Genetic polymorphisms in innate immunity genes influence predisposition to tick-borne encephalitis
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
NU22-05-00659
Ministerstvo Zdravotnictví Ceské Republiky
LX22N-PO5103
Commission européenne Office Européen de Lutte Antifraude
PubMed
37898570
PubMed Central
PMC10794283
DOI
10.1007/s13365-023-01182-8
PII: 10.1007/s13365-023-01182-8
Knihovny.cz E-zdroje
- Klíčová slova
- Genetics, Immunity genes, Predisposition, Single-nucleotide polymorphism, Tick-borne encephalitis,
- MeSH
- genotyp MeSH
- interferony genetika MeSH
- jednonukleotidový polymorfismus MeSH
- klíšťová encefalitida * genetika epidemiologie MeSH
- lidé MeSH
- přirozená imunita genetika MeSH
- viry klíšťové encefalitidy * genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interferony MeSH
Tick-borne encephalitis (TBE) is a neuroviral disease that ranges in severity from a mild febrile illness to a severe and life-threatening meningoencephalitis or encephalomyelitis. There is increasing evidence that susceptibility to tick-borne encephalitis virus (TBEV)-induced disease and its severity are largely influenced by host genetic factors, in addition to other virus- and host-related factors. In this study, we investigated the contribution of selected single nucleotide polymorphisms (SNPs) in innate immunity genes to predisposition to TBE in humans. More specifically, we investigated a possible association between SNPs rs304478 and rs303212 in the gene Interferon Induced Protein With Tetratricopeptide Repeats 1 (IFIT1), rs7070001 and rs4934470 in the gene Interferon Induced Protein With Tetratricopeptide Repeats 2 (IFIT2), and RIG-I (Retinoic acid-inducible gene I) encoding gene DDX58 rs311795343, rs10813831, rs17217280 and rs3739674 SNPs with predisposition to TBE in population of the Czech Republic, where TBEV is highly endemic. Genotypic and allelic frequencies for these SNPs were analyzed in 247 nonimmunized TBE patients and compared with 204 control subjects. The analysis showed an association of IFIT1 rs304478 SNP and DDX58 rs3739674 and rs17217280 SNPs with predisposition to TBE in the Czech population indicating novel risk factors for clinical TBE but not for disease severity. These results also highlight the role of innate immunity genes in TBE pathogenesis.
Department of Experimental Biology Faculty of Science Masaryk University CZ 62500 Brno Czechia
Joint Faculty of Veterinary Medicine Yamaguchi University Yamaguchi City Japan
Zobrazit více v PubMed
Barkhash AV, Babenko VN, Voevoda MI, Romaschenko AG. Association of IL28B and IL10 gene polymorphism with predisposition to tick-borne encephalitis in a Russian population. Ticks Tick Borne Dis. 2016;7:808–812. doi: 10.1016/j.ttbdis.2016.03.019. PubMed DOI
Barkhash AV, Kochneva GV, Chub EV, Romaschenko AG. Single nucleotide polymorphism rs1800872 in the promoter region of the IL10 gene is associated with predisposition to chronic hepatitis C in Russian population. Microbes Infect. 2018;20:212–216. doi: 10.1016/j.micinf.2017.11.012. PubMed DOI
Barkhash AV, Perelygin AA, Babenko VN, Brinton MA, Voevoda MI. Single nucleotide polymorphism in the promoter region of the CD209 gene is associated with human predisposition to severe forms of tick-borne encephalitis. Antiviral Res. 2012;93:64–68. doi: 10.1016/j.antiviral.2011.10.017. PubMed DOI
Barkhash AV, Perelygin AA, Babenko VN, Myasnikova NG, Pilipenko PI, Romaschenko AG, Voevoda MI, Brinton MA. Variability in the 2'-5'-oligoadenylate synthetase gene cluster is associated with human predisposition to tick-borne encephalitis virus-induced disease. J Infect Dis. 2010;202:1813–1818. doi: 10.1086/657418. PubMed DOI
Barkhash AV, Voevoda MI, Romaschenko AG. Association of single nucleotide polymorphism rs3775291 in the coding region of the TLR3 gene with predisposition to tick-borne encephalitis in a Russian population. Antiviral Res. 2013;99:136–138. doi: 10.1016/j.antiviral.2013.05.008. PubMed DOI
Barkhash AV, Yurchenko AA, Yudin NS, Ignatieva EV, Kozlova IV, Borishchuk IA, Pozdnyakova LL, Voevoda MI, Romaschenko AG. A matrix metalloproteinase 9 (MMP9) gene single nucleotide polymorphism is associated with predisposition to tick-borne encephalitis virus-induced severe central nervous system disease. Ticks Tick Borne Dis. 2018;9:763–767. doi: 10.1016/j.ttbdis.2018.02.010. PubMed DOI
Bogovic P, Strle F. Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management. World J Clin Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Bojkiewicz E, Toczylowski K, Grygorczuk S, Zelazowska-Rutkowska B, Dunaj J, Zebrowska A, Czupryna P, Moniuszko-Malinowska A, Sulik A (2022) The prevalence of asymptomatic infections with tick-borne encephalitis virus and attitude towards tick-borne encephalitis vaccine in the endemic area of northeastern Poland. Vaccines (Basel) 10 PubMed PMC
Brisse M, Ly H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front Immunol. 2019;10:1586. doi: 10.3389/fimmu.2019.01586. PubMed DOI PMC
Cho H, Shrestha B, Sen GC, Diamond MS. A role for Ifit2 in restricting West Nile virus infection in the brain. J Virol. 2013;87:8363–8371. doi: 10.1128/JVI.01097-13. PubMed DOI PMC
Czupryna P, Parczewski M, Grygorczuk S, Pancewicz S, Zajkowska J, Dunaj J, Kondrusik M, Krawczuk K, Moniuszko-Malinowska A. Analysis of the relationship between single nucleotide polymorphism of the CD209, IL-10, IL-28 and CCR5 D32 genes with the human predisposition to developing tick-borne encephalitis. Postepy Hig Med Dosw (online) 2017;71:788–796. doi: 10.5604/01.3001.0010.3856. PubMed DOI
Fortova A, Hönig V, Salat J, Palus M, Pychova M, Krbkova L, Barkhash AV, Kriha MF, Chrdle A, Lipoldova M, Ruzek D. Serum matrix metalloproteinase-9 (MMP-9) as a biomarker in paediatric and adult tick-borne encephalitis patients. Virus Res. 2023;324:199020. doi: 10.1016/j.virusres.2022.199020. PubMed DOI PMC
Gritsun TS, Nuttall PA, Gould EA. Tick-borne flaviviruses. Adv Virus Res. 2003;61:317–371. doi: 10.1016/S0065-3527(03)61008-0. PubMed DOI
Grygorczuk S, Parczewski M, Moniuszko A, Świerzbińska R, Kondrusik M, Zajkowska J, Czupryna P, Dunaj J, Boroń-Kaczmarska A, Pancewicz S. Increased concentration of interferon lambda-3, interferon beta and interleukin-10 in the cerebrospinal fluid of patients with tick-borne encephalitis. Cytokine. 2015;71:125–131. doi: 10.1016/j.cyto.2014.10.001. PubMed DOI
Guo HY, Zhang XC, Jia RY. Toll-like receptors and RIG-I-like receptors play important roles in resisting flavivirus. J Immunol Res. 2018;2018:6106582. doi: 10.1155/2018/6106582. PubMed DOI PMC
Jelenik Z, Keller M, Briggs B, Günther G, Haglund M, Hudeckova H, Jilkova E, Mickiene A, Sandell B, Steffen R, Strle F. Tick-borne encephalitis and golden agers: position paper of the International Scientific Working Group on Tick-borne encephalitis (ISW-TBE) Wien Med Wochenschr. 2010;160:247–251. doi: 10.1007/s10354-010-0758-5. PubMed DOI
Kimura T, Katoh H, Kayama H, Saiga H, Okuyama M, Okamoto T, Umemoto E, Matsuura Y, Yamamoto M, Takeda K. Ifit1 inhibits Japanese encephalitis virus replication through binding to 5' capped 2'-O unmethylated RNA. J Virol. 2013;87:9997–10003. doi: 10.1128/JVI.00883-13. PubMed DOI PMC
Kindberg E, Mickiene A, Ax C, Akerlind B, Vene S, Lindquist L, Lundkvist A, Svensson L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. J Infect Dis. 2008;197:266–269. doi: 10.1086/524709. PubMed DOI
Kondrusik M, Zajkowska J, Pancewicz S, Swierzbińska R, Grygorczuk S, Hermanowska-Szpakowicz T. Interferon gamma concentration in the cerebrospinal fluid of patients with tick-borne encephalitis. Neurol Neurochir Pol. 2005;39:109–113. PubMed
Kriz B, Maly M, Benes C, Daniel M. Epidemiology of tick-borne encephalitis in the Czech Republic 1970–2008. Vector Borne Zoonotic Dis. 2012;12:994–999. doi: 10.1089/vbz.2011.0900. PubMed DOI PMC
Leonova GN, Belikov SI, Kondratov IG, Takashima I. Comprehensive assessment of the genetics and virulence of tick-borne encephalitis virus strains isolated from patients with inapparent and clinical forms of the infection in the Russian Far East. Virology. 2013;443:89–98. doi: 10.1016/j.virol.2013.04.029. PubMed DOI
Leonova GN, Maystrovskaya OS, Kondratov IG, Takashima I, Belikov SI. The nature of replication of tick-borne encephalitis virus strains isolated from residents of the Russian Far East with inapparent and clinical forms of infection. Virus Res. 2014;189:34–42. doi: 10.1016/j.virusres.2014.04.004. PubMed DOI
Li YP, Li M, Jia XL, Deng HL, Wang WJ, Wu FP, Wang J, Dang SS. Association of gene polymorphisms of pattern-recognition receptor signaling pathway with the risk and severity of hand, foot, and mouth disease caused by enterovirus 71 in Chinese Han population. J Med Virol. 2018;90:692–698. doi: 10.1002/jmv.25000. PubMed DOI
Li YP, Liu CR, Deng HL, Wang MQ, Tian Y, Chen Y, Zhang YF, Dang SS, Zhai S. DNA methylation and single-nucleotide polymorphisms in DDX58 are associated with hand, foot and mouth disease caused by enterovirus 71. PLoS Negl Trop Dis. 2022;16:e0010090. doi: 10.1371/journal.pntd.0010090. PubMed DOI PMC
Lopez-Rodriguez R, Trapero-Marugan M, Borque MJ, Roman M, Hernandez-Bartolome A, Rodriguez-Muñoz Y, Martin-Vilchez S, Abad-Santos F, Muñoz de Rueda P, Vidal-Castiñeira JR, Rodrigo L, Salmeron J, Moreno-Otero R, Sanz-Cameno P. Genetic variants of interferon-stimulated genes and IL-28B as host prognostic factors of response to combination treatment for chronic hepatitis C. Clin Pharmacol Ther. 2011;90:712–721. doi: 10.1038/clpt.2011.189. PubMed DOI
Mansfield KL, Johnson N, Phipps LP, Stephenson JR, Fooks AR, Solomon T. Tick-borne encephalitis virus - a review of an emerging zoonosis. J Gen Virol. 2009;90:1781–1794. doi: 10.1099/vir.0.011437-0. PubMed DOI
Mickienė A, Pakalnienė J, Nordgren J, Carlsson B, Hagbom M, Svensson L, Lindquist L. Polymorphisms in chemokine receptor 5 and Toll-like receptor 3 genes are risk factors for clinical tick-borne encephalitis in the Lithuanian population. PLoS ONE. 2014;9:e106798. doi: 10.1371/journal.pone.0106798. PubMed DOI PMC
Miorin L, Albornoz A, Baba MM, D'Agaro P, Marcello A. Formation of membrane-defined compartments by tick-borne encephalitis virus contributes to the early delay in interferon signaling. Virus Res. 2012;163:660–666. doi: 10.1016/j.virusres.2011.11.020. PubMed DOI
Palus M, Sohrabi Y, Broman KW, Strnad H, Šíma M, Růžek D, Volkova V, Slapničková M, Vojtíšková J, Mrázková L, Salát J, Lipoldová M. A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus. BMC Neurosci. 2018;19:39. doi: 10.1186/s12868-018-0438-8. PubMed DOI PMC
Palus M, Vojtíšková J, Salát J, Kopecký J, Grubhoffer L, Lipoldová M, Demant P, Růžek D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J Neuroinflammation. 2013;10:77. doi: 10.1186/1742-2094-10-77. PubMed DOI PMC
Ruzek D, Avšič Županc T, Borde J, Chrdle A, Eyer L, Karganova G, Kholodilov I, Knap N, Kozlovskaya L, Matveev A, Miller AD, Osolodkin DI, Överby AK, Tikunova N, Tkachev S, Zajkowska J. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI
Selinger M, Věchtová P, Tykalová H, Ošlejšková P, Rumlová M, Štěrba J, Grubhoffer L. Integrative RNA profiling of TBEV-infected neurons and astrocytes reveals potential pathogenic effectors. Comput Struct Biotechnol J. 2022;20:2759–2777. doi: 10.1016/j.csbj.2022.05.052. PubMed DOI PMC
Zerbini FM, Siddell SG, Lefkowitz EJ, Mushegian AR, Adriaenssens EM, Alfenas-Zerbini P, Dempsey DM, Dutilh BE, García ML, Hendrickson RC, Junglen S, Krupovic M, Kuhn JH, Lambert AJ, Łobocka M, Oksanen HM, Robertson DL, Rubino L, Sabanadzovic S, Simmonds P, Smith DB, Suzuki N, Van Doorslaer K, Vandamme AM, Varsani A. Changes to virus taxonomy and the ICTV Statutes ratified by the International Committee on Taxonomy of Viruses (2023) Arch Virol. 2023;168:175. doi: 10.1007/s00705-023-05797-4. PubMed DOI PMC
Zhou X, Michal JJ, Zhang L, Ding B, Lunney JK, Liu B, Jiang Z. Interferon induced IFIT family genes in host antiviral defense. Int J Biol Sci. 2013;9:200–208. doi: 10.7150/ijbs.5613. PubMed DOI PMC