulatory Protein Alpha, SLITRK5, SLIT And NTRK Like Family Member 5, SNP, single-nucleotide polymorphism, SOGA1, Suppressor Of Glucose, Autophagy Associated 1, SPSB4, SplA/Ryanodine Receptor Domain And SOCS Box Containing 4, ST6GAL1, ST6 Beta-Galactoside Alpha-2,6-Sialyltransferase 1, TBC1D30, TBC1 Domain Family Member 30, TBEV, Tick-borne encephalitis virus, TFAP2A, Transcription Factor AP-2 Alpha, TFAP2B, Transcription Factor AP-2 Beta, THSD7A, Thrombospondin Type 1 Domain Containing 7A, THUMPD2, THUMP Domain-Containing Protein 2/SAM-Dependent Methyltransferase, TIPARP, TCDD Inducible Poly(ADP-Ribose) Polymerase, TM4SF18, Transmembrane 4 L Six Family Member 18, TMC8, Transmembrane Channel Like 6, TMEM229B, Transmembrane Protein 229B, TMTC1, Transmembrane O-Mannosyltransferase Targeting Cadherins 1, TNFSF10, TNF Superfamily Member 10, TRHDE, Thyrotropin Releasing Hormone Degrading Enzyme, TRIM38, Tripartite Motif Containing 38, TSHZ1, Teashirt Zinc Finger Homeobox 1, Tick-borne encephalitis virus, Transcriptomics, USP18, Ubiquitin Specific Peptidase 18/ISG15-Specific-Processing Protease, UTR, untranslated region, UTS2R, Urotensin 2 Receptor, WNV, West Nile virus, XAF1, XIAP Associated Factor 1, XRN1, 5′-3′ Exoribonuclease 1, ZIKV, Zika virus, ZMAT3, Zinc Finger Matrin-Type 3, ZMYM5, Zinc Finger MYM-Type Containing 5, ZNF124, Zinc Finger Protein 124, ZNF730, Zinc Finger Protein 730, gRNA, genomic TBEV RNA, hNSC, human neural stem cells, lncRNA, long non-coding RNA, mRNA, messenger RNA, miRNA, miRNA, micro RNA, ncRNA, non-coding RNA, pc-mRNA, protein-coding mRNA, qRT-PCR, quantitative reverse transcription real-time PCR, snRNP, small nuclear ribonucleoproteins, vd-sRNA, virus-derived small RNA,
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis virus (TBEV), the most medically relevant tick-transmitted flavivirus in Eurasia, targets the host central nervous system and frequently causes severe encephalitis. The severity of TBEV-induced neuropathogenesis is highly cell-type specific and the exact mechanism responsible for such differences has not been fully described yet. Thus, we performed a comprehensive analysis of alterations in host poly-(A)/miRNA/lncRNA expression upon TBEV infection in vitro in human primary neurons (high cytopathic effect) and astrocytes (low cytopathic effect). Infection with severe but not mild TBEV strain resulted in a high neuronal death rate. In comparison, infection with either of TBEV strains in human astrocytes did not. Differential expression and splicing analyses with an in silico prediction of miRNA/mRNA/lncRNA/vd-sRNA networks found significant changes in inflammatory and immune response pathways, nervous system development and regulation of mitosis in TBEV Hypr-infected neurons. Candidate mechanisms responsible for the aforementioned phenomena include specific regulation of host mRNA levels via differentially expressed miRNAs/lncRNAs or vd-sRNAs mimicking endogenous miRNAs and virus-driven modulation of host pre-mRNA splicing. We suggest that these factors are responsible for the observed differences in the virulence manifestation of both TBEV strains in different cell lines. This work brings the first complex overview of alterations in the transcriptome of human astrocytes and neurons during the infection by two TBEV strains of different virulence. The resulting data could serve as a starting point for further studies dealing with the mechanism of TBEV-host interactions and the related processes of TBEV pathogenesis.
Zobrazit více v PubMed
Gritsun TS, Lashkevich VA, Gould EA. Tick-borne encephalitis. Antiviral research. 2003;57(1-2):129-46. Epub 2003/03/05. doi: 10.1016/s0166-3542(02)00206-PubMed PMID: 12615309. PubMed
de Graaf JA, Reimerink JH, Voorn GP, Bij de Vaate EA, de Vries A, Rockx B, et al. First human case of tick-borne encephalitis virus infection acquired in the Netherlands, July 2016. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2016;21(33). Epub 2016/08/27. doi: 10.2807/1560-7917.Es .2016.21.33.30318. PubMed PMID: 27562931; PubMed Central PMCID: PMCPMC4998423. PubMed PMC
Neufeldt CJ, Cortese M, Acosta EG, Bartenschlager R. Rewiring cellular networks by members of the Flaviviridae family. Nature reviews Microbiology. 2018;16(3):125-42. Epub 2018/02/1doi: 10.1038/nrmicro.2017.170. PubMed PMID: 29430005; PubMed Central PMCID: PMCPMC7097628. PubMed PMC
Gelpi E, Preusser M, Garzuly F, Holzmann H, Heinz FX, Budka H. Visualization of Central European tick-borne encephalitis infection in fatal human cases. Journal of neuropathology and experimental neurology. 2005;64(6):506-12. Epub 2005/06/28. doi: 10.1093/jnen/64.6.506. PubMed PMID: 15977642. PubMed
Bílý T, Palus M, Eyer L, Elsterová J, Vancová M, Růžek D. Electron Tomography Analysis of Tick-Borne Encephalitis Virus Infection in Human Neurons. Scientific reports. 2015;5:1074Epub 2015/06/16. doi: 10.1038/srep1074PubMed PMID: 26073783; PubMed Central PMCID: PMCPMC4466586. PubMed PMC
Potokar M, Korva M, Jorgačevski J, Avšič-Županc T, Zorec R. Tick-borne encephalitis virus infects rat astrocytes but does not affect their viability. PloS one. 2014;9(1):e86219. Epub 2014/01/28. doi: 10.1371/journal.pone.0086219. PubMed PMID: 24465969; PubMed Central PMCID: PMCPMC3896472. PubMed PMC
Palus M, Bílý T, Elsterová J, Langhansová H, Salát J, Vancová M, et al. Infection and injury of human astrocytes by tick-borne encephalitis virus. The Journal of general virology. 2014;95(Pt 11):2411-26. Epub 2014/07/09. doi: 10.1099/vir.0.068411-0. PubMed PMID: 25000960. PubMed
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta neuropathologica. 2010;119(1):7-35. Epub 2009/12/17. doi: 10.1007/s00401-009-0619-PubMed PMID: 20012068; PubMed Central PMCID: PMCPMC2799634. PubMed PMC
Diniz J.A., Da Rosa A.P., Guzman H., Xu F., Xiao S.Y., Popov V.L., et al. West Nile virus infection of primary mouse neuronal and neuroglial cells: the role of astrocytes in chronic infection. The American journal of tropical medicine and hygiene. 2006;75(4):691–696. Epub 2006/10/14 PubMed PMID: 17038696. PubMed
van Marle G, Antony J, Ostermann H, Dunham C, Hunt T, Halliday W, et al. West Nile virus-induced neuroinflammation: glial infection and capsid protein-mediated neurovirulence. Journal of virology. 2007;81(20):10933-49. Epub 2007/08/03. doi: 10.1128/jvi.02422-06. PubMed PMID: 17670819; PubMed Central PMCID: PMCPMC2045515. PubMed PMC
Jorgačevski J, Korva M, Potokar M, Lisjak M, Avšič-Županc T, Zorec R. ZIKV Strains Differentially Affect Survival of Human Fetal Astrocytes versus Neurons and Traffic of ZIKV-Laden Endocytotic Compartments. Scientific reports. 2019;9(1):8069. Epub 2019/05/31. doi: 10.1038/s41598-019-44559-8. PubMed PMID: 31147629; PubMed Central PMCID: PMCPMC6542792. PubMed PMC
Fares M, Cochet-Bernoin M, Gonzalez G, Montero-Menei CN, Blanchet O, Benchoua A, et al. Pathological modeling of TBEV infection reveals differential innate immune responses in human neurons and astrocytes that correlate with their susceptibility to infection. Journal of neuroinflammation. 2020;17(1):76. Epub 2020/03/05. doi: 10.1186/s12974-020-01756-x. PubMed PMID: 32127025; PubMed Central PMCID: PMCPMC7053149. PubMed PMC
Pokorna Formanova P, Palus M, Salat J, Hönig V, Stefanik M, Svoboda P, et al. Changes in cytokine and chemokine profiles in mouse serum and brain, and in human neural cells, upon tick-borne encephalitis virus infection. Journal of neuroinflammation. 2019;16(1):205. Epub 2019/11/09. doi: 10.1186/s12974-019-1596-z. PubMed PMID: 31699097; PubMed Central PMCID: PMCPMC6839073. PubMed PMC
O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in endocrinology. 2018;9:402. Epub 2018/08/21. doi: 10.3389/fendo.2018.00402. PubMed PMID: 30123182; PubMed Central PMCID: PMCPMC6085463. PubMed PMC
Kumar M, Nerurkar VR. Integrated analysis of microRNAs and their disease related targets in the brain of mice infected with West Nile virus. Virology. 2014;452-453:143-51. Epub 2014/03/13. doi: 10.1016/j.virol.2014.01.004. PubMed PMID: 24606691; PubMed Central PMCID: PMCPMC3959158. PubMed PMC
Slonchak A, Shannon RP, Pali G, Khromykh AA. Human MicroRNA miR-532-5p Exhibits Antiviral Activity against West Nile Virus via Suppression of Host Genes SESTD1 and TAB3 Required for Virus Replication. Journal of virology. 2015;90(5):2388-402. Epub 2015/12/18. doi: 10.1128/jvi.02608-15. PubMed PMID: 26676784; PubMed Central PMCID: PMCPMC4810706. PubMed PMC
Rastogi M, Srivastava N, Singh SK. Exploitation of microRNAs by Japanese Encephalitis virus in human microglial cells. Journal of medical virology. 2018;90(4):648-54. Epub 2017/11/18. doi: 10.1002/jmv.24995. PubMed PMID: 29149532. PubMed
Dang JW, Tiwari SK, Qin Y, Rana TM. Genome-wide Integrative Analysis of Zika-Virus-Infected Neuronal Stem Cells Reveals Roles for MicroRNAs in Cell Cycle and Stemness. Cell reports. 2019;27(12):3618-28.e5. Epub 2019/06/20. doi: 10.1016/j.celrep.2019.05.059. PubMed PMID: 31216479; PubMed Central PMCID: PMCPMC6687627. PubMed PMC
Seong RK, Lee JK, Cho GJ, Kumar M, Shin OS. mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerging microbes & infections. 2020;9(1):2061-75. Epub 2020/09/10. doi: 10.1080/22221751.2020.1821581. PubMed PMID: 32902370; PubMed Central PMCID: PMCPMC7534337. PubMed PMC
Hazra B., Kumawat K.L., Basu A. The host microRNA miR-301a blocks the IRF1-mediated neuronal innate immune response to Japanese encephalitis virus infection. Sci Signaling. 2017;10(466):eaaf5185.;Epub 2017/02/16 doi: 10.1126/scisignal.aaf5185. PubMed PMID: 28196914. PubMed DOI
Wu N, Gao N, Fan D, Wei J, Zhang J, An J. miR-223 inhibits dengue virus replication by negatively regulating the microtubule-destabilizing protein STMN1 in EAhy926 cells. Microbes and infection. 2014;16(11):911-22. Epub 2014/09/03. doi: 10.1016/j.micinf.2014.08.011. PubMed PMID: 25181337; PubMed Central PMCID: PMCPMC7110837. PubMed PMC
Diosa-Toro M, Echavarría-Consuegra L, Flipse J, Fernández GJ, Kluiver J, van den Berg A, et al. MicroRNA profiling of human primary macrophages exposed to dengue virus identifies miRNA-3614-5p as antiviral and regulator of ADAR1 expression. PLoS neglected tropical diseases. 2017;11(10):e0005981. Epub 2017/10/19. doi: 10.1371/journal.pntd.0005981. PubMed PMID: 29045406; PubMed Central PMCID: PMCPMC5662241. PubMed PMC
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Frontiers in microbiology. 2022;13:869441. Epub 2022/04/29. doi: 10.3389/fmicb.2022.869441. PubMed PMID: 35479613; PubMed Central PMCID: PMCPMC9036177. PubMed PMC
Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nature reviews Molecular cell biology. 2021;22(2):96-118. Epub 2020/12/doi: 10.1038/s41580-020-00315-9. PubMed PMID: 33353982; PubMed Central PMCID: PMCPMC7754182. PubMed PMC
Bhattacharyya S, Vrati S. The Malat1 long non-coding RNA is upregulated by signalling through the PERK axis of unfolded protein response during flavivirus infection. Scientific reports. 2015;5:17794. Epub 2015/12/05. doi: 10.1038/srep17794. PubMed PMID: 26634309; PubMed Central PMCID: PMCPMC4669524. PubMed PMC
Wang XJ, Jiang SC, Wei HX, Deng SQ, He C, Peng HJ. The Differential Expression and Possible Function of Long Noncoding RNAs in Liver Cells Infected by Dengue Virus. The American journal of tropical medicine and hygiene. 2017;97(6):1904-12. Epub 2017/10/11. doi: 10.4269/ajtmh.17-0307. PubMed PMID: 29016307; PubMed Central PMCID: PMCPMC5805055. PubMed PMC
Hu B, Huo Y, Yang L, Chen G, Luo M, Yang J, et al. ZIKV infection effects changes in gene splicing, isoform composition and lncRNA expression in human neural progenitor cells. Virology journal. 2017;14(1):217. Epub 2017/11/09. doi: 10.1186/s12985-017-0882-6. PubMed PMID: 29116029; PubMed Central PMCID: PMCPMC5688814. PubMed PMC
Selinger M, Wilkie GS, Tong L, Gu Q, Schnettler E, Grubhoffer L, et al. Analysis of tick-borne encephalitis virus-induced host responses in human cells of neuronal origin and interferon-mediated protection. The Journal of general virology. 2017;98(8):2043-60. Epub 2017/08/09. doi: 10.1099/jgv.0.000853. PubMed PMID: 28786780; PubMed Central PMCID: PMCPMC5817271. PubMed PMC
Zhong XL, Liao XM, Shen F, Yu HJ, Yan WS, Zhang YF, et al. Genome-wide profiling of mRNA and lncRNA expression in dengue fever and dengue hemorrhagic fever. FEBS open bio. 2019;9(3):468-77. Epub 2019/03/15. doi: 10.1002/2211-5463.12576. PubMed PMID: 30868055; PubMed Central PMCID: PMCPMC6396354. PubMed PMC
Wang P, Xu J, Wang Y, Cao X. An interferon-independent lncRNA promotes viral replication by modulating cellular metabolism. Science (New York, NY). 2017;358(6366):1051-5. Epub 2017/10/28. doi: 10.1126/science.aao0409. PubMed PMID: 29074580. PubMed
Barriocanal M, Carnero E, Segura V, Fortes P. Long Non-Coding RNA BST2/BISPR is Induced by IFN and Regulates the Expression of the Antiviral Factor Tetherin. Frontiers in immunology. 2014;5:655. Epub 2015/01/27. doi: 10.3389/fimmu.2014.00655. PubMed PMID: 25620967; PubMed Central PMCID: PMCPMC4288319. PubMed PMC
Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic acids research. 2014;42(16):10668-80. Epub 2014/08/15. doi: 10.1093/nar/gku713. PubMed PMID: 25122750; PubMed Central PMCID: PMCPMC4176326. PubMed PMC
Qian X., Xu C., Zhao P., Qi Z. Long non-coding RNA GAS5 inhibited hepatitis C virus replication by binding viral NS3 protein. Virology. 2016;Epub 2016/03/08(492):155–165. doi: 10.1016/j.virol.2016.02.020. PubMed PMID: 26945984. PubMed DOI
Schnettler E, Tykalová H, Watson M, Sharma M, Sterken MG, Obbard DJ, et al. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic acids research. 2014;42(14):9436-46. Epub 2014/07/24. doi: 10.1093/nar/gku657. PubMed PMID: 25053841; PubMed Central PMCID: PMCPMC4132761. PubMed PMC
Schirtzinger EE, Andrade CC, Devitt N, Ramaraj T, Jacobi JL, Schilkey F, et al. Repertoire of virus-derived small RNAs produced by mosquito and mammalian cells in response to dengue virus infection. Virology. 2015;476:54-60. Epub 2014/12/22. doi: 10.1016/j.virol.2014.11.019. PubMed PMID: 25528416; PubMed Central PMCID: PMCPMC4323773. PubMed PMC
Schuster S, Miesen P, van Rij RP. Antiviral RNAi in Insects and Mammals: Parallels and Differences. Viruses. 2019;11(5). Epub 2019/05/19. doi: 10.3390/v11050448. PubMed PMID: 31100912; PubMed Central PMCID: PMCPMC6563508. PubMed PMC
Li X, Fu Z, Liang H, Wang Y, Qi X, Ding M, et al. H5N1 influenza virus-specific miRNA-like small RNA increases cytokine production and mouse mortality via targeting poly(rC)-binding protein 2. Cell research. 2018;28(2):157-71. Epub 2018/01/13. doi: 10.1038/cr.2018.3. PubMed PMID: 29327729; PubMed Central PMCID: PMCPMC5799819. PubMed PMC
Ouellet DL, Vigneault-Edwards J, Létourneau K, Gobeil LA, Plante I, Burnett JC, et al. Regulation of host gene expression by HIV-1 TAR microRNAs. Retrovirology. 2013;10:86. Epub 2013/08/14. doi: 10.1186/1742-4690-10-86. PubMed PMID: 23938024; PubMed Central PMCID: PMCPMC3751525. PubMed PMC
Heinz FX, Kunz C. Homogeneity of the structural glycoprotein from European isolates of tick-borne encephalitis virus: comparison with other flaviviruses. The Journal of general virology. 1981;57(Pt 2):263-74. Epub 1981/12/01. doi: 10.1099/0022-1317-57-2-263. PubMed PMID: 6172553. PubMed
Pospisil L., Jandasek L., Pesek J. Isolation of new strains of meningoencephalitis virus in the Brno region during the summer of 1953. Lekarske listy. 1954;9(1):3–5. Epub 1954/01/01 PubMed PMID: 13131921. PubMed
De Madrid AT, Porterfield JS. A simple micro-culture method for the study of group B arboviruses. Bulletin of the World Health Organization. 1969;40(1):113-21. Epub 1969/01/01. PubMed PMID: 4183812; PubMed Central PMCID: PMCPMC2554446. PubMed PMC
Achazi K, Nitsche A, Patel P, Radonić A, Donoso Mantke O, Niedrig M. Detection and differentiation of tick-borne encephalitis virus subtypes by a reverse transcription quantitative real-time PCR and pyrosequencing. Journal of virological methods. 2011;171(1):34-9. Epub 2010/10/12. doi: 10.1016/j.jviromet.2010.09.026. PubMed PMID: 20933016. PubMed
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. 2011. 2011;17(1):3. Epub 2011-08-02. doi: 10.14806/ej.17.1.200.
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010;Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Ghosh S, Chan CK. Analysis of RNA-Seq Data Using TopHat and Cufflinks. Methods in molecular biology (Clifton, NJ). 2016;1374:339-61. Epub 2015/11/01. doi: 10.1007/978-1-4939-3167-5_18. PubMed PMID: 26519415. PubMed
Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic acids research. 2012;40(1):37-52. Epub 2011/09/14. doi: 10.1093/nar/gkr688. PubMed PMID: 21911355; PubMed Central PMCID: PMCPMC3245920. PubMed PMC
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research. 2006;34(Database issue):D140-4. Epub 2005/12/31. doi: 10.1093/nar/gkj112. PubMed PMID: 16381832; PubMed Central PMCID: PMCPMC1347474. PubMed PMC
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome biology. 2009;10(3):R25. Epub 2009/03/06. doi: 10.1186/gb-2009-10-3-r25. PubMed PMID: 19261174; PubMed Central PMCID: PMCPMC2690996. PubMed PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England). 2010;26(6):841-2. Epub 2010/01/30. doi: 10.1093/bioinformatics/btq033. PubMed PMID: 20110278; PubMed Central PMCID: PMCPMC2832824. PubMed PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics (Oxford, England). 2009;25(16):2078-9. Epub 2009/06/10. doi: 10.1093/bioinformatics/btp352. PubMed PMID: 19505943; PubMed Central PMCID: PMCPMC2723002. PubMed PMC
Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PloS one. 2018;13(10):e0206239. Epub 2018/10/20. doi: 10.1371/journal.pone.0206239. PubMed PMID: 30335862; PubMed Central PMCID: PMCPMC6193719. PubMed PMC
Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, et al. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic acids research. 2016;44(D1):D231-8. Epub 2015/11/28. doi: 10.1093/nar/gkv1270. PubMed PMID: 26612864; PubMed Central PMCID: PMCPMC4702897. PubMed PMC
Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic acids research. 2015;43(Database issue):D146-52. Epub 2014/11/08. doi: 10.1093/nar/gku1104. PubMed PMID: 25378301; PubMed Central PMCID: PMCPMC4383922. PubMed PMC
Vaquero-Garcia J, Barrera A, Gazzara MR, González-Vallinas J, Lahens NF, Hogenesch JB, et al. A new view of transcriptome complexity and regulation through the lens of local splicing variations. eLife. 2016;5:e11752. Epub 2016/02/02. doi: 10.7554/eLife.11752. PubMed PMID: 26829591; PubMed Central PMCID: PMCPMC4801060. PubMed PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics (Oxford, England). 2013;29(1):15-21. Epub 2012/10/30. doi: 10.1093/bioinformatics/bts635. PubMed PMID: 23104886; PubMed Central PMCID: PMCPMC3530905. PubMed PMC
Selinger M, Tykalová H, Štěrba J, Věchtová P, Vavrušková Z, Lieskovská J, et al. Tick-borne encephalitis virus inhibits rRNA synthesis and host protein production in human cells of neural origin. PLoS neglected tropical diseases. 2019;13(9):e0007745. Epub 2019/09/29. doi: 10.1371/journal.pntd.0007745. PubMed PMID: 31560682; PubMed Central PMCID: PMCPMC6785130. PubMed PMC
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols. 2012;7(3):562-78. Epub 2012/03/03. doi: 10.1038/nprot.2012.016. PubMed PMID: 22383036; PubMed Central PMCID: PMCPMC3334321. PubMed PMC
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols. 2009;4(1):44-57. Epub 2009/01/10. doi: 10.1038/nprot.2008.211. PubMed PMID: 19131956. PubMed
Pla R, Stanco A, Howard MA, Rubin AN, Vogt D, Mortimer N, et al. Dlx1 and Dlx2 Promote Interneuron GABA Synthesis, Synaptogenesis, and Dendritogenesis. Cerebral cortex (New York, NY : 1991). 2018;28(11):3797-815. Epub 2017/10/14. doi: 10.1093/cercor/bhx241. PubMed PMID: 29028947; PubMed Central PMCID: PMCPMC6188538. PubMed PMC
Ip JP, Fu AK, Ip NY. CRMP2: functional roles in neural development and therapeutic potential in neurological diseases. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 2014;20(6):589-98. Epub 2014/01/10. doi: 10.1177/1073858413514278. PubMed PMID: 24402611. PubMed
Sessions OM, Tan Y, Goh KC, Liu Y, Tan P, Rozen S, et al. Host cell transcriptome profile during wild-type and attenuated dengue virus infection. PLoS neglected tropical diseases. 2013;7(3):e2107. Epub 2013/03/22. doi: 10.1371/journal.pntd.0002107. PubMed PMID: 23516652; PubMed Central PMCID: PMCPMC3597485. PubMed PMC
De Maio FA, Risso G, Iglesias NG, Shah P, Pozzi B, Gebhard LG, et al. The Dengue Virus NS5 Protein Intrudes in the Cellular Spliceosome and Modulates Splicing. PLoS pathogens. 2016;12(8):e1005841. Epub 2016/08/31. doi: 10.1371/journal.ppat.1005841. PubMed PMID: 27575636; PubMed Central PMCID: PMCPMC5004807. PubMed PMC
Cho H, Proll SC, Szretter KJ, Katze MG, Gale M, Jr., Diamond MS. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nature medicine. 2013;19(4):458-64. Epub 2013/03/05. doi: 10.1038/nm.3108. PubMed PMID: 23455712; PubMed Central PMCID: PMCPMC3618596. PubMed PMC
Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annual review of immunology. 2014;32:513-45. Epub 2014/02/22. doi: 10.1146/annurev-immunol-032713-120231. PubMed PMID: 24555472; PubMed Central PMCID: PMCPMC4313732. PubMed PMC
Lazear HM, Daniels BP, Pinto AK, Huang AC, Vick SC, Doyle SE, et al. Interferon-lambda restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Science translational medicine. 2015;7(284):284ra59. Epub 2015/04/24. doi: 10.1126/scitranslmed.aaa4304. PubMed PMID: 25904743; PubMed Central PMCID: PMCPMC4435724. PubMed PMC
Rivera-Serrano EE, Gizzi AS, Arnold JJ, Grove TL, Almo SC, Cameron CE. Viperin Reveals Its True Function. Annual review of virology. 2020;7(1):421-46. Epub 2020/07/01. doi: 10.1146/annurev-virology-011720-095930. PubMed PMID: 32603630; PubMed Central PMCID: PMCPMC8191541. PubMed PMC
Soveg FW, Schwerk J, Gokhale NS, Cerosaletti K, Smith JR, Pairo-Castineira E, et al. Endomembrane targeting of human OAS1 p46 augments antiviral activity. eLife. 2021;10. Epub 2021/08/04. doi: 10.7554/eLife.71047. PubMed PMID: 34342578; PubMed Central PMCID: PMCPMC8357416. PubMed PMC
Castro FL, Geddes VEV, Monteiro FLL, Gonçalves R, Campanati L, Pezzuto P, et al. MicroRNAs 145 and 148a Are Upregulated During Congenital Zika Virus Infection. ASN neuro. 2019;11:1759091419850983. Epub 2019/06/20. doi: 10.1177/1759091419850983. PubMed PMID: 31213064; PubMed Central PMCID: PMCPMC6585135. PubMed PMC
Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH, Shiue L, et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nature genetics. 2011;43(7):706-11. Epub 2011/05/31. doi: 10.1038/ng.841. PubMed PMID: 21623373; PubMed Central PMCID: PMCPMC3125461. PubMed PMC
Lovci MT, Ghanem D, Marr H, Arnold J, Gee S, Parra M, et al. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges. Nature structural & molecular biology. 2013;20(12):1434-42. Epub 2013/11/12. doi: 10.1038/nsmb.2699. PubMed PMID: 24213538; PubMed Central PMCID: PMCPMC3918504. PubMed PMC
Wang ET, Ward AJ, Cherone JM, Giudice J, Wang TT, Treacy DJ, et al. Antagonistic regulation of mRNA expression and splicing by CELF and MBNL proteins. Genome research. 2015;25(6):858-Epub 2015/04/18. doi: 10.1101/gr.184390.114. PubMed PMID: 25883322; PubMed Central PMCID: PMCPMC4448682. PubMed PMC
Su CH, D D, Tarn WY. Alternative Splicing in Neurogenesis and Brain Development. Frontiers in molecular biosciences. 2018;5:12. Epub 2018/02/28. doi: 10.3389/fmolb.2018.00012. PubMed PMID: 29484299; PubMed Central PMCID: PMCPMC5816070. PubMed PMC
Wang Y, Ji P, Liu J, Broaddus RR, Xue F, Zhang W. Centrosome-associated regulators of the G(2)/M checkpoint as targets for cancer therapy. Molecular cancer. 2009;8:8. Epub 2009/02/17. doi: 10.1186/1476-4598-8-8. PubMed PMID: 19216791; PubMed Central PMCID: PMCPMC2657106. PubMed PMC
Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Molecular cell. 2010;40(2):179-204. Epub 2010/10/23. doi: 10.1016/j.molcel.2010.09.019. PubMed PMID: 20965415; PubMed Central PMCID: PMCPMC2988877. PubMed PMC
Overby AK, Popov VL, Niedrig M, Weber F. Tick-borne encephalitis virus delays interferon induction and hides its double-stranded RNA in intracellular membrane vesicles. Journal of virology. 2010;84(17):8470-83. Epub 2010/06/18. doi: 10.1128/jvi.00176-10. PubMed PMID: 20554782; PubMed Central PMCID: PMCPMC2919015. PubMed PMC
Polonio CM, Peron JPS. ZIKV Infection and miRNA Network in Pathogenesis and Immune Response. Viruses. 2021;13(10). Epub 2021/10/27. doi: 10.3390/v13101992. PubMed PMID: 34696422; PubMed Central PMCID: PMCPMC8541119. PubMed PMC
Wong RR, Abd-Aziz N, Affendi S, Poh CL. Role of microRNAs in antiviral responses to dengue infection. Journal of biomedical science. 2020;27(1):4. Epub 2020/01/04. doi: 10.1186/s12929-019-0614-x. PubMed PMID: 31898495; PubMed Central PMCID: PMCPMC6941309. PubMed PMC
He Y, Ge Y, Jiang M, Zhou J, Luo D, Fan H, et al. MiR-592 Promotes Gastric Cancer Proliferation, Migration, and Invasion Through the PI3K/AKT and MAPK/ERK Signaling Pathways by Targeting Spry2. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2018;47(4):1465-81. Epub 2018/06/28. doi: 10.1159/000490839. PubMed PMID: 29949784. PubMed
Sharma B, Joshi S, Sassano A, Majchrzak B, Kaur S, Aggarwal P, et al. Sprouty proteins are negative regulators of interferon (IFN) signaling and IFN-inducible biological responses. The Journal of biological chemistry. 2012;287(50):42352-60. Epub 2012/10/18. doi: 10.1074/jbc.M112.400721. PubMed PMID: 23074222; PubMed Central PMCID: PMCPMC3516778. PubMed PMC
Genetic polymorphisms in innate immunity genes influence predisposition to tick-borne encephalitis