Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
26186700
PubMed Central
PMC4506139
DOI
10.1371/journal.pone.0133038
PII: PONE-D-15-11875
Knihovny.cz E-zdroje
- MeSH
- Anaplasma phagocytophilum patogenita MeSH
- buněčné linie MeSH
- Flavivirus patogenita MeSH
- fylogeneze MeSH
- jaderné proteiny genetika metabolismus MeSH
- klíště genetika parazitologie virologie MeSH
- konzervovaná sekvence MeSH
- křečci praví MeSH
- molekulární sekvence - údaje MeSH
- RNA interference * MeSH
- sekvence aminokyselin MeSH
- transkriptom MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- jaderné proteiny MeSH
Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found.
Institute of Virology Slovak Academy of Sciences Dúbravská cesta 9 84505 Bratislava Slovakia
Institute of Zoology Slovak Academy of Sciences Dúbravská cesta 9 84506 Bratislava Slovakia
The Pirbright Institute Ash Road Pirbright Woking GU24 0NF United Kingdom
Zobrazit více v PubMed
Joshua-Tor L, Hannon GJ. Ancestral roles of small RNAs: an Ago-centric perspective. Cold Spring Harb Perspect Biol. 2011; 3: a003772 10.1101/cshperspect.a003772 PubMed DOI PMC
Liu Q, Paroo Z. Biochemical principles of small RNA pathways. Annu Rev Biochem. 2010; 79: 295–319. 10.1146/annurev.biochem.052208.151733 PubMed DOI
Donald CL, Kohl A, Schnettler E. New insights into control of arbovirus replication and spread by insect RNA interference pathways. Insects. 2012; 3: 511–531. PubMed PMC
Friberg A, Corsini L, Mourão A, Sattler M. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN. J Mol Biol. 2009; 387: 921–934. 10.1016/j.jmb.2009.02.018 PubMed DOI
Frei dit Frey N, Muller P, Jammes F, Kizis D, Leung J, Perrot-Rechenmann C, et al. The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis . Plant Cell. 2010; 22: 1575–1591. 10.1105/tpc.109.070680 PubMed DOI PMC
Weissbach R, Scadden AD. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA. 2012; 18: 462–471. 10.1261/rna.027656.111 PubMed DOI PMC
Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM. Loss and retention of RNA interference in fungi and parasites. PLoS Pathog. 2013; 9: e1003089 10.1371/journal.ppat.1003089 PubMed DOI PMC
Alsford S, Kemp LE, Kawahara T, Horn D. RNA interference, growth and differentiation appear normal in African trypanosomes lacking Tudor staphylococcal nuclease. Mol Biochem Parasitol. 2010; 174: 70–73. 10.1016/j.molbiopara.2010.06.006 PubMed DOI PMC
Aljamali MN, Sauer JR, Essenberg RC. RNA interference: applicability in tick research. Exp Appl Acarol. 2002; 28: 89–96. PubMed
de la Fuente J, Kocan KM, Almazán C, Blouin EF. RNA interference for the study and genetic manipulation of ticks. Trends Parasitol. 2007; 23: 427–433. PubMed
Tuckow AP, Temeyer KB. Discovery, adaptation and transcriptional activity of two tick promoters: Construction of a dual luciferase reporter system for optimization of RNA interference in Rhipicephalus (Boophilus) microplus cell lines. Insect Mol Biol. 2015; in press (10.1111/imb.12172). PubMed DOI
Kurscheid S, Lew-Tabor AE, Rodriguez Valle M, Bruyeres AG, Doogan VJ, Munderloh UG, et al. Evidence of a tick RNAi pathway by comparative genomics and reverse genetics screen of targets with known loss-of-function phenotypes in Drosophila . BMC Mol Biol. 2009; 10: 26 10.1186/1471-2199-10-26 PubMed DOI PMC
Barnard AC, Nijhof AM, Fick W, Stutzer C, Maritz-Olivier C. RNAi in arthropods: insight into the machinery and applications for understanding the pathogen-vector interface. Genes (Basel). 2012; 3: 702–741. PubMed PMC
Aung KM, Boldbaatar D, Umemiya-Shirafuji R, Liao M, Xuenan X, Suzuki H, et al. Scavenger receptor mediates systemic RNA interference in ticks. PLoS One. 2011; 6: e28407 10.1371/journal.pone.0028407 PubMed DOI PMC
Garcia S, Billecocq A, Crance JM, Munderloh U, Garin D, Bouloy M. Nairovirus RNA sequences expressed by a Semliki Forest virus replicon induce RNA interference in tick cells. J Virol. 2005; 79: 8942–8947. PubMed PMC
Schnettler E, Tykalová H, Watson M, Sharma M, Sterken MG, Obbard DJ, et al. Induction and suppression of tick cell antiviral RNAi responses by tick-borne flaviviruses. Nucleic Acids Res. 2014; 42: 9436–9446. 10.1093/nar/gku657 PubMed DOI PMC
de la Fuente J, Estrada-Peña A, Venzal JM, Kocan KM, Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008; 13: 6938–6946. PubMed
Beugnet F, Marié JL. Emerging arthropod-borne diseases of companion animals in Europe. Vet Parasitol. 2009; 163: 298–305. 10.1016/j.vetpar.2009.03.028 PubMed DOI
Sprong H, Trentelman J, Seemann I, Grubhoffer L, Rego RO, Hajdušek O, et al. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe. Parasites Vectors. 2014; 7: 77 10.1186/1756-3305-7-77 PubMed DOI PMC
Genomic Resources Development Consortium, Contreras M, de la Fuente J, Estrada-Peña A, Grubhoffer L, Tobes R. Transcriptome sequence divergence between Lyme disease tick vectors, Ixodes scapularis and Ixodes ricinus. Genomic Resources Notes accepted 1 April 2014–31 May 2014. Mol Ecol Resour. 2014; 14: 1095 10.1111/1755-0998.12298 PubMed DOI
Li CL, Yang WZ, Chen YP, Yuan HS. Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic Acids Res. 2008; 36: 3579–3589. 10.1093/nar/gkn236 PubMed DOI PMC
Phetrungnapha A, Panyim S, Ongvarrasopone C. A Tudor staphylococcal nuclease from Penaeus monodon: cDNA cloning and its involvement in RNA interference. Fish Shellfish Immunol. 2011; 31: 373–380. 10.1016/j.fsi.2011.05.026 PubMed DOI
Ayllón N, Villar V, Galindo RC, Kocan KM, Šíma R, López JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis . PLoS Genetics. 2015; 11(3): e1005120 10.1371/journal.pgen.1005120 PubMed DOI PMC
Achazi K, Patel P, Paliwal R, Radonić A, Niedrig M, Donoso-Mantke O. RNA interference inhibits replication of tick-borne encephalitis virus in vitro. Antiviral Res. 2012; 93: 94–100. 10.1016/j.antiviral.2011.10.023 PubMed DOI
Sojka D, Franta Z, Horn M, Caffrey CR, Mares M, Kopacek P. New insights into the machinery of blood digestion by ticks. Trends Parasitol. 2013; 29: 276–285. 10.1016/j.pt.2013.04.002 PubMed DOI
Popara M, Villar M, Mateos-Hernández L, Fernández de Mera IG, Marina A, del Valle M, et al. Lesser protein degradation machinery correlates with higher BM86 tick vaccine efficacy in Rhipicephalus annulatus when compared to R. microplus . Vaccine. 2013; 31: 4728–4735. 10.1016/j.vaccine.2013.08.031 PubMed DOI
Ayllón N, Villar M, Busby AT, Kocan KM, Blouin EF, Bonzón-Kulichenko E, et al. Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect Immun. 2013; 81: 2415–2425. 10.1128/IAI.00194-13 PubMed DOI PMC
Scadden ADJ. Gene expression is reduced in trans by inosine-containing dsRNA. Biochem Soc Trans. 2008; 36: 534–536. 10.1042/BST0360534 PubMed DOI
Nishikura K. Editor meets silencer: crosstalk between RNA editing and RNA interference. Nature Rev Mol Cell Biol. 2006; 7: 919–931. PubMed PMC
Li X, Kazan H, Lipshitz HD, Morris QD. Finding the target sites of RNA-binding proteins. WIREs RNA. 2014; 5: 111–130. 10.1002/wrna.1201 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30: 772–780. 10.1093/molbev/mst010 PubMed DOI PMC
Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003; 52: 696–704. PubMed
Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol. 2006; 55: 539–552. PubMed
Felsenstein J. PHYLIP—Phylogeny Inference Package (Version 3.2). Cladistics. 1989; 5: 164–166.
Chevenet F, Brun C, Bañuls AL, Jacq B, Chisten R. TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC. Bioinformatics. 2006; 10: 439. PubMed PMC
Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, et al. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J Clin Microbiol. 1999; 37: 2518–2524. PubMed PMC
Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007; 23: 450–457. PubMed
Bell-Sakyi L. Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J Comp Pathol. 2004; 130: 285–293. PubMed
de la Fuente J, Ayoubi P, Blouin EF, Almazán C, Naranjo V, Kocan KM. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum . Cell Microbiol. 2005; 7: 549–559. PubMed
Kocan KM, Busby AT, Allison RW, Breshears MA, Coburn L, Galindo RC, et al. Sheep experimentally-infected with a human isolate of Anaplasma phagocytophilum serve as a host for infection of Ixodes scapularis . Ticks Tick-Borne Dis. 2012; 3: 147–153. 10.1016/j.ttbdis.2012.01.004 PubMed DOI
Havlíková S, Ličková M, Ayllón N, Roller L, Kazimírová M, Slovák M, et al. Immunization with recombinant subolesin does not reduce tick infection with tick-borne encephalitis virus nor protect mice against disease. Vaccine. 2013; 31: 1582–1589. 10.1016/j.vaccine.2013.01.017 PubMed DOI
Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25: 1105–1111. 10.1093/bioinformatics/btp120 PubMed DOI PMC
Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics. 2010; 26: 136–138. 10.1093/bioinformatics/btp612 PubMed DOI
Wisniewski J, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Meth. 2009; 6: 359–362. PubMed
Martínez-Bartolomé S, Navarro P, Martín-Maroto F, López-Ferrer D, Ramos-Fernández A, Villar M, et al. Properties of average score distributions of SEQUEST: the probability ratio method. Mol Cell Proteomics. 2008; 7: 1135–1145. 10.1074/mcp.M700239-MCP200 PubMed DOI
Navarro P, Vázquez J. A refined method to calculate false discovery rates for peptide identification using decoy databases. J Proteome Res. 2009; 8: 1792–1796. 10.1021/pr800362h PubMed DOI
Bonzon-Kulichenko E, Martínez-Martínez S, Trevisan-Herraz M, Navarro P, Redondo JM, Vázquez J. Quantitative in-depth analysis of the dynamic secretome of activated Jurkat T-cells. J Proteomics. 2011; 75: 561–571. 10.1016/j.jprot.2011.08.022 PubMed DOI
Jorge I, Navarro P, Martinez-Acedo P, Nunez E, Serrano H, Alfranca A, et al. Statistical model to analyze quantitative proteomics data obtained by 18O/16O labeling and linear ion trap mass spectrometry: application to the study of vascular endothelial growth factor-induced angiogenesis in endothelial cells. Mol Cell Proteomics. 2009; 8: 1130–1149. 10.1074/mcp.M800260-MCP200 PubMed DOI PMC
Navarro P, Trevisan-Herraz M, Bonzon-Kulichenko E, Núñez E, Martínez-Acedo P, Pérez-Hernández D, et al. General Statistical framework for quantitative proteomics by stable isotope labeling. J Proteome Res. 2014; 13: 1234–1247. 10.1021/pr4006958 PubMed DOI
Kocan KM, Blouin E, de la Fuente J. RNA interference in ticks. JoVE. 2011; 47: e2474 http://www.jove.com/details.stp?id=2474. PubMed PMC
Barry G, Alberdi P, Schnettler E, Weisheit S, Kohl A, Fazakerley JK, et al. Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Exp Appl Acarol. 2013; 59: 319–338. 10.1007/s10493-012-9598-x PubMed DOI PMC
Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens