Functional Redundancy and Ecological Innovation Shape the Circulation of Tick-Transmitted Pathogens

. 2017 ; 7 () : 234. [epub] 20170531

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28620590

Ticks are vectors of pathogens affecting human and animal health worldwide. Nevertheless, the ecological and evolutionary interactions between ticks, hosts, and pathogens are largely unknown. Here, we integrated a framework to evaluate the associations of the tick Ixodes ricinus with its hosts and environmental niches that impact pathogen circulation. The analysis of tick-hosts association suggested that mammals and lizards were the ancestral hosts of this tick species, and that a leap to Aves occurred around 120 M years ago. The signature of the environmental variables over the host's phylogeny revealed the existence of two clades of vertebrates diverging along a temperature and vegetation split. This is a robust proof that the tick probably experienced a colonization of new niches by adapting to a large set of new hosts, Aves. Interestingly, the colonization of Aves as hosts did not increase significantly the ecological niche of I. ricinus, but remarkably Aves are super-spreaders of pathogens. The disparate contribution of Aves to the tick-host-pathogen networks revealed that I. ricinus evolved to maximize habitat overlap with some hosts that are super-spreaders of pathogens. These results supported the hypothesis that large host networks are not a requirement of tick survival but pathogen circulation. The biological cost of tick adaptation to non-optimal environmental conditions might be balanced by molecular mechanisms triggered by the pathogens that we have only begun to understand.

Zobrazit více v PubMed

Ayllón N., Naranjo V., Hajdušek O., Villar M., Galindo R. C., Kocan K. M., et al. (2015b). Nuclease Tudor-SN is involved in tick dsRNA-mediated RNA interference and feeding but not in defense against flaviviral or Anaplasma phagocytophilum rickettsial infection. PLoS ONE 10:e0133038 10.1371/journal.pone.0133038 PubMed DOI PMC

Ayllón N., Villar M., Galindo R. C., Kocan K. M., Šíma R., López J. A., et al. . (2015a). Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Gen. 11:e1005120. 10.1371/journal.pgen.1005120 PubMed DOI PMC

Blondel V. D., Guillaume J. L., Lambiotte R., Lefebvre E. (2008). Fast unfolding of communities in large networks. J. Stat. Mech. 2008:P10008 10.1088/1742-5468/2008/10/P10008 DOI

Bown K. J., Lambin X., Telford G. R., Ogden N. H., Telfer S., Woldehiwet Z., et al. . (2008). Relative importance of Ixodes ricinus and Ixodes trianguliceps as vectors for Anaplasma phagocytophilum and Babesia microti in field vole (Microtus agrestis) populations. Appl. Environ. Microbiol. 74, 7118–7125. 10.1128/AEM.00625-08 PubMed DOI PMC

Brooks D. R., León-Regagnon V., McLennan D. A., Zelmer D. (2006). Ecological fitting as a determinant of the community structure of platyhelminth parasites of anurans. Ecology 87, S76–S85. 10.1890/0012-9658(2006)87[76:EFAADO]2.0.CO;2 PubMed DOI

Busby A. T., Ayllón N., Kocan K. M., Blouin E. F., de la Fuente G., Galindo R. C., et al. . (2012). Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behaviour in the tick, Ixodes scapularis. Med. Vet. Entomol. 26, 92–102. 10.1111/j.1365-2915.2011.00973.x PubMed DOI

Cabezas-Cruz A., Estrada-Peña A., Rego R. O., De la Fuente J. (2017). Tick-pathogen ensembles: do molecular interactions lead ecological innovation? Front. Cell Infect. Microbiol. 7:74. 10.3389/fcimb.2017.00074 PubMed DOI PMC

Cattin M. F., Bersier L. F., Banasek-Richter C., Baltensperger R., Gabriel J. P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature 427, 835–839. 10.1038/nature02327 PubMed DOI

Christian N., Whitaker B. K., Clay K. (2015). Microbiomes: unifying animal and plant systems through the lens of community ecology theory. Front. Microbiol. 6:869. 10.3389/fmicb.2015.00869 PubMed DOI PMC

Craine N. G., Randolph S. E., Nuttall P. A. (1995). Seasonal variation in the role of grey squirrels as hosts of Ixodes ricinus, the tick vector of the Lyme disease spirochaete, in a British woodland. Folia Parasitol. 42, 73–80. PubMed

Csardi G., Nepusz T. (2006). The igraph software package for complex network research. Int. J. Complex. Syst. 1695, 1–9.

Deffontaine V., Libois R., Kotlík P., Sommer R., Nieberding C., Paradis E., et al. . (2005). Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Mol. Ecol. 14, 1727–1739. 10.1111/j.1365-294X.2005.02506.x PubMed DOI

de la Fuente J., Antunes S., Bonnet S., Cabezas-Cruz A., Domingos A., Estrada-Peña A., et al. . (2017). Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 7:114. 10.3389/fcimb.2017.00114 PubMed DOI PMC

de la Fuente J., Estrada-Peña A. (2012). Ticks and tick-borne pathogens on the rise. Ticks Tick Borne. Dis. 3, 115–116. 10.1016/j.ttbdis.2012.03.001 PubMed DOI

de la Fuente J., Estrada-Peña A., Cabezas-Cruz A., Brey R. (2015). Flying ticks: anciently evolved associations that constitute a risk of infectious disease spread. Parasit. Vector 8:538. 10.1186/s13071-015-1154-1 PubMed DOI PMC

Dormann C. F. (2011). How to be a specialist? Quantifying specialisation in pollination networks. Netw. Biol. 1, 1–20.

Elith J., Phillips S. J., Hastie T., Dudík M., Chee Y. E., Yates C. J. (2011). A statistical explanation of MaxEnt for ecologists. Divers Distrib. 17, 43–57. 10.1111/j.1472-4642.2010.00725.x DOI

Estrada-Peña A., de la Fuente J. (2014). The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral. Res. 108, 104–128. 10.1016/j.antiviral.2014.05.016 PubMed DOI

Estrada-Peña A., de La Fuente J. (2016). Species interactions in occurrence data for a community of tick-transmitted pathogens. Sci. Data 3:160056. 10.1038/sdata.2016.56 PubMed DOI PMC

Estrada-Peña A., de la Fuente J., Ostfeld R. S., Cabezas-Cruz A. (2015). Interactions between tick and transmitted pathogens evolved to minimise competition through nested and coherent networks. Sci. Rep 5:10361. 10.1038/srep10361 PubMed DOI PMC

Estrada-Peña A., Estrada-Sánchez A., de la Fuente J. (2014). A global set of Fourier-transformed remotely sensed covariates for the description of abiotic niche in epidemiological studies of tick vector species. Paras. Vector 7:302. 10.1186/1756-3305-7-302 PubMed DOI PMC

Estrada-Peña A., Venzal J. M., Sánchez Acedo C. (2006). The tick Ixodes ricinus: distribution and climate preferences in the western Palaearctic. Med. Vet. Entomol. 20, 189–197. 10.1111/j.1365-2915.2006.00622.x PubMed DOI

Garcia-Rosello E., Guisande C., Heine J., Pelayo-Villamil P., Manjarres-Hernandez A., Vilas L. G., et al. (2014). Using ModestR to download, import and clean species distribution records. Methods Ecol. Evol. 5, 708–713. 10.1111/2041-210X.12209 DOI

Gassner F., Takken W., Plas C. L., Kastelein P., Hoetmer A. J., Holdinga M., et al. . (2013). Rodent species as natural reservoirs of Borrelia burgdorferi sensu lato in different habitats of Ixodes ricinus in The Netherlands. Ticks. Tick Borne. Dis. 4, 452–458. 10.1016/j.ttbdis.2012.11.017 PubMed DOI

Gómez J. M., Nunn C. L., Verdú M. (2013). Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc. Natl. Acad. Sci. U.S.A. 110, 7738–7741. 10.1073/pnas.1220716110 PubMed DOI PMC

Hanincova K., Schäfer S. M., Etti S., Sewell H. S., Taragelová V., Ziak D., et al. . (2003). Association of Borrelia afzelii with rodents in Europe. Parasitology 126, 11–20. 10.1017/S0031182002002548 PubMed DOI

Heard S. B., Hauser D. L. (1995). Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10, 151–173. 10.1080/10292389509380518 DOI

Herrmann C., Voordouw M. J., Gern L. (2013). Ixodes ricinus ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int. J. Parasitol. 43, 477–483. 10.1016/j.ijpara.2012.12.010 PubMed DOI

Holland P. W., Leinhardt S. (1971). Transitivity in structural models of small groups. Comp. Group Stud. 2, 107–124.

Holyoak M., Leibold M. A., Mouquet N., Holt R. D., Hoopes M. F. (2005). Metacommunities: a framework for large-scale community ecology, in Metacommunities: Spatial Dynamics and Ecological Communities, eds Holyoak M., Leibold M. A., Mouquet N., Holt R. D. (Chicago, IL: University of Chicago Press; ), 1–31.

Jaarola M., Tegelström H., Fredga K. (1999). Colonization history in Fennoscandian rodents. Biol. J. Linn. Soc. 68, 113–127. 10.1111/j.1095-8312.1999.tb01161.x DOI

Jacomy M., Venturini T., Heymann S., Bastian M. (2014). ForceAtlas2, a Continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE 9:e98679. 10.1371/journal.pone.0098679 PubMed DOI PMC

Jaenson T. G., Lindgren E. (2011). The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks Tick Borne Dis. 2, 44–49. 10.1016/j.ttbdis.2010.10.006 PubMed DOI

Jongejan F., Uilenberg G. (2004). The global importance of ticks. Parasitology 129, S3–S14. 10.1017/S0031182004005967 PubMed DOI

Kasapidis P., Suchentrunk F., Magoulas A., Kotoulas G. (2005). The shaping of mitochondrial DNA phylogeographic patterns of the brown hare (Lepus europaeus) under the combined influence of Late Pleistocene climatic fluctuations and anthropogenic translocations. Mol. Phylogen. Evol. 34, 55–66. 10.1016/j.ympev.2004.09.007 PubMed DOI

Keesing F., Belden L. K., Daszak P., Dobson A., Harvell C. D., Holt R. D., et al. . (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652. 10.1038/nature09575 PubMed DOI PMC

Keesing F., Holt R. D., Ostfeld R. S. (2006). Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498. 10.1111/j.1461-0248.2006.00885.x PubMed DOI

Kourtellis N., Alahakoon T., Simha R., Iamnitchi A., Tripathi R. (2013). Identifying high betweenness centrality nodes in large social networks. Soc. Netw. Anal. Min. 3, 899–914. 10.1007/s13278-012-0076-6 DOI

Krasnov B. R., Mouillot D., Shenbrot G. I., Khokhlova I. S., Vinarski M. V., Korallo-Vinarskaya N. P., et al. . (2010). Similarity in ectoparasite faunas of Palearctic rodents as a function of host phylogenetic, geographic or environmental distances: which matters the most? Int. J. Parasitol. 40, 807–817. 10.1016/j.ijpara.2009.12.002 PubMed DOI

Kurtenbach K., Dizij A., Seitz H. M., Margos G., Moter S. E., Kramer M. D., et al. . (1994). Differential immune responses to Borrelia burgdorferi in European wild rodent species influence spirochete transmission to Ixodes ricinus L. (Acari: Ixodidae). Infect. Imm. 62, 5344–5352. PubMed PMC

Leibold M. A., Holyoak M., Mouquet N., Amarasekare P., Chase J. M., Hoopes M. F., et al. (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613. 10.1111/j.1461-0248.2004.00608.x DOI

Leibold M. A., McPeek M. A. (2006). Coexistence of the niche and neutral perspectives in community ecology. Ecology. 87, 1399–1410. 10.1890/0012-9658(2006)87[1399:COTNAN]2.0.CO;2 PubMed DOI

Lindgren E., Tälleklint L., Polfeldt T. (2000). Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 108, 119–123. 10.1289/ehp.00108119 PubMed DOI PMC

Medlock J. M., Hansford K. M., Bormane A., Derdakova M., Estrada-Peña A., George J. C., et al. . (2013). Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Paras. Vect. 6:1. 10.1186/1756-3305-6-1 PubMed DOI PMC

Merino O., Almazán C., Canales M., Villar M., Moreno-Cid J. A., Galindo R. C., et al. . (2011). Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina. Vaccine 29, 8575–8579. 10.1016/j.vaccine.2011.09.023 PubMed DOI

Mihaljevic R. (2012). Linking metacommunity theory and symbiont evolutionary ecology. Trends Ecol. Evol. 27, 323–329. 10.1016/j.tree.2012.01.011 PubMed DOI

Munkemuller T., Lavergne S., Bzeznik B., Dray S., Jombart T., Schiffers K., et al. (2012). How to measure and test phylogenetic signal. Methods. Ecol. Evol. 3, 743–756. 10.1111/j.2041-210X.2012.00196.x DOI

Neelakanta G., Sultana H., Fish D., Anderson J. F., Fikrig E. (2010). Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. 10.1172/JCI42868 PubMed DOI PMC

Ostfeld R. S., Keesing F. (2000). Biodiversity and disease risk: the case of Lyme disease. Conserv. Biol. 14, 722–728. 10.1046/j.1523-1739.2000.99014.x DOI

Paradis E., Claude K., Strimmer K. (2004). APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. 10.1093/bioinformatics/btg412 PubMed DOI

Peterson A. T., Holt R. D. (2003). Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecol. Lett. 6, 774–782. 10.1046/j.1461-0248.2003.00502.x DOI

Phillips S. J., Anderson R. P., Schapire R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259. 10.1016/j.ecolmodel.2005.03.026 DOI

R Core Team (2014). A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available online at: http://www.R-project.org/

Revell L. J. (2012). Phytools: phylogenetic tools for comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. 10.1111/j.2041-210X.2011.00169.x DOI

Roquet C., Lavergne S., Thuiller W. (2014). One tree to link them all: a phylogenetic dataset for the European Tetrapoda. PLoS. Curr. 6, 1–20. 10.1371/currents.tol.5102670fff8aa5c918e78f5592790e48 PubMed DOI PMC

Sommer R. S., Nadachowski A. (2006). Glacial refugia of mammals in Europe: evidence from fossil records. Mammal. Rev. 36, 251–265. 10.1111/j.1365-2907.2006.00093.x DOI

Suzán G., García-Peña G. E., Castro-Arellano I., Rico O., Rubio A. V., Tolsá M. J., et al. . (2015). Metacommunity and phylogenetic structure determine wildlife and zoonotic disease patterns in time and space. Ecol. Evol. 5, 865–873. 10.1002/ece3.1404 PubMed DOI PMC

Venditti C., Meade A., Pagel M. (2011). Multiple routes to mammalian diversity. Nature 479, 393–396. 10.1038/nature10516 PubMed DOI

Warren D. L., Glor R. E., Turelli M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33, 607–611. 10.1111/j.1600-0587.2009.06142.x DOI

Watts D. J., Strogatz S. (1998). Collective dynamics of 'small-world' networks. Nature 393, 440–442. 10.1038/30918 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...