Modelling protein-protein interactions for the design of vaccine chimeric antigens with protective epitopes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39928697
PubMed Central
PMC11809815
DOI
10.1371/journal.pone.0318439
PII: PONE-D-24-57038
Knihovny.cz E-zdroje
- MeSH
- antigeny imunologie MeSH
- epitopy * imunologie MeSH
- infestace klíšťaty prevence a kontrola imunologie MeSH
- Rhipicephalus imunologie MeSH
- skot MeSH
- vakcíny * imunologie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny MeSH
- epitopy * MeSH
- vakcíny * MeSH
Ticks and tick-borne diseases are a growing burden worldwide and vaccines are effective control interventions. Vaccine formulations with tick antigens such as BM86/BM95 (BM) and Subolesin (SUB) have shown reduction in tick fitness and infestation in immunized hosts. However, antigen combination is a challenging approach to improve vaccine efficacy (E) against multiple tick species. Herein, in silico and in music algorithms were integrated to model BM-SUB protein-protein interactions to apply a quantum vaccinology approach for combining protective epitopes or immunological quantum in the chimeric antigen Q38-95. Cattle immunized with Q38-95 and infested with African blue tick Rhipicephalus decoloratus showed an 82% E similar to BM86 and higher than SUB. The immune mechanisms activated in cattle in response to vaccination with Q38-95 were mediated by anti-BM/SUB antibodies that interfered with BM-SUB interactions and through activation of other innate and adaptive immune pathways. The results support modelling protein-protein interactions affecting E to identify and combine candidate protective epitopes in chimeric antigens.
Graduate Program Interunits in Biotechnology University of São Paulo São Paulo Brazil
Immunology Center Adolfo Lutz Institute São Paulo SP Brazil
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
National Livestock Resources Research Institute Kampala Uganda
SaBio Instituto de Investigación en Recursos Cinegéticos Ciudad Real Spain
Zobrazit více v PubMed
de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;13:6938–46. doi: 10.2741/3200 PubMed DOI
Lee W, Barbosa AD, Irwin PJ, Currie A, Kollmann TR, Beaman M, et al.. A systems biology approach to better understand human tick-borne diseases. Trends Parasitol. 2023;39(1):53–69. doi: 10.1016/j.pt.2022.10.006 PubMed DOI
Vandekerckhove O, De Buck E, Van Wijngaerden E. Lyme disease in Western Europe: an emerging problem? a systematic review. Acta Clin Belg. 2021;76(3):244–52. doi: 10.1080/17843286.2019.1694293 PubMed DOI
de la Fuente J, Estrada-Peña A, Rafael M, Almazán C, Bermúdez S, Abdelbaset AE, et al.. Perception of ticks and tick-borne diseases worldwide. Pathogens. 2023;12(10):1258. doi: 10.3390/pathogens12101258 PubMed DOI PMC
de la Fuente J, Gortázar C, Contreras M, Kabi F, Kasaija P, Mugerwa S, et al.. Anti-tick vaccine in Uganda - from bench to field. Vaccine. 2025;45:126695. doi: 10.1016/j.vaccine.2024.126695 PubMed DOI
de la Fuente J. Translational biotechnology for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis. 2021;12(5):101738. doi: 10.1016/j.ttbdis.2021.101738 PubMed DOI
Estrada-Peña A, Mallón AR, Bermúdez S, de la Fuente J, Domingos A, García MPE, et al.. One health approach to identify research needs on Rhipicephalus microplus ticks in the Americas. Pathogens. 2022;11(10):1180. doi: 10.3390/pathogens11101180 PubMed DOI PMC
Kasaija PD, Contreras M, Kirunda H, Nanteza A, Kabi F, Mugerwa S, et al.. Inspiring anti-tick vaccine research, development and deployment in tropical africa for the control of cattle ticks: review and insights. Vaccines (Basel). 2022;11(1):99. doi: 10.3390/vaccines11010099 PubMed DOI PMC
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology. 2024;151(9):1045–52. doi: 10.1017/S003118202400043X PubMed DOI PMC
de la Fuente J, Almazán C, Canales M, Pérez de la Lastra JM, Kocan KM, Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Anim Health Res Rev. 2007;8(1):23–8. doi: 10.1017/S1466252307001193 PubMed DOI
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, et al.. Functional evolution of Subolesin/Akirin. Front Physiol. 2018;91612. doi: 10.3389/fphys.2018.01612 PubMed DOI PMC
de la Fuente J, Estrada-Peña A. Why new vaccines for the control of ectoparasite vectors have not been registered and commercialized?. Vaccines (Basel). 2019;7(3):75. doi: 10.3390/vaccines7030075 PubMed DOI PMC
de la Fuente J, Rutaisire J. Bibliometric analysis for the identification of main limitations and future directions of vaccines for the control of ticks and tick-borne pathogens in Uganda. Curr Res Parasitol Vector Borne Dis. 2024;5:100175. doi: 10.1016/j.crpvbd.2024.100175 PubMed DOI PMC
de la Fuente J, Gortázar C, Contreras M, Kabi F, Kasaija P, Mugerwa S, et al.. Increasing access to biotech products for animal agriculture in Sub-Saharan Africa through partnerships. Nat Biotechnol. 2024;42(7):1013–4. doi: 10.1038/s41587-024-02300-5 PubMed DOI
Ndawula C Jr, Tabor AE. Cocktail anti-tick vaccines: the unforeseen constraints and approaches toward enhanced efficacies. Vaccines (Basel). 2020;8(3):457. doi: 10.3390/vaccines8030457 PubMed DOI PMC
Parthasarathi BC, Kumar B, Ghosh S. Current status and future prospects of multi-antigen tick vaccine. J Vector Borne Dis. 2021;58(3):183–92. doi: 10.4103/0972-9062.321739 PubMed DOI
de la Fuente J, Mazuecos L, Contreras M. Innovative approaches for the control of ticks and tick-borne diseases. Ticks Tick Borne Dis. 2023;14(6):102227. doi: 10.1016/j.ttbdis.2023.102227 PubMed DOI
Contreras M, Kasaija PD, Kabi F, Mugerwa S, De la Fuente J. The Correlation between subolesin-reactive epitopes and vaccine efficacy. Vaccines (Basel). 2022;10(8):1327. doi: 10.3390/vaccines10081327 PubMed DOI PMC
de la Fuente J, Contreras M. Quantum vaccinomics platforms to advance in vaccinology. Front Immunol. 2023;141172734. doi: 10.3389/fimmu.2023.1172734 PubMed DOI PMC
Prudencio CR, Pérez de la Lastra JM, Canales M, Villar M, de la Fuente J. Mapping protective epitopes in the tick and mosquito subolesin ortholog proteins. Vaccine. 2010;28(33):5398–406. doi: 10.1016/j.vaccine.2010.06.021 PubMed DOI
Moreno-Cid JA, Pérez de la Lastra JM, Villar M, Jiménez M, Pinal R, Estrada-Peña A, et al.. Control of multiple arthropod vector infestations with subolesin/akirin vaccines. Vaccine. 2013;31(8):1187–96. doi: 10.1016/j.vaccine.2012.12.073 PubMed DOI
Artigas-Jerónimo S, Comín JJP, Villar M, Contreras M, Alberdi P, Viera IL, et al.. A novel combined scientific and artistic approach for the advanced characterization of interactomes: the Akirin/Subolesin model. Vaccines (Basel). 2020;8(1):77. doi: 10.3390/vaccines8010077 PubMed DOI PMC
Contreras M, Vicente J, Cerón JJ, Martinez Subiela S, Urra JM, Rodríguez-Del-Río FJ, et al.. Antibody isotype epitope mapping of SARS-CoV-2 Spike RBD protein: Targets for COVID-19 symptomatology and disease control. Eur J Immunol. 2023;53(4):e2250206. doi: 10.1002/eji.202250206 PubMed DOI
de la Fuente J, Moraga-Fernández A, Alberdi P, Díaz-Sánchez S, García-Álvarez O, Fernández-Melgar R, et al.. A quantum vaccinomics approach for the design and production of MSP4 chimeric antigen for the control of anaplasma phagocytophilum infections. Vaccines (Basel). 2022;10(12):1995. doi: 10.3390/vaccines10121995 PubMed DOI PMC
Canales M, Labruna MB, Soares JF, Prudencio CR, de la Fuente J. Protective efficacy of bacterial membranes containing surface-exposed BM95 antigenic peptides for the control of cattle tick infestations. Vaccine. 2009;27(52):7244–8. doi: 10.1016/j.vaccine.2009.09.123 PubMed DOI
Contreras M, de la Fuente J. Control of Ixodes ricinus and dermacentor reticulatus tick infestations in rabbits vaccinated with the Q38 Subolesin/Akirin chimera. Vaccine. 2016;34(27):3010–3. doi: 10.1016/j.vaccine.2016.04.092 PubMed DOI
Almazán C, Moreno-Cantú O, Moreno-Cid JA, Galindo RC, Canales M, Villar M, et al.. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine. 2012;30(2):265–72. doi: 10.1016/j.vaccine.2011.10.102 PubMed DOI
Contreras M, Peres Rubio C, de la Fuente J, Villar M, Merino O, Mosqueda J, et al.. Changes in serum biomarkers of oxidative stress in cattle vaccinated with tick recombinant antigens: a pilot study. Vaccines (Basel). 2020;9(1):5. doi: 10.3390/vaccines9010005 PubMed DOI PMC
Canales M, de la Lastra JMP, Naranjo V, Nijhof AM, Hope M, Jongejan F, et al.. Expression of recombinant Rhipicephalus (Boophilus) microplus, R. annulatus and R. decoloratus Bm86 orthologs as secreted proteins in Pichia pastoris. BMC Biotechnol. 2008;8:14. doi: 10.1186/1472-6750-8-14 PubMed DOI PMC
Poland GA, de la Fuente J. Quantum vaccinology: a new science and epistemological abstraction framework for developing new vaccines and understanding the generation of the immune response. Vaccine. 2025;46126641. doi: 10.1016/j.vaccine.2024.126641 PubMed DOI
Trentelman JJA, Teunissen H, Kleuskens JAGM, van de Crommert J, de la Fuente J, Hovius JWR, et al.. A combination of antibodies against Bm86 and Subolesin inhibits engorgement of Rhipicephalus australis (formerly Rhipicephalus microplus) larvae in vitro. Parasit Vectors. 2019;12(1):362. doi: 10.1186/s13071-019-3616-3 PubMed DOI PMC
de la Fuente J, Rodríguez M, Montero C, Redondo M, García-García JC, Méndez L, et al.. Vaccination against ticks (Boophilus spp.): the experience with the Bm86-based vaccine Gavac. Genet Anal. 1999;15(3–5):143–8. doi: 10.1016/s1050-3862(99)00018-2 PubMed DOI
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–72. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h DOI
de Almeida M, Hinterndorfer M, Brunner H, Grishkovskaya I, Singh K, Schleiffer A, et al.. AKIRIN2 controls the nuclear import of proteasomes in vertebrates. Nature. 2021;599(7885):491–6. doi: 10.1038/s41586-021-04035-8 PubMed DOI
Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al.. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37(4):420–3. doi: 10.1038/s41587-019-0036-z PubMed DOI
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43(W1):W174-81. doi: 10.1093/nar/gkv342 PubMed DOI PMC
Yan Y, Tao H, He J, Huang S-Y. The HDOCK server for integrated protein-protein docking. Nat Protoc. 2020;15(5):1829–52. doi: 10.1038/s41596-020-0312-x PubMed DOI
Bhachoo J, Beuming T. Investigating protein-peptide interactions using the schrödinger computational suite. Methods Mol Biol. 2017;1561235–54. doi: 10.1007/978-1-4939-6798-8_14 PubMed DOI
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–34. doi: 10.1007/s10822-013-9644-8 PubMed DOI
Mahoney MW, Jorgensen WL. A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys. 2000;112(20):8910–22. doi: 10.1063/1.481505 DOI
Huang J, MacKerell AD Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34(25):2135–45. doi: 10.1002/jcc.23354 PubMed DOI PMC
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, et al.. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys. 2020;153(4):044130. doi: 10.1063/5.0014475 PubMed DOI PMC
Zhu J, Fan H, Periole X, Honig B, Mark AE. Refining homology models by combining replica-exchange molecular dynamics and statistical potentials. Proteins. 2008;72(4):1171–88. doi: 10.1002/prot.22005 PubMed DOI PMC
Evans DJ, Holian BL. The Nose–Hoover thermostat. J Chem Phys. 1985;83(8):4069–74. doi: 10.1063/1.449071 DOI
Martyna GJ, Tobias DJ, Klein ML. Constant pressure molecular dynamics algorithms. J Chem Phys. 1994;101(5):4177–89. doi: 10.1063/1.467468 DOI
Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J Chem Phys. 1992;97(3):1990–2001. doi: 10.1063/1.463137 DOI
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. doi: 10.1016/j.jmb.2007.05.022 PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(1):33–8doi: 10.1016/0263-7855(96)00018-5 PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. doi: 10.1038/s41586-021-03819-2 PubMed DOI PMC
Evans R, O´Neill M, Pritzel A, Antropova N, Senior A, Green T, et al.. Protein complex prediction with AlphaFold-Multimer. BioRxiv; [Preprint]. 2021. [cited 2025 Jan 9]. Available from: https://www.biorxiv.org/content/10.1101/2021.10.04.463034v1. doi: 10.1101/2021.10.04.463034 DOI
Honorato RV, Trellet ME, Jiménez-García B, Schaarschmidt JJ, Giulini M, Reys V, et al.. The HADDOCK2.4 web server for integrative modeling of biomolecular complexes. Nat Protoc. 2024;19(11):3219–41. doi: 10.1038/s41596-024-01011-0 PubMed DOI
Honorato RV, Koukos PI, Jiménez-García B, Tsaregorodtsev A, Verlato M, Giachetti A, et al.. Structural biology in the clouds: the WeNMR-EOSC ecosystem. Front Mol Biosci. 2021;8729513. doi: 10.3389/fmolb.2021.729513 PubMed DOI PMC
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al.. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi: 10.1002/jcc.20084 PubMed DOI
Ramanathan A, Agarwal PK. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. PLoS Biol. 2011;9(11):e1001193. doi: 10.1371/journal.pbio.1001193 PubMed DOI PMC
Duff MR Jr, Borreguero JM, Cuneo MJ, Ramanathan A, He J, Kamath G, et al.. Modulating enzyme activity by altering protein dynamics with solvent. Biochemistry. 2018;57(29):4263–75. doi: 10.1021/acs.biochem.8b00424 PubMed DOI PMC
Case DA, Berryman JT, Betz RM, Cerutti DS, Cheatham TE III, Darden TA, et al.. AMBER 15. San Francisco: University of California. 2015. [cited 2025 Jan 9] Available from: https://ambermd.org/doc12/Amber15.pdf
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput. 2015;11(8):3696–713. doi: 10.1021/acs.jctc.5b00255 PubMed DOI PMC
Hoitsma NM, Whitaker AM, Beckwitt EC, Jang S, Agarwal PK, Van Houten B, et al.. AP-endonuclease 1 sculpts DNA through an anchoring tyrosine residue on the DNA intercalating loop. Nucleic Acids Res. 2020;48(13):7345–55. doi: 10.1093/nar/gkaa496 PubMed DOI PMC
Narayanan C, Bernard DN, Bafna K, Gagné D, Agarwal PK, Doucet N. Ligand-induced variations in structural and dynamical properties within an enzyme superfamily. Front Mol Biosci. 2018;554. doi: 10.3389/fmolb.2018.00054 PubMed DOI PMC
Kamath G, Howell EE, Agarwal PK. The tail wagging the dog: insights into catalysis in R67 dihydrofolate reductase. Biochemistry. 2010;49(42):9078–88. doi: 10.1021/bi1007222 PubMed DOI
Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J Phys Chem. 1987;91(24):6269–71. doi: 10.1021/j100308a038 DOI
Beck DAC, Daggett V. Methods for molecular dynamics simulations of protein folding/unfolding in solution. Methods. 2004;34(1):112–20. doi: 10.1016/j.ymeth.2004.03.008 PubMed DOI
Shukla S, Bafna K, Gullett C, Myles DAA, Agarwal PK, Cuneo MJ. Differential substrate recognition by maltose binding proteins influenced by structure and dynamics. Biochemistry. 2018;57(40):5864–76. doi: 10.1021/acs.biochem.8b00783 PubMed DOI PMC
Agarwal PK. Cis/trans isomerization in HIV-1 capsid protein catalyzed by cyclophilin A: insights from computational and theoretical studies. Proteins. 2004;56(3):449–63. doi: 10.1002/prot.20135 PubMed DOI
Hester KP, Bhattarai K, Jiang H, Agarwal PK, Pope C. Engineering dynamic surface peptide networks on butyrylcholinesteraseG117H for enhanced organophosphosphorus anticholinesterase catalysis. Chem Res Toxicol. 2019;32(9):1801–10. doi: 10.1021/acs.chemrestox.9b00146 PubMed DOI PMC
de la Fuente J, Pastor Comín JJ, Gortázar C. The sound of host-SARS-CoV-2 molecular interactions. Innovation (Camb). 2021;2(3):100126. doi: 10.1016/j.xinn.2021.100126 PubMed DOI PMC
Contreras M, Artigas-Jerónimo S, Pastor Comín JJ, de la Fuente J. A quantum vaccinomics approach based on protein-protein interactions. Methods Mol Biol. 2022;2411287–305. doi: 10.1007/978-1-0716-1888-2_17 PubMed DOI
Kasaija PD, Contreras M, Kabi F, Mugerwa S, de la Fuente J. Vaccination with recombinant subolesin antigens provides cross-tick species protection in bos indicus and crossbred cattle in Uganda. Vaccines (Basel). 2020;8(2):319. doi: 10.3390/vaccines8020319 PubMed DOI PMC
Zhao Y, Li J, Gu H, Wei D, Xu Y, Fu W, et al.. Conformational preferences of π–π stacking between ligand and protein, analysis derived from crystal structure data geometric preference of π–π interaction. Interdiscip Sci Comput Life Sci. 2015;7(3):211–20. doi: 10.1007/s12539-015-0263-z PubMed DOI
Grathwohl C, Wüthrich K. The X-Pro peptide bond as an nmr probe for conformational studies of flexible linear peptides. Biopolymers. 1976;15(10):2025–41. doi: 10.1002/bip.1976.360151012 PubMed DOI
Zondlo NJ. Aromatic-proline interactions: electronically tunable CH/π interactions. Acc Chem Res. 2013;46(4):1039–49. doi: 10.1021/ar300087y PubMed DOI PMC
Klein BJ, Vann KR, Andrews FH, Wang WW, Zhang J, Zhang Y, et al.. Structural insights into the π-π-π stacking mechanism and DNA-binding activity of the YEATS domain. Nat Commun. 2018;9(1):4574. doi: 10.1038/s41467-018-07072-6 PubMed DOI PMC
da Silva OLT, da Silva MK, Rodrigues-Neto JF, Santos Lima JPM, Manzoni V, Akash S, et al.. Advancing molecular modeling and reverse vaccinology in broad-spectrum yellow fever virus vaccine development. Sci Rep. 2024;14(1):10842. doi: 10.1038/s41598-024-60680-9 PubMed DOI PMC
Russo G, Crispino E, Maleki A, Di Salvatore V, Stanco F, Pappalardo F. Beyond the state of the art of reverse vaccinology: predicting vaccine efficacy with the universal immune system simulator for influenza. BMC Bioinformatics. 2023;24(1):231. doi: 10.1186/s12859-023-05374-1 PubMed DOI PMC
Campos DM de O, Silva MK da, Barbosa ED, Leow CY, Fulco UL, Oliveira JIN. Exploiting reverse vaccinology approach for the design of a multiepitope subunit vaccine against the major SARS-CoV-2 variants. Comput Biol Chem. 2022;101:107754. doi: 10.1016/j.compbiolchem.2022.107754 PubMed DOI PMC
Younas M, Ashraf K, Ijaz M, Suleman M, Chohan TA, Rahman SU, et al.. Construction of multi-epitope vaccine against the Rhipicephalus microplus tick: an immunoinformatics approach. Trop Biomed. 2024;41(1):84–96. doi: 10.47665/tb.41.1.011 PubMed DOI
Costa GCA, Ribeiro ICT, Giunchetti RC, Gontijo NF, Sant’Anna MRV, Pereira MH, et al.. Gut membrane proteins as candidate antigens for immunization of mice against the tick Amblyomma sculptum. Vaccine. 2024;42(21):126141. doi: 10.1016/j.vaccine.2024.07.042 PubMed DOI PMC
C A Costa G, A A Silva F, M Manzato V, S Torquato RJ, G Gonzalez Y, Parizi LF, et al.. A multiepitope chimeric antigen from Rhipicephalus microplus-secreted salivary proteins elicits anti-tick protective antibodies in rabbit. Vet Parasitol. 2023;318:109932. doi: 10.1016/j.vetpar.2023.109932 PubMed DOI
Merino O, Antunes S, Mosqueda J, Moreno-Cid JA, Pérez de la Lastra JM, Rosario-Cruz R, et al.. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31(49):5889–96. doi: 10.1016/j.vaccine.2013.09.037 PubMed DOI
Caradonna TM, Schmidt AG. Protein engineering strategies for rational immunogen design. NPJ Vaccines. 2021;6(1):154. doi: 10.1038/s41541-021-00417-1 PubMed DOI PMC
de la Fuente J, Kocan KM. Advances in the identification and characterization of protective antigens for recombinant vaccines against tick infestations. Expert Rev Vaccines. 2003;2(4):583–93. doi: 10.1586/14760584.2.4.583 PubMed DOI
de la Fuente J, Moreno-Cid JA, Canales M, Villar M, de la Lastra JMP, Kocan KM, et al.. Targeting arthropod subolesin/akirin for the development of a universal vaccine for control of vector infestations and pathogen transmission. Vet Parasitol. 2011;181(1):17–22. doi: 10.1016/j.vetpar.2011.04.018 PubMed DOI
Contreras M, Kasaija PD, Merino O, de la Cruz-Hernandez NI, Gortazar C, de la Fuente J. Oral vaccination with a formulation combining rhipicephalus microplus subolesin with heat inactivated mycobacterium bovis reduces tick infestations in cattle. Front Cell Infect Microbiol. 2019;945. doi: 10.3389/fcimb.2019.00045 PubMed DOI PMC
Kasaija PD, Contreras M, Kabi F, Mugerwa S, Garrido JM, Gortazar C, et al.. Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine. 2022;40(32):4564–73. doi: 10.1016/j.vaccine.2022.06.036 PubMed DOI
Rutemark C, Alicot E, Bergman A, Ma M, Getahun A, Ellmerich S, et al.. Requirement for complement in antibody responses is not explained by the classic pathway activator IgM. Proc Natl Acad Sci U S A. 2011;108(43):E934-42. doi: 10.1073/pnas.1109831108 PubMed DOI PMC
Lubbers R, van Essen MF, van Kooten C, Trouw LA. Production of complement components by cells of the immune system. Clin Exp Immunol. 2017;188(2):183–94. doi: 10.1111/cei.12952 PubMed DOI PMC