Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
P01 AI055672
NIAID NIH HHS - United States
085064/Z/08/Z
Wellcome Trust - United Kingdom
Biotechnology and Biological Sciences Research Council - United Kingdom
095831
Wellcome Trust - United Kingdom
088588
Wellcome Trust - United Kingdom
MC_UU_12014/8
Medical Research Council - United Kingdom
MC_UP_A550_1031
Medical Research Council - United Kingdom
Intramural NIH HHS - United States
AIO055672
PHS HHS - United States
PubMed
25053841
PubMed Central
PMC4132761
DOI
10.1093/nar/gku657
PII: gku657
Knihovny.cz E-zdroje
- MeSH
- Argonaut proteiny fyziologie MeSH
- buněčné linie MeSH
- klíště genetika virologie MeSH
- malá interferující RNA chemie MeSH
- malá nekódující RNA chemie MeSH
- ribonukleasa III fyziologie MeSH
- RNA interference * MeSH
- RNA virová chemie MeSH
- viry klíšťové encefalitidy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- Argonaut proteiny MeSH
- malá interferující RNA MeSH
- malá nekódující RNA MeSH
- ribonukleasa III MeSH
- RNA virová MeSH
Arboviruses are transmitted by distantly related arthropod vectors such as mosquitoes (class Insecta) and ticks (class Arachnida). RNA interference (RNAi) is the major antiviral mechanism in arthropods against arboviruses. Unlike in mosquitoes, tick antiviral RNAi is not understood, although this information is important to compare arbovirus/host interactions in different classes of arbovirus vectos. Using an Ixodes scapularis-derived cell line, key Argonaute proteins involved in RNAi and the response against tick-borne Langat virus (Flaviviridae) replication were identified and phylogenetic relationships characterized. Analysis of small RNAs in infected cells showed the production of virus-derived small interfering RNAs (viRNAs), which are key molecules of the antiviral RNAi response. Importantly, viRNAs were longer (22 nucleotides) than those from other arbovirus vectors and mapped at highest frequency to the termini of the viral genome, as opposed to mosquito-borne flaviviruses. Moreover, tick-borne flaviviruses expressed subgenomic flavivirus RNAs that interfere with tick RNAi. Our results characterize the antiviral RNAi response in tick cells including phylogenetic analysis of genes encoding antiviral proteins, and viral interference with this pathway. This shows important differences in antiviral RNAi between the two major classes of arbovirus vectors, and our data broadens our understanding of arthropod antiviral RNAi.
Centre for Immunity Infection and Evolution University of Edinburgh EH9 3JT UK
Laboratory of Virology Wageningen University 6708 PB Wageningen The Netherlands
MRC University of Glasgow Centre for Virus Research Glasgow G11 5JR UK
Zobrazit více v PubMed
Gritsun T.S., Nuttall P.A., Gould E.A. Tick-borne flaviviruses. Adv. Virus Res. 2003;61:317–371. PubMed
Best S.M., Morris K.L., Shannon J.G., Robertson S.J., Mitzel D.N., Park G.S., Boer E., Wolfinbarger J.B., Bloom M.E. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J. Virol. 2005;79:12828–12839. PubMed PMC
Park G.S., Morris K.L., Hallett R.G., Bloom M.E., Best S.M. Identification of residues critical for the interferon antagonist function of Langat virus NS5 reveals a role for the RNA-dependent RNA polymerase domain. J. Virol. 2007;81:6936–6946. PubMed PMC
Pletnev A.G. Infectious cDNA clone of attenuated Langat tick-borne flavivirus (strain E5) and a 3′ deletion mutant constructed from it exhibit decreased neuroinvasiveness in immunodeficient mice. Virology. 2001;282:288–300. PubMed
Lindenbach B.D., Rice C.M. Molecular biology of flaviviruses. Adv. Virus Res. 2003;59:23–61. PubMed
Villordo S.M., Gamarnik A.V. Genome cyclization as strategy for flavivirus RNA replication. Virus Res. 2009;139:230–239. PubMed PMC
Gritsun T.S., Gould E.A. Origin and evolution of flavivirus 5′UTRs and panhandles: trans-terminal duplications. Virology. 2007;366:8–15. PubMed
Gritsun T.S., Gould E.A. Origin and evolution of 3′UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission. Adv. Virus Res. 2007;69:203–248. PubMed
Bell-Sakyi L., Kohl A., Bente D.A., Fazakerley J.K. Tick cell lines for study of crimean-congo hemorrhagic fever virus and other arboviruses. Vector Borne Zoonotic Dis. 2011;12:769–781. PubMed PMC
Donald C.L., Kohl A., Schnettler E. New insights into control of arbovirus replication and spread by insect RNA interference pathways. Insects. 2012;3:511–531. PubMed PMC
Blair C.D. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 2011;6:265–277. PubMed PMC
Fragkoudis R., Attarzadeh-Yazdi G., Nash A.A., Fazakerley J.K., Kohl A. Advances in dissecting mosquito innate immune responses to arbovirus infection. J. Gen. Virol. 2009;90:2061–2072. PubMed
Charrel R.N., Attoui H., Butenko A.M., Clegg J.C., Deubel V., Frolova T.V., Gould E.A., Gritsun T.S., Heinz F.X., Labuda M., et al. Tick-borne virus diseases of human interest in Europe. Clin. Microbiol. Infect. 2004;10:1040–1055. PubMed
Kemp C., Imler J.L. Antiviral immunity in drosophila. Curr. Opin. Immunol. 2009;21:3–9. PubMed PMC
de la Fuente J., Kocan K.M., Almazan C., Blouin E.F. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 2007;23:427–433. PubMed
Barry G., Alberdi P., Schnettler E., Weisheit S., Kohl A., Fazakerley J.K., Bell-Sakyi L. Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Exp. Appl. Acarol. 2013;59:319–338. PubMed PMC
Garcia S., Billecocq A., Crance J.M., Munderloh U., Garin D., Bouloy M. Nairovirus RNA sequences expressed by a Semliki Forest virus replicon induce RNA interference in tick cells. J. Virol. 2005;79:8942–8947. PubMed PMC
Garcia S., Billecocq A., Crance J.M., Prins M., Garin D., Bouloy M. Viral suppressors of RNA interference impair RNA silencing induced by a Semliki Forest virus replicon in tick cells. J. Gen. Virol. 2006;87:1985–1989. PubMed
Kurscheid S., Lew-Tabor A.E., Rodriguez Valle M., Bruyeres A.G., Doogan V.J., Munderloh U.G., Guerrero F.D., Barrero R.A., Bellgard M.I. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila. BMC Mol. Biol. 2009;10:26. PubMed PMC
Ding S.W. RNA-based antiviral immunity. Nat. Rev. Immunol. 2010;10:632–644. PubMed
Siu R.W., Fragkoudis R., Simmonds P., Donald C.L., Chase-Topping M.E., Barry G., Attarzadeh-Yazdi G., Rodriguez-Andres J., Nash A.A., Merits A., et al. Antiviral RNA interference responses induced by Semliki Forest virus infection of mosquito cells: characterization, origin, and frequency-dependent functions of virus-derived small interfering RNAs. J. Virol. 2011;85:2907–2917. PubMed PMC
Schnettler E., Sterken M.G., Leung J.Y., Metz S.W., Geertsema C., Goldbach R.W., Vlak J.M., Kohl A., Khromykh A.A., Pijlman G.P. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. J. Virol. 2012;86:13486–13500. PubMed PMC
Hoenninger V.M., Rouha H., Orlinger K.K., Miorin L., Marcello A., Kofler R.M., Mandl C.W. Analysis of the effects of alterations in the tick-borne encephalitis virus 3′-noncoding region on translation and RNA replication using reporter replicons. Virology. 2008;377:419–430. PubMed
Gehrke R., Ecker M., Aberle S.W., Allison S.L., Heinz F.X., Mandl C.W. Incorporation of tick-borne encephalitis virus replicons into virus-like particles by a packaging cell line. J. Virol. 2003;77:8924–8933. PubMed PMC
Varela M., Schnettler E., Caporale M., Murgia C., Barry G., McFarlane M., McGregor E., Piras I.M., Shaw A., Lamm C., et al. Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. PLoS Pathog. 2013;9:e1003133. PubMed PMC
Munderloh U.G., Kurtti T.J. Formulation of medium for tick cell culture. Exp. Appl. Acarol. 1989;7:219–229. PubMed
Bell-Sakyi L. Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J. Comp. Pathol. 2004;130:285–293. PubMed
Schnettler E., Ratinier M., Watson M., Shaw A.E., McFarlane M., Varela M., Elliott R.M., Palmarini M., Kohl A. RNA interference targets arbovirus replication in culicoides cells. J. Virol. 2013;87:2441–2454. PubMed PMC
Watson M., Schnettler E., Kohl A. viRome: an R package for the visualization and analysis of viral small RNA sequence datasets. Bioinformatics. 2013;29:1902–1903. PubMed PMC
Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. PubMed PMC
Loytynoja A., Goldman N. webPRANK: a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics. 2010;11:579. PubMed PMC
Talavera G., Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 2007;56:564–577. PubMed
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. PubMed PMC
Will S., Reiche K., Hofacker I.L., Stadler P.F., Backofen R. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput. Biol. 2007;3:e65. PubMed PMC
Hemmes H., Kaaij L., Lohuis D., Prins M., Goldbach R., Schnettler E. Binding of small interfering RNA molecules is crucial for RNA interference suppressor activity of rice hoja blanca virus NS3 in plants. J. Gen. Virol. 2009;90:1762–1766. PubMed
Campbell C.L., Keene K.M., Brackney D.E., Olson K.E., Blair C.D., Wilusz J., Foy B.D. Aedes aegypti uses RNA interference in defense against Sindbis virus infection. BMC Microbiol. 2008;8:47. PubMed PMC
Flynt A., Liu N., Martin R., Lai E.C. Dicing of viral replication intermediates during silencing of latent Drosophila viruses. Proc. Natl. Acad. Sci. U.S.A. 2009;106:5270–5275. PubMed PMC
Morazzani E.M., Wiley M.R., Murreddu M.G., Adelman Z.N., Myles K.M. Production of virus-derived ping-pong-dependent piRNA-like small RNAs in the mosquito soma. PLoS Pathog. 2012;8:e1002470. PubMed PMC
Myles K.M., Morazzani E.M., Adelman Z.N. Origins of alphavirus-derived small RNAs in mosquitoes. RNA Biol. 2009;6:387–391. PubMed PMC
Myles K.M., Wiley M.R., Morazzani E.M., Adelman Z.N. Alphavirus-derived small RNAs modulate pathogenesis in disease vector mosquitoes. Proc. Natl. Acad. Sci. U.S.A. 2008;105:19938–19943. PubMed PMC
Scott J.C., Brackney D.E., Campbell C.L., Bondu-Hawkins V., Hjelle B., Ebel G.D., Olson K.E., Blair C.D. Comparison of dengue virus type 2-specific small RNAs from RNA interference-competent and -incompetent mosquito cells. PLoS Negl. Trop. Dis. 2010;4:e848. PubMed PMC
Brackney D.E., Beane J.E., Ebel G.D. RNAi targeting of West Nile virus in mosquito midguts promotes virus diversification. PLoS Pathog. 2009;5:e1000502. PubMed PMC
Brackney D.E., Scott J.C., Sagawa F., Woodward J.E., Miller N.A., Schilkey F.D., Mudge J., Wilusz J., Olson K.E., Blair C.D., et al. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS. Negl. Trop. Dis. 2010;4:e856. PubMed PMC
Ding S.W., Lu R. Virus-derived siRNAs and piRNAs in immunity and pathogenesis. Curr. Opin. Virol. 2011;1:533–544. PubMed PMC
Felix M.A., Ashe A., Piffaretti J., Wu G., Nuez I., Belicard T., Jiang Y., Zhao G., Franz C.J., Goldstein L.D., et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011;9:e1000586. PubMed PMC
Wu Q., Luo Y., Lu R., Lau N., Lai E.C., Li W.X., Ding S.W. Virus discovery by deep sequencing and assembly of virus-derived small silencing RNAs. Proc. Natl. Acad. Sci. U.S.A. 2010;107:1606–1611. PubMed PMC
Aliyari R., Wu Q., Li H.W., Wang X.H., Li F., Green L.D., Han C.S., Li W.X., Ding S.W. Mechanism of induction and suppression of antiviral immunity directed by virus-derived small RNAs in Drosophila. Cell Host Microbe. 2008;4:387–397. PubMed PMC
Alberdi M.P., Dalby M.J., Rodriguez-Andres J., Fazakerley J.K., Kohl A., Bell-Sakyi L. Detection and identification of putative bacterial endosymbionts and endogenous viruses in tick cell lines. Ticks Tick Borne Dis. 2012;3:137–146. PubMed PMC
Attoui H., Stirling J.M., Munderloh U.G., Billoir F., Brookes S.M., Burroughs J.N., de Micco P., Mertens P.P., de Lamballerie X. Complete sequence characterization of the genome of the St Croix River virus, a new orbivirus isolated from cells of Ixodes scapularis. J. Gen. Virol. 2001;82:795–804. PubMed
Aliyari R., Ding S.W. RNA-based viral immunity initiated by the Dicer family of host immune receptors. Immunol. Rev. 2009;227:176–188. PubMed PMC
Cerutti H., Casas-Mollano J.A. On the origin and functions of RNA-mediated silencing: from protists to man. Curr. Genet. 2006;50:81–99. PubMed PMC
Funk A., Truong K., Nagasaki T., Torres S., Floden N., Balmori Melian E., Edmonds J., Dong H., Shi P.Y., Khromykh A.A. RNA structures required for production of subgenomic flavivirus RNA. J. Virol. 2010;84:11407–11417. PubMed PMC
Pijlman G.P., Funk A., Kondratieva N., Leung J., Torres S., van der Aa L., Liu W.J., Palmenberg A.C., Shi P.Y., Hall R.A., et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4:579–591. PubMed
Silva P.A., Pereira C.F., Dalebout T.J., Spaan W.J., Bredenbeek P.J. An RNA pseudoknot is required for production of yellow fever virus subgenomic RNA by the host nuclease XRN1. J. Virol. 2010;84:11395–11406. PubMed PMC
Markoff L. 5′- and 3′-noncoding regions in flavivirus RNA. Adv. Virus Res. 2003;59:177–228. PubMed PMC
Mitzel D.N., Best S.M., Masnick M.F., Porcella S.F., Wolfinbarger J.B., Bloom M.E. Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology. 2008;381:268–276. PubMed PMC
Keene K.M., Foy B.D., Sanchez-Vargas I., Beaty B.J., Blair C.D., Olson K.E. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 2004;101:17240–17245. PubMed PMC
van Rij R.P., Saleh M.C., Berry B., Foo C., Houk A., Antoniewski C., Andino R. The RNA silencing endonuclease Argonaute 2 mediates specific antiviral immunity in Drosophila melanogaster. Genes Dev. 2006;20:2985–2995. PubMed PMC
Sorefan K., Pais H., Hall A.E., Kozomara A., Griffiths-Jones S., Moulton V., Dalmay T. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence. 2012;3:4. PubMed PMC
Zhuang F., Fuchs R.T., Sun Z., Zheng Y., Robb G.B. Structural bias in T4 RNA ligase-mediated 3′-adapter ligation. Nucleic Acids Res. 2012;40:e54. PubMed PMC
Li F., Ding S.W. Virus counterdefense: diverse strategies for evading the RNA-silencing immunity. Annu. Rev. Microbiol. 2006;60:503–531. PubMed PMC
Friebe P., Shi P.Y., Harris E. The 5′ and 3′ downstream AUG region elements are required for mosquito-borne flavivirus RNA replication. J. Virol. 2011;85:1900–1905. PubMed PMC
Romero T.A., Tumban E., Jun J., Lott W.B., Hanley K.A. Secondary structure of dengue virus type 4 3′ untranslated region: impact of deletion and substitution mutations. J. Gen. Virol. 2006;87:3291–3296. PubMed
Tumban E., Mitzel D.N., Maes N.E., Hanson C.T., Whitehead S.S., Hanley K.A. Replacement of the 3′ untranslated variable region of mosquito-borne dengue virus with that of tick-borne Langat virus does not alter vector specificity. J. Gen. Virol. 2011;92:841–848. PubMed PMC
Cirimotich C.M., Scott J.C., Phillips A.T., Geiss B.J., Olson K.E. Suppression of RNA interference increases alphavirus replication and virus-associated mortality in Aedes aegypti mosquitoes. BMC Microbiol. 2009;9:49. PubMed PMC
Enhanced RNAi does not provide efficient innate antiviral immunity in mice
Tick Immune System: What Is Known, the Interconnections, the Gaps, and the Challenges
Key Mechanistic Principles and Considerations Concerning RNA Interference
Full Genome Sequence and sfRNA Interferon Antagonist Activity of Zika Virus from Recife, Brazil